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AN ISOMETRIC IMBEDDING THEOREM

FOR HOLOMORPHIC BUNDLES

David W. Catlin and John P. D’Angelo

Introduction

The main result in this paper concerns special Hermitian metrics on vector
bundles over certain compact complex manifolds. These metrics are not neces-
sarily isometric pullbacks of the Euclidean metric on the universal bundle over a
Grassman manifold, but become so after tensoring sufficiently often with a line
bundle. The result generalizes to this context a concrete theorem the authors
proved in [CD1] about bihomogeneous polynomials on complex Euclidean space
C

n that are positive away from the origin. This earlier work is part of a program
involving analogues (for complex variables) of Hilbert’s seventeenth problem; the
current work both generalizes the earlier work and gives an algebraic geometric
context for it.

In order to state our result we use the following notation: Gp,N denotes the
Grassman manifold of p-dimensional planes in C

N , π : Up,N → Gp,N denotes
the universal bundle over Gp,N , and g0 denotes the Euclidean metric on it. Def-
inition 1 gives the precise meaning for an Hermitian metric R on a holomorphic
vector bundle E over a complex manifold M to be globalizable. One of the
conditions is that R extends to be a complex-valued function on E × E; this
enables us to evaluate R(u, v) even when u and v have different base points.
We also assume that the extended function is holomorphic in its first variable
and Hermitian symmetric. Given holomorphic bundles over M with globalizable
Hermitian metrics G1 and G2, the tensor product bundle has a natural global-
izable Hermitian metric written G1G2. See Remark 1. The sharp globalizable
Cauchy-Schwarz inequality (SGCS) appears in Definition 2. Both (SGCS) and
the negativity of L are necessary hypotheses in Theorem 1. We discuss this in
Section 2.

We prove the following result about isometric imbedding:
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Theorem 1. Suppose that M is a compact complex manifold. Let E be a vector
bundle of rank p over M with globalizable Hermitian metric G. Let L be a
line bundle over M with globalizable Hermitian metric R, and suppose that L is
negative and that R satisfies (SGCS). Then there is an integer d0 so that, for
all d with d ≥ d0, there is a holomorphic imbedding hd with hd : M → Gp,N so
that E ⊗ Ld = h∗

dUp,N and GRd = h∗
d(g0).

The new part of the conclusion of Theorem 1 is that GRd = h∗
d(g0). The

classical Kodaira theorem yields an imbedding; we show (given our necessary
hypotheses) that this imbedding can be chosen to be an isometry. To help
motivate this theorem, we reinterpret it when M is complex projective space,
E is a power U

m of the universal line bundle, L = U, and the metric on U
m

arises from a bihomogeneous polynomial p(z, z). The conclusion amounts to
saying that there is an integer d0 so that, for each d ≥ d0, there is a holomorphic
homogeneous polynomial mapping hd such that

||z||2dp(z, z) = ||hd(z)||2.
This is one of principal results in [CD1]. Thus we can write a bihomogeneous
polynomial on C

n, that is strictly positive away from the origin, as a quotient
of squared norms of holomorphic polynomial mappings. We remark here that
the minimum such integer d can be arbitrarily large even for bihomogeneous
polynomials p of degree four.

Non-negative bihomogeneous polynomials cannot necessarily be written as
the quotient of such squared norms. In Section 7 we give two examples and
briefly discuss two necessary conditions. We hope to determine in future work
precisely which non-negative polynomials can be written as quotients of squared
norms of holomorphic polynomials. Such a result would give a complex variables
analogue of Hilbert’s seventeenth problem. The famous solution to this prob-
lem by E. Artin (See [R] for a survey) states that a non-negative homogeneous
polynomial on real Euclidean space is necessarily a sum of squares of rational
functions. Applications from [CD1] suggest why we consider instead whether
non-negative polynomials are quotients of squared norms of holomorphic poly-
nomials mappings.

The main result in this paper generalizes Theorem 1 from [CD1]. After the
submission of this paper, it was pointed out to the second author that Quillen
[Q] had already proved that result. The other results in [CD1] and those in this
paper develop new directions and we hope that they are new. The second author
acknowledges Dan Grayson for this information.

The main theorem in this paper considers Hermitian metrics on vector bun-
dles, so its concrete analogues imply results about the holomorphic factorization
of matrices of real analytic functions. In particular this gives a weak version of
Hilbert’s seventeenth problem for matrix-valued polynomials.
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Corollary. Suppose that M(z, z) is a matrix of bihomogeneous polynomials that
is positive-definite away from the origin. Suppose R is a bihomogeneous poly-
nomial that is positive away from the origin and satisfies (SGCS). Assume also
that {R < 1} is a strongly pseudoconvex domain. Then there is an integer d and
a matrix A of holomorphic homogeneous polynomials such that

R(z, z)dM(z, z) = A(z)∗A(z).

In particular we can choose R(z, z) = ||z||2d.

Although we cannot in general write M(z, z) = A(z)∗A(z), where A depends
holomorphically on z, the Corollary enables us to write R(z, z)dM(z, z) in this
form when d is sufficiently large. Here the symbol ∗ denotes the conjugate
transpose. The main theorem in this paper generalizes this by replacing the
monomials zα (sections of a power of the hyperplane bundle) by sections φα of
other bundles.

We conclude the introduction by briefly discussing the proof of Theorem 1.
We first show that the desired pullback property for the natural metric on E⊗Ld

follows from a certain matrix of constants being positive-definite. This is equiv-
alent to an integral operator being positive. We use the unit disk bundle to
consider these operators for all d simultaneously. We then use properties of the
Bergman projection for sections of a vector bundle and facts about compact op-
erators on Hilbert spaces in order to prove positivity modulo compact operators.
This shows, when d is sufficiently large, that the metric on E ⊗Ld is a pullback
of the Euclidean metric on some Up,N .

In Section 2 we discuss why each hypothesis in Theorem 1 is necessary for
the conclusion.

The first author acknowledges Laszlo Lempert and the second author ac-
knowledges Steve Bradlow and Yum-Tong Siu for useful discussions.

1. Globalizable Metrics

We begin by studying the Euclidean metric on the universal bundle over the
Grassman manifold. Let Gp,N denote the Grassman manifold of p planes in
complex N -space. When p = 1 we have complex projective space, and we write
as usual P

N−1 for G1,N . Let Up,N denote the universal bundle over Gp,N . This
bundle is sometimes known as the tautological bundle; a point in Up,N is a pair
(S, ζ) where S is a p-dimensional subspace of C

N and ζ ∈ S. We let g0 denote
the Euclidean metric on Up,N . By definition we have

(1) g0((S, u), (S, v)) = v∗u = 〈u, v〉 =
∑

ujvj .

In (1), the Euclidean inner product 〈u, v〉 makes sense because we consider u, v

as elements of C
N . Alternatively, in terms of a local frame e of Up,N , we define
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g0(e) = e∗e. We have (g0)ij = 〈ej , ei〉 where 〈, 〉 denotes the usual Hermitian
inner product on complex Euclidean space C

N , and the vectors ei for i = 1, ..., r

are linearly independent. Note the interchange of indices. From this point of
view we see that the matrix of g0 is of the form A∗A.

We next make a simple but crucial observation. Consider the function g′0 :
Up,N × Up,N → C defined by

(2) g′0((S1, v1), (S2, v2)) = 〈v1, v2〉.

Then g0 is holomorphic in the first variable, anti-holomorphic in the second,
satisfies g′0(α, β) = g′0(β, α), and extends the metric in the sense that g′0(α, β) =
g0(α, β) when π(α) = π(β). Henceforth we drop the prime from the notation,
and write g0 for this function. The crucial fact about the Euclidean metric on
the universal bundle is that it makes sense to write g0(α, β) even when α and β

are based at different points.
Suppose that h : M → Gp,N is a holomorphic mapping. The pullback π′ :

h∗(Up,N ) → M is then a bundle over M ; a point in h∗(Up,N ) is a pair (z, u),
where z ∈ M , u ∈ Up,N , and h(z) = π(u). Write α and β for points in h∗(Up,N ).
Writing h∗ as usual for the map satisfying hπ′ = πh∗, there is a natural metric
h∗(g0) defined on h∗(Up,N ) by

(3) h∗(g0)(α, β) = g0(h∗α, h∗β).

We see again that h∗(g0) makes sense when α and β are based at different
points; we can therefore extend the definition of the metric to a function h∗(g0) :
h∗(Up,N )× h∗(Up,N ) as above. The metrics g0 and h∗(g0) are examples of what
we call globalizable metrics. For a vector bundle E over M we write E∗ for its
dual bundle and we write H(M, E∗) for the holomorphic sections of E∗. When
M is compact, H(M, E∗) is a finite-dimensional complex vector space.

Definition 1. Let π′ : E → M be a holomorphic vector bundle over a complex
manifold M . We suppose that G is an Hermitian metric on E. We say that
G is globalizable if there is a mapping G′ : E × E → C such that the following
properties hold:
1. G′ extends the metric: G′(u, v) = G(u, v) whenever π′(u) = π′(v).
2. G′ is holomorphic in the first variable: G′(·, v) ∈ H(M, E∗).
3. G′ is Hermitian: G′(u, v) = G′(v, u).

Henceforth we will write G instead of G′. For a fixed u, the map v → G(u, v)
is anti-holomorphic. Suppose that φ1, ..., φq denote a basis of H(M, E∗). We
can write

G(u, v) =
∑

j

〈G(u, v), φj〉φj
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and hence (for this fixed u) 〈G(u, v), φj〉 defines an element of H(M, E∗). This
gives

(4) G(u, v) =
q∑

j,k=1

Gkjφj(u)φk(v),

for constants Gkj . (The domain of the function φj is M . When π′(u) = z we
write φj(u) for the value of the linear functional φj(z) on uz.)

For clarity we repeat the conclusion. Suppose G is globalizable and φ1, . . . , φq

form a basis for H(M, E∗). Then there is a matrix Gkj of constants so that (4)
holds.

We note immediately that not all bundles E admit globalizable metrics. A
necessary and sufficient condition is that, for each non-zero vector v ∈ E there
is a section φ of E∗ with φ(v) 
= 0. The collection of these sections determines
a holomorphic map to some Gp,N .

Remark 1. Suppose for j = 1, 2 that Gj is a globalizable Hermitian metric on
a holomorphic vector bundle Ej over a complex manifold M . Then the formula

(5) G(u1 ⊗ u2, v1 ⊗ v2) = G1(u1, v1)G2(u2, v2),

determines a globalizable metric G on E1⊗E2. It is natural to write G = G1G2.

Suppose that G is globalizable, and that (4) holds. By property 3 of Definition
1, the matrix of coefficients (Gkj) must be Hermitian. It can have eigenvalues
of both signs. Consider the case when it is positive-definite. In this case we
can think of G as defining an Hermitian inner product on H(M, E∗) and we
obtain a holomorphic mapping from M to Gp,q inducing this metric. To see this
concretely, suppose that (Gkj) is a positive-definite matrix. Then there are q

independent vectors ζk in C
q so that Gkj = 〈ζj , ζk〉, and hence, from (4),

(6) G(u, v) =
q∑

j,k=1

〈ζj , ζk〉φj(u)φk(v) = 〈
∑

ζjφj(u),
∑

ζkφk(v)〉.

We can use (6) to construct a holomorphic map h : M → Gp,q. If we write
ψ(u) =

∑
ζjφj(u), then ψ defines a map from E to C

q. For z ∈ M , write
Ez for the fibre over z. Then, since ψ is injective on each fibre, ψ(Ez) is a
p-dimensional subspace of C

q; we write h(z) = ψ(Ez). We see from (6) that
G(u, v) = g0(h∗(u), h∗(v)). Thus, as uz varies over the p-dimensional fibre Ez,
the formula h(z) =

∑
φj(z)(uz)ζj defines a p-dimensional subspace of C

q.
In Section 2 we will discuss circumstances under which the mapping h is an

imbedding. We summarize our discussion so far in the next proposition.
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Proposition 1. Let G be a globalizable Hermitian metric on a holomorphic
vector bundle V over M . Suppose that the matrix Gkj defined by (4) is positive-
definite. Then G = h∗(g0) for some holomorphic mapping h : M → Gp,N .
Conversely, the pullback of a holomorphic map h : M → Gp,N defines a global-
izable metric on h∗(Up,N ) by formula (3).

We discuss Proposition 1 in the special case when M = P
n−1 and V = U

m
1,N =

U
m. The sections of the dual bundle are then the homogeneous monomials zα,

and the globalizable metric G can be written

(7) G(z, w) =
∑

|α|=|β|=m

cβαzαwβ .

Let p be a polynomial defined on C
n; we write its values as p(z, z). When p is

positive away from the origin and bihomogeneous of degree 2m, it determines a
globalizable metric on U

m. We check that p defines a metric using the transition
functions of the bundle. In the open coordinate chart of P

n−1 where zj 
= 0, we
define Gj by

(8) Gj(z, z) =
p(z, z)
|zj |2m

.

Each Gj is positive where it is defined and Gk = |( zj

zk
)m|2Gj . Since the functions

( zj

zk
)m are the transition functions for U

m, the collection of functions Gk define
a metric on U

m. The three conditions needed for it to be globalizable follow
immediately.

We next observe that it is possible for G(z, z) to be positive for all z ∈ C
n

with z 
= 0, but yet the underlying matrix (cβα) need not be. This shows that
such a metric is not necessarily a pullback of the Euclidean metric, and indicates
the content of the theorem.

Example. Put p(z, z) = |z1|4 +c|z1z2|2 + |z2|4 with c > −2. Then the matrix of
coefficients (with respect to the basis z2

1 , z1z2, z
2
2) is diagonal, with eigenvalues

1, c, 1. Yet p is obviously positive away from the origin. In this example it is
easy to prove that the minimum d required (in Theorem 1) for a given c tends
to infinity as c tends to −2.

2. Why the hypotheses of Theorem 1 are necessary

In this section we show that pullbacks of the Euclidean metric on the uni-
versal bundle over Grassmanians satisfy certain properties, and therefore that
these properties must be hypothesized in Theorem 1. We also show how these
conditions are related to hd being an imbedding.
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Definition 2. Let L be a line bundle over M with globalizable Hermitian metric
R. Then R satisfies the global Cauchy-Schwarz inequality (GCS) if

(GCS) |R(u1, u2)|2 ≤ R(u1, u1)R(u2, u2)

and R satisfies the sharp global Cauchy-Schwarz inequality (SGCS) if

(SGCS) |R(u1, u2)|2 < R(u1, u1)R(u2, u2)

holds whenever u1 
= u2 and their vector parts are non-zero.

Definition 3. We say that L is negative if the unit disk B = {z : R(z, z) < 1}
is a strongly pseudoconvex domain in L.

See [D,W] for various other definitions of negative. We next discuss why these
properties are required as necessary conditions in Theorem 1 for the line bundle
L.

Let g be a fibre metric on a Hermitian vector bundle E over a complex man-
ifold M . We write Ric(g) for the Ricci curvature form ∂∂(log(Det(g)). Let g0

be the Euclidean metric on the universal bundle; its Ricci curvature form is
negative. Thus for nonzero tangent vectors v we have Ric(g0)(v, v) < 0.

Proposition 2. Suppose that M is a compact complex manifold, and that h :
M → Gp,N is a holomorphic mapping. Let E = h∗(Up,N ) denote the pullback
bundle, and assume we are given the pullback metric h∗(g0) on E. Then

1. h is an immersion if and only if the (1, 1) form Ric(h∗(g0)) is negative.
2. h is injective if and only if for all distinct points z, w in M , there is

u ∈ Ez such that, for all nonzero v ∈ Ew, the (SGCS) inequality

(9) |h∗(g0)(u, v)|2 < |h∗(g0)(u, u)|2|h∗(g0)(v, v)|2,

holds.

Proof. By functorial properties of the curvature, Ric(h∗(g0)) = h∗Ric(g0). Thus
we have, for a holomorphic tangent vector L of M ,

(10) Ric(h∗(g0))(L, L) = Ric(g0)(∂h(L), ∂h(L)).

If h is an immersion, and L 
= 0, then ∂h(L) 
= 0, and the right side is negative.
Thus the left side is negative. Conversely if the left side is negative for all nonzero
L, then ∂h(L) 
= 0 for all nonzero L, and h is an immersion. This proves the
first statement.

To prove the second statement, suppose first that h is injective. Choose
distinct points z and w; hence h(z) 
= h(w). Choose u ∈ Ez so that h∗(u) is not
in h∗(Ew). If v ∈ Ew is nonzero, then h∗(u) is not a multiple of h∗(v). Hence

(11) |h∗(g0)(u, v)|2 = |g0(h∗(u), h∗(v))|2 < g0(h∗(u), h∗(u))g0(h∗(v), h∗(v))
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by the Cauchy-Schwarz inequality for the Euclidean metric g0. Thus (9) holds.
Conversely, suppose that there is such a u. Then h∗(u) is not a multiple of

h∗(v) for any v ∈ Ew. Hence h∗(Ez) 
= h∗(Ew) and hence h(z) 
= h(w). �

We use this result to show why the conditions on the globalizable metric R

in Theorem 1 are necessary. If the conclusion of Theorem 1 holds for all vector
bundles E satisfying the hypotheses, then it holds in particular when E = L.

Suppose that L is a line bundle over M with globalizable Hermitian metric R.
There is a natural metric Rd defined on Ld by using Remark 1. We amplify this
point here. Since the fibres are one-dimensional it suffices to give the definition
of Rd(u, v) when the vector parts of u and v are d-fold tensor products. Suppose
that (z1, l

d
1) = u and (z2, l

d
2) = v are local representations of points in Ld. We

put

Rd(u, v) = Rd((z1, l1 ⊗ ... ⊗ l1), (z2, l2 ⊗ ... ⊗ l2)) = R((z1, l1), (z2, l2))d.

Suppose that there is a holomorphic imbedding hd : M → P
N , and that

Rd = h∗
d(g0). Here N + 1 is the dimension of the space of holomorphic sections

of (L∗)d. Then we claim that (SGCS) must hold for R, and the curvature of R

must be negative.
First we show that (SGCS) holds. We write ld for the d-fold tensor product.

Since hd is assumed to be injective, Proposition 2 implies that

|Rd(ld1 , ld2)|2 < Rd(ld1 , ld1)Rd(ld2 , ld2),

and hence that

(12) |R(l1, l2)|2d < R(l1, l1)dR(l2, l2)d.

Taking d-th roots of (12) yields (SGCS).
Next we show that R has negative curvature. Since hd is an immersion,

Proposition 2 implies that Ric(Rd) is negative. Since Ric(Rd) = dRic(R) we see
that Ric(R) is also negative.

Remark 2. It is well known that the negativity of the curvature is equivalent
to the unit ball B in L being strongly pseudoconvex. When Rd = h∗(g0), we see
that B is defined by the equation

(13) r(u) = g0(h∗u, h∗u) = ||H(u)||2 < 1.

The domain B will be strongly pseudoconvex if the complex Hessian of a
defining function is positive-definite on the boundary. Choosing a ∈ C

n, we
have

(14) ∂∂r(a, a) = ||∂H(a)||2 ≥ c||a||2,
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whenever ∂H has maximal rank. Equation (14) shows that B is strongly pseu-
doconvex whenever h is an immersion.

We collect the information we have proved about (SGCS) and the negativity
of L in the following proposition.

Proposition 3. Let M be a complex manifold and let L be a line bundle over M

with Hermitian metric R. Suppose that there is an integer d and a holomorphic
immersion hd to P

N such that Ld = h∗(U1,N ) and such that Rd = h∗(g0). Then
L is negative and (GCS) holds. If also hd is injective, then (SGCS) holds.

Proposition 3 has a concrete corollary; this is the special case again when L

is a power of the universal bundle and the metric is given by a bihomogeneous
polynomial.

Corollary 1. Suppose that r(z, z) is a bihomogeneous polynomial of degree 2k

that is positive away from the origin. Suppose that, for every positive bihomo-
geneous polynomial f , there is an integer d such that frd is a squared norm of
a holomorphic mapping. Then the domain Ω = {r(z, z) < 1} must be strongly
pseudoconvex. Furthermore, the (GCS) inequality |r(z, w)|2 ≤ r(z, z)r(w,w)
must hold.

One can prove Corollary 1 without reference to bundles. The (GCS) inequality
is proved as above. We prove negativity by contradiction. If the domain {r < 1}
is not strongly pseudoconvex, then it has a weakly pseudoconvex boundary point
p. One can then find a non-zero tangent vector L at p of type (1, 0) so that
LLr(p) = 0. Let zβ be a monomial with L(zβ)(p) 
= 0. For positive ε define f

by f(z, z) = r(z, z) − ε|zβ |2. When ε is sufficiently small, f is positive on the
sphere. A simple computation shows that frd cannot be a squared norm. To see
this, we compute (LL)frd(p). Since L(r)(p) = L(r)(p) = 0, the only non-zero
term arises when both derivatives hit f , and this term is negative. Thus the
Hessian of frd has a negative eigenvalue at p, and hence frd is not a squared
norm. Since d is arbitrary, this proves the Corollary directly.

3. The Bergman kernel

We return to the general situation. The data in Theorem 1 are a compact
complex manifold M , a line bundle L over M , and a vector bundle E over M .
We are given a globalizable metric R on L, and a globalizable metric G on E.
As above we consider the natural metric written RdG on E ⊗ Ld. In order to
prove Theorem 1, we will apply Proposition 1. We need to find an integer d such
that the metric RdG can be expressed by

(15) RdG =
∑

Gkjφjφk,
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where the matrix Gkj is positive-definite and the φj form a basis for H(M, (E⊗
Ld)∗). In order to do this, we will consider all the spaces H(M, (E ⊗ Ld)∗) at
the same time.

We let B be the unit disk bundle defined by B = {z ∈ L : R(z, z) < 1}.
Let p : B → M denote the projection map, and let E = p∗(E); we think of E
as a bundle over B. We obtain a globalizable pullback metric G = p∗(G). By
definition

G(η, τ) = p∗(G)(η, τ) = G(p∗η, p∗τ).

We let 〈 , 〉 denote an Hermitian metric on E∗ that is invariant under the auto-
morphism of B corresponding to multiplication by eiθ. The metric R determines
a volume form dV on B.

Let g be a holomorphic section of E∗ over B. A point in B is a pair (z, u)
where z ∈ M and u is one-dimensional. We say that g ∈ Hd(B, E∗) if g is homo-
geneous of degree d with respect to the second variable u. These spaces are then
orthogonal because the metric on E∗ is invariant. The disk bundle construction
enables us to expand g in a manner analogous to writing a convergent power
series as a sum of homogeneous polynomials. We can identify Hd(B, E∗) with
holomorphic sections of (E⊗Ld))∗ and thus write g =

∑∞
0 gj as its homogeneous

expansion. (H stands for “homogeneous” and Hd does not mean cohomology.)
We need some results about the Bergman projection for sections of a vector

bundle. The first author proved these results in [C].
Suppose that Ω is a strongly pseudoconvex domain in a complex manifold.

We suppose that Ω has smooth boundary, and we write Ω for the closure of
Ω. Let π : V → Ω be a complex vector bundle of rank p. Assume that g

is a Hermitian metric on TΩ and that G is a Hermitian metric on V . Let
P : L2(Ω, V ) → A2(Ω, V ) denote the Bergman projection. The Bergman kernel
function K is defined so that K(z, w) is the element of Hom(Vw, Vz) for which

(16) (Pf)(z) =
∫

Ω

K(z, w)f(w)dV (w).

We want to find an approximate formula for K(z, w) in terms of a defining
function R for Ω. In our situation Ω has real-analytic boundary, and Ω is defined
by the inequality R(z, z) < 1. Let cn denote the constant n!

2n+1πn . We write
det(∂∂R)z for the determinant of the complex Hessian of R; it is computed in
terms of a basis of the holomorphic tangent space to bΩ at z that is orthonormal
with respect to the metric g. We also compute |dR(z)|g with respect to g. For
convenience we write

(17) λ(z) = cn(det∂∂R)z|dR(z)|2g.

We can now write down the approximate form of the Bergman kernel function.
This result is a vector bundle analogue of one part of the description of the
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Bergman kernel function for strongly pseudoconvex domains from [F] and [BS].
See [C] for a proof.

Proposition 4. Assume that Ω is a strongly pseudoconvex domain in a complex
manifold of dimension n as above. Let P : L2(Ω, V ) → A2(Ω, V ) denote the
Bergman projection. Suppose that s = s1, ..., sp is a local frame for V over an
open set W in Ω, and let W ′ ⊂⊂ W be a relatively compact subset. Write
f ∈ L2(W ′, V ) as f =

∑
fksk, and write its Bergman projection as Pf =∑

(Pf)ksk. Then there is a compact operator K : L2(W ′, V ) → L2(W, V ) so
that, for each z ∈ W ,

(18) (Pf)k(z) =
∫

W ′

λ(z)fk(w)
(1 − R(z, w))n+1

dV (w) + (Kf)k(z).

After multiplying (18) by sk and summing, we obtain the same formula with-
out the subscript k. Note also that the singularity of the integral kernel in (18)
occurs only on the boundary diagonal. This follows from the (SGCS) inequality.

4. The integral operator

We return to the situation where B denotes the unit disk bundle. By the
negativity of L, it is a strongly pseudoconvex domain, defined by the inequality
R(z, z) < 1. After using a partition of unity we will be able to apply Proposition
4.

According to Proposition 1 we want to show that GRd is the kernel of a
positive operator for sufficiently large d. To do so, we consider the operator
whose kernel is

∑∞
0 mdGRd, where the md are positive numbers. By choosing

them equal to the appropriate binomial coefficients, we have

∞∑
0

mdG(z, w)R(z, w)d = c
G(z, w)

(1 − R(z, w))n+1
,

and this begins to look like the Bergman kernel for the domain R(z, z) < 1. Mo-
tivated by this discussion we define the crucial integral operator T on L2(B, E∗)
by

(19) T (f)(z) =
∫

B

〈f(w),G(z, w)〉
(1 − R(z, w))n+1

dV (w).

The next lemma states the basic estimate we need to prove about T .

Lemma 1. Let T be a bounded linear operator on L2, and suppose that A2 is
a countable orthogonal sum of subspaces Vj. Suppose that there is a positive
constant c and a compact operator K on L2 such that, for all h ∈ A2,

(20) 〈Th, h〉 ≥ c||h||2 − 〈Kh, h〉.
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Then there is an integer d so that, for all j ≥ d, the restriction of T to Vj is
positive. For h ∈ Vj ⊂ A2, we have 〈Th, h〉 ≥ c

3 ||h||2.
Proof. Our hypothesis states that T + K = Q where Q is positive. We write
|||L||| for the operator norm of L. Since K is compact, there is an operator L
with finite-dimensional range such that |||K −L||| < c

3 . We write T = Q−K =
Q − (K − L) − L. Since L is finite rank, for sufficiently large j we may assume
that the restriction of L to Vj has operator norm at most c

3 . We obtain, for such
j and h ∈ Vj ,
(21)
〈Th, h〉 ≥ c||h||2 − 〈(K −L)h, h〉 − 〈Lh, h〉 ≥ c||h||2 − c

3
||h||2 − c

3
||h||2 =

c

3
||h||2,

By (21) T is positive on Vj . �

5. Proof of Theorem 1

First we prove inequality (20) for the operator T . This takes most of the
effort. Then we close this section by completing the proof of Theorem 1.

To prove inequality (20) for the operator T , we require a lemma describing
what sorts of error terms define compact operators.

Lemma 2. Suppose that Ω = {R(z, z) < 1} is strongly pseudoconvex, and that
R satisfies (SGCS). Suppose that q is a smooth function on Ω×Ω that vanishes
on the diagonal. Then the operator Q defined by

(22) Qf(z) =
∫

Ω

q(z, w)
(1 − R(z, w))n+1

f(w)dV (w)

is compact on L2.

Proof. The only possible singularities of the kernel occur when z = w on the
boundary, because the (SGCS) inequality holds. Since the numerator vanishes
there, this compensates for them. There are two ways to prove this. In both
proofs we may assume that we are working in C

n after using a partition of unity.
In the first proof we compare the factor 1

(1−R(z,w))n+1 with the singularity
of the Bergman kernel. We follow the proof of Theorem 1 in [CD2]; the proof
is easier because the analogue of Lemma 3 from that paper is well known for
strongly pseudoconvex domains.

The second proof shows directly from the generalized Young’s inequality that
the operator Q is the limit in the operator norm of compact operators, and hence
is itself compact. We sketch this proof here.

In order to show that Q is compact, we will show that, given ε > 0, there is
a compact operator Qε so that |||Q−Qε||| → 0 as ε → 0. Given ε, we let φ be a
smooth positive function, bounded above by unity, that is identically one near
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the origin and is supported in a ball of radius ε. Let us write the integral kernel
in (22) as A(z, w) Then

(23) A(z, w) = φ(w − z)A(z, w) + (1 − φ(w − z))A(z, w).

The second term in (23) is the kernel of a compact operator, because it is
smooth everywhere. We will finish the proof by showing that the first term,
called Iε(z, w), defines a kernel whose operator norm is less than a constant
times ε

1
2 .

The estimate for the operator norm of Iε(z, w) uses the generalized Young’s
inequality [Fo]: If we show that there is a constant C so that, for all z ∈ Ω,

(24)
∫

Ω

|Iε(z, w)|dV (w) ≤ Cε
1
2 ,

and we also show the analogous inequality with z and w interchanged, then
Iε(z, w) is the kernel of a bounded operator on L2 with operator norm |||Iε||| ≤
Cε

1
2 .
The two estimates are similar; we prove (24). Fix z ∈ Ω. Let Ωε = {|w− z| <

ε} ∩ Ω. By the condition on the support of φ we have

(25)
∫

Ω

|Iε|dV (w) =
∫

Ωε

|φ(w − z) A(z, w)|dV (w).

Therefore
(26)∫

Ω

|Iε|dV (w) ≤
∫

Ωε

|A(z, w)|dV (w) =
∫

Ωε

|q(z, w)| |(1 − R(z, w)|−n−1dV (w).

We estimate |q(z, w)| for |w − z| < ε using |q(z, w)| ≤ m|w − z| ≤ mε
1
2 |w − z| 12 .

We see that the left side of (26) can be estimated by mε
1
2 times an explicit

integral. Writing w = z + tζ where ζ is on the unit sphere, and integrating over
{|tζ| < ε} ∩ Ω gives a finite value independent of z. �

An immediate consequence of Lemma 2 is that kernels of the form

q(z) − q(w)
(1 − R(z, w))n+1

,

(where q is smooth) define compact operators.
In order to use formula (18), we first let Wν denote an open covering of B

over which the bundle E∗ is trivial. Next let χν denote smooth non-negative
functions compactly supported in Wν such that

∑
ν(χν)2 = 1. (The square is
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convenient because Lemma 1 considers a quadratic form.) We let W ′
ν ⊂⊂ Wν

be relatively compact domains containing the supports of the χν . We have

(27) 〈T f, f〉 =
∑

ν

〈(χν)2T f, f〉 =
∑

ν

〈χνT f, χνf〉.

In (27), we write χν(z) = (χν(z) − χν(w)) + χν(w). Each term is multiplied
by a smooth function divided by (1 − R(z, w))n+1. By Lemma 2 the first such
term defines a compact operator; it corresponds to the commutator [χν , T ]. The
second term corresponds to the operator T χν . Thus, with K compact, we may
write

(28) 〈T f, f〉 =
∑

〈T χνf, χvf〉 + 〈Kf, f〉.

It therefore suffices to prove the basic estimate corresponding to the quadratic
form given by

∑
ν〈T χνf, χvf〉. According to the definition of T , we have

(29) 〈T χνf, χνf〉 =
∫

B

∫
B

〈〈χν(w)f(w),G(z, w)〉, χν(z)f(z)〉
(1 − R(z, w))n+1

dV (w)dV (z).

In (29) we can use Wν for the region of integration and express the in-
tegrand in terms of the local frame. We write f =

∑
fksk and G(z, w) =∑

ij Gji(z, w)si(z)⊗ sj(w). These coefficients depend on the index ν. This gives

(30)
∫

Wν

∫
Wν

χν(w)χν(z)

∑
i,j,k,l

fk(w)fl(z)Gji(z, w)〈〈sk(w), si(z) ⊗ sj(w)〉, sl(z)〉
(1 − R(z, w))n+1

dV (w)dV (z).

In (30) we write Dkj for 〈sk, sj〉 (this also depends on ν) to obtain

(31) 〈T χνf, χνf〉 =∫
Wν

∫
Wν

χν(w)χν(z)
∑

i,j,k,l

fk(w)fl(z)Gji(z, w)Dkj(w)Dli(z)
(1 − R(z, w))n+1

dV (w)dV (z).

In (31) we write Djk(w) = (Djk(w) − Djk(z)) + Djk(z) and apply Lemma 2
as before. The first terms introduce a compact operator, so we consider

(32)
∫

Wν

∫
Wν

χν(w)χν(z)
∑ fk(w)fl(z)Gji(z, w)Dkj(z)Dli(z)

(1 − R(z, w))n+1
dV (w)dV (z).
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We perform the same trick on (32), writing Gji(z, w) = (Gji(z, w)−Gji(z, z))+
Gji(z, z). Again the first term introduces a compact error, so we now consider

(33)
∫

Wν

∫
Wν

χν(w)χν(z)
∑

fk(w)fl(z)Gji(z, z)Dkj(z)Dli(z)
(1 − R(z, w))n+1

dV (w)dV (z).

We multiply and divide by the positive factor λ(z). We write

Aν
kl(z) =

∑
j,i Gji(z, z)Dkj(z)Dli(z)

λ(z)
,

to simplify (33).

(34)
∫

Wν

∫
Wν

χν(w)χν(z)
∑

k,l A
ν
kl(z)λ(z)fk(w)fl(z)

(1 − R(z, w))n+1
dV (w)dV (z).

The inner integral, modulo compact errors, equals (Pχνf)k(z) by Proposition
4.

Because Gji(z, z) defines a metric, and because λ(z) is positive, the matrix
Aν

kl(z) is positive definite. Combining these gives, for some compact operator
K1,

(35) 〈T χνf, χνf〉 =
∫

Wν

∑
k,l

Aν
kl(z)χν(z)(Pχνf)k(z)fl(z)dV (z) + 〈K1f, f〉.

Suppose that f ∈ A2(B, E∗). Then we may substitute χν(z)fk(z) for
P (χνf)k(z) in (35) again making a compact error. This gives, for some compact
operator K

(36) 〈T χνf, χνf〉 =
∫

Wν

∑
k,l

Aν
kl(z)(χν(z))2fk(z)fl(z)dV (z) + 〈Kf, f〉.

Since Aν
kl is positive definite we bound the sum below using

(37)
∑
k,l

Aν
kl(z)fk(z)fl(z) ≥ cν〈f(z), f(z)〉.

Summing (37) on ν (we assume that this is a finite sum), we obtain inequality
(20) for the operator

∑
ν χνT χν . By (28) we obtain inequality (20) also for T .

We can now finish the proof of Theorem 1. We now write A2 as the orthogonal
sum of the spaces Hj(B, E∗). They are orthogonal because we have chosen the
metric on E∗ to be invariant under the circle action. We have shown that, for
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sufficiently large j, the restriction of T to Hj(B, E∗) is positive. On the other
hand for appropriate positive constants we can write

1
(1 − R(z, w))n+1

=
∞∑

j=0

mjR(z, w)j ,

and we see that the restriction of T to Hj(B, E∗) is a positive constant times
the integral operator whose kernel is G(z, w)R(z, w)j . Expressing this kernel in
terms of a basis of sections of Hj(B, E∗) shows that the underlying matrix of
coefficients is positive-definite. By Propositions 1 and 3, we obtain the conclusion
of Theorem 1. �

6. Another metric on E ⊗ Ld.

In [CD2] the authors proved the following result:

Theorem [CD2]. Suppose that Ω is a smoothly bounded pseudoconvex circled
domain in C

n of finite type. For each integer d, let Φd = (Φd
1, ...,Φ

d
N ) denote

an orthonormal basis for the homogeneous polynomials of degree d on Ω. Let
f be a bihomogeneous polynomial that is positive away from the origin. Then
there is an integer d0 (depending on f) such that, for each d ≥ d0, there is a
homogeneous polynomial mapping h such that

||Φd(z)||2f(z, z) = ||h(z)||2.

This result can be rephrased in the language of the current paper. As before
f defines a metric on some U

m over projective space. The function ||Φd(z)||2
defines a metric on U

d, and their product defines a metric on U
m+d. When Ω is

the unit ball, ||Φd(z)||2 differs only in certain constants from ||z||2d. In general
Theorem [CD2] differs in that Ω is allowed to be weakly pseudoconvex, and that
the metric on U

m+d is not the natural one considered in Theorem 1 of this paper.
It is possible to give a version of Theorem 1 that generalizes Theorem [CD2].

We state the result but omit the proof. Note that it is not necessary here to
assume that the (SGCS) holds. The proof is similar, as the hypotheses enable
one to involve the Bergman kernel more easily. On the other hand one needs
other information about the Bergman projection that follows from subelliptic
estimates for the ∂-Neumann problem.

Theorem 2. Suppose that M is a compact complex manifold, that E is a vector
bundle over M with a globalizable metric G, and that L is a line bundle over M

with globalizable metric R. Let ||φd||2 denote the metric on Ld arising from an
orthonormal basis for A2 sections of E∗ over the unit disk bundle B. Suppose that
B is pseudoconvex and finite type. Then there is an integer d and a holomorphic
mapping hd so that E ⊗ Ld = h∗(Up,N ) and ||φd||2G = h∗(g0).
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7. Positivity versus Non-negativity

Artin’s solution of Hilbert’s problem shows that a homogeneous polynomial
on real Euclidean space that is non-negative can be written as a sum of squares
of rational functions. It is false that a bihomogeneous polynomial on complex
Euclidean space that assumes non-negative values must be a quotient of squared
norms. The simplest counterexample is given by equation (38), but a more
interesting one is given in (39).

p(z, z) = (|z1|2 − |z2|2)2.(38)

h(z, z) = (|z1z2|2 − |z3|4)2 + |z1|8.(39)

The polynomial p from (38) is not a quotient of squared norms because its
zero set fails to be a complex variety. The zero set of the polynomial h is the
complex variety defined by setting z1 = z3 = 0, but h is not a quotient of squared
norms. The reason is that it doesn’t satisfy a more intriguing necessary condi-
tion, called the jet pullback property. Suppose that h(z, z) = ||A(z)||2/||B(z)||2
for holomorphic polynomial mappings A and B. Let t be a complex variable,
and let t → z(t) be a holomorphic mapping. It is easy to see that the lowest
order term in the Taylor expansion of t → h(z(t)) must then be independent of
the argument of t. When h is given by (39), however, this property fails. Con-
sider for example the mapping given by z(t) = (t2, 1 + t, t). Then the pullback
h(z(t), z(t)) vanishes to order ten at the zero, but the terms of order ten include
t4t

6.
These examples show that the analogue of Hilbert’s seventeenth problem for

complex variables requires more than non-negativity. Our result from [CD1]
solves the problem for polynomials that are positive away from the origin, but
we have not yet succeeded in establishing necessary and sufficient conditions for
the non-negativity of a bihomogeneous polynomial.

8. Concluding Remarks

Factorization of operator-valued analytic functions of one complex variable
was studied extensively in the early 1970s. See [RR] for example. The idea of
multiplying the operator by a high power of a scalar operator before attempting
a factorization seems not to have arisen then. Another classical result on fac-
torization of Hermitian matrices of polynomials appears in [Dj]. Although that
result considers polynomials in several variables, it gives a positive result only in
very special cases. That paper does not consider the possibility of multiplying
the matrix by high powers of a scalar either.

On the other hand, high tensor powers of line bundles often arise in algebraic
geometry and complex manifold theory, especially in regard to imbeddings into
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Grassman manifolds. In this sense the result in this paper can be considered
an isometric relative of the Kodaira imbedding theorem. In 1953 Calabi [CL]
studied isometric imbeddings for Kähler manifolds. Thus the bundle involved
is the tangent bundle. Calabi uses the Kähler potential to construct a real
analytic-function D : M × M → C called the diastatic function. This func-
tion is holomorphic in the first variable, Hermitian in the sense of Definition 1,
and therefore anti-holomorphic in the second variable. One of the conditions
for imbedding (into Fubini-Study spaces) is the singled-valued nature of this
function in one variable for all choices of the other. The condition that D(z, w)
vanishes only when z = w arises in guaranteeing the topological nature of the
imbedding. This condition is analogous to our (SGCS).
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