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IDENTIFICATION OF TWO FROBENIUS MANIFOLDS

Hual-DoNG CAO AND JIAN ZHOU

ABSTRACT. We identify two Frobenius manifolds obtained from two different dif-
ferential Gerstenhaber-Batalin-Vilkovisky algebras on a compact K&hler manifold.
One is constructed on the Dolbeault cohomology in Cao-Zhou [6], and the other
on the de Rham cohomology in the present paper. This can be considered as
a generalization of the identification of the Dolbeault cohomology ring with the
complexified de Rham cohomology ring on a K&hler manifold.

One of the far-reaching ideas from string theory is that of mirror symmetry
[30]. On a given Calabi-Yau manifold M, string theory suggests two kinds of
super conformal field theories: the A theory and the B theory. The mirror
symmetry suggests the existence of another Calabi-Yau manifold M, called a
mirror manifold of M, such that the A theory on M can be identified with
the B theory on M, and vice versa. The constructions of mirror manifolds of
quintics in CP,4 were given by Greene and Plesser [10]. Candelas et al used their
constructions to conjecture a formula [5] on the number of rational curves of
any degree on a quintic in CP4. Recently, Lian-Liu-Yau [15] have proposed and
studied the important Mirror Principle. Among its many applications, a proof
of the formula of Candelas et al was given, completing the program of Candelas
et al, Kontsevich, Manin and Givental.

A closely related idea from string theory is that of quantum cohomology. We
will not review this rapidly progressing theory. One way to formulate quantum

Received June 23, 1998.
Both authors were supported in part by NSF.
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cohomology is via the notion of Frobenius manifold introduced and extensively
studied by Dubrovin [7, 8]. Now a version of the Mirror Symmetry Conjecture
can be formulated as the identification of Frobenius manifold structures obtained
by different constructions. (For an exposition of this point of view, the reader
is referred to a recent paper by Manin [17].) More precisely, on a Calabi-Yau
manifold X, there are two natural algebras

A(X) - ®p,qu(Xﬂ Qp)? B(X) = ®p,qu(X7Q_p)v

where Q7P is the sheaf of holomorphic sections to APT'X . By Hodge theory, A(X)
is isomorphic to the de Rham cohomology with complex coefficients Hj, (X, C).
There is a construction of Frobenius manifold structure on the de Rham coho-
mology given by the theory of quantum cohomology. For example, see Ruan
and Tian’s work [21] on the mathematical formulation of quantum cohomology.
By Bogomolov-Tian-Todorov theorem, the moduli space of complex structures
on X is an open subset in H1(X, Q™). Witten [27] suggested the construction
of an extended moduli space of complex structures. In Ran [20], this problem
was studied and differential Gerstenhaber-Batalin-Vilkovisky (DGBV) algebra
structure on Q™ "*(M) was found via Koszul’s work [13]. Note that Gersten-
haber algebra structure on H—**(M) was observed in Gerstenhaber-Schack [9],
§27. For Calabi-Yau manifolds, the work of Bershadsky-Cecotti-Ooguri-Vafa [2]
(Kodaira-Spencer theory of gravity) is very important (especially §5). Based on
the above works, Barannikov and Kontsevich [1] gave a construction of a for-
mal Frobenius manifold structure on B(X). They also remarked that the con-
struction of Frobenius manifold structure can be carried out for general DGBV
algebras with some suitable conditions. The details have been given in Manin
[17]. Notice that the above constructions of Frobenius manifold structures on
A(X) and B(X) are of totally different nature. Motivated by mirror symmetry,
it is natural to seek for a construction of formal Frobenius manifold structure on
A(X) via DGBV algebra approach. Such a construction was given by the au-
thors in [6]. It is interesting to compare our work [6] with the theory of Kéhler
gravity of Bershadsky and Sadov [3].

For a Calabi-Yau manifold M, if Misa proposed mirror manifold (constructed
along the lines of Greene-Plesser [10] or Strominger-Yau-Zaslow [22]), then it is
natural to conjecture that the formal Frobenius manifold structure on B(M)

—

constructed by Barannikov-Kontsevich [1] can be identified with that on A(M)
constructed by the authors [6]. Therefore it is very important to study the
problem of when two DGBYV algebras give rise to identical formal Frobenius
manifold structures on their cohomology. In this paper, we give a result in this
direction. First, it is well-known that there is a DGBV algebra structure on
Q*(X) for any Poisson manifold X. When X is closed and Kéhler, we show that
the conditions in Manin [17] are satisfied, hence give a construction of a formal
Frobenius manifold structure on Hjj,(X,C) via DGBV algebra approach. Our
main result is that this formal Frobenius manifold structure can be identified
with the one on A(X) constructed in [6].
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1. A construction of formal Frobenius manifolds

In this section, we review a construction of formal Frobenius supermanifolds.
For details, the reader should consult the papers by Tian [23], Todorov [24],
Barannikov-Kontsevich [1] and Manin [17]. Here, we follow the formulation in
Manin [17].

1.1. Frobenius algebras and formal Frobenius manifolds. A commu-
tative associatve algebra (H,-) with unit 1 over a field k is called a Frobenius
algebra if there is a symmetric nondegenerate inner product (-,-) such that

(a-b,c)=(a,b-c),

for any a,b,c € H. Take a basis {e,} of H such that eg = 1. Let 74, = (eq, €p)
and (7%°) be the inverse matrix of (145). Denote by {x%} the linear coordinates
in the basis {e,}. For our purpose, a formal Frobenius manifold structure on H
is a formal power series ® in z%’s, such that

foadi)
200z90x> | (Mab),

and @ satisfies the WDV'V equations:
re . P re . P
n = n :
Ox*9zboxP " Ox10x°0z¢  OxPdxcdrP T Jrtdx10z
The formal power series ® is called the potential function. It is straightforward

to extend the above definition to the Zs-graded version. For general definition
of Frobenius manifolds, see Dubrovin [8] or Manin [16].

1.2. DGBYV algebras. A Zy-graded Gerstenhaber algebra consists of a triple
(A = ®iez, AL A, [-0+]), such that (A, A) is a Za-graded commutative associative
algebra over a filed k, and

[a®b] = —(—1)Ual+DUbIFDp o g],
[ae[bec]] = [[aeb]ec+ (—1)al+DUIFD} e [g e ],
[ae(bAc) =[aeb] Ac+ (—1)IdFDIIHA g ec]
for all homogeneous a,b,c € A. Let A be a linear operator of odd degree such
that Al = 0, we say A generates the Gerstenhaber bracket if [-  -|o = [- ® -],

where

[aebla = (—1)ld (A(a AB) — AaAb— (—1)9la A Ab) ,

for all homogeneous a,b € A. In this case, the tuple (A, A,[- o], A) is called
a Gerstenhaber-Batalin-Vilkovisky algebra (GBV algebra). A DGBYV (differen-
tial Gerstenhaber-Batalin-Vilkovisky) algebra is a GBV algebra with a k-linear
derivation § of odd degree with respect to A, such that

62 =6A+ Ad =0.

We will be interested in the cohomology group H(A,9).
The examples of DGBV algebras are abundant in differential geometry. See,
for example, Koszul [13] and Xu [28] in Poisson geometry, Tian [23], Ran [20]



20 HUAI-DONG CAO AND JIAN ZHOU

and Barannikov-Kontsevich [1] in deformation theory, Cao-Zhou [6] in Kéahler
geometry.

1.3. Integral on DGBYV algebras. A k-linear functional [ : A — k on a
DGBV-algebra is called an integral if for all a,b € A,

(1) /w@Ab _ VJWH{/QA%,
@) uﬂA@Ab::(—N“/aAAb

Under these conditions, it is clear that | induces a scalar product on H =
H(A,6): (a,b) = [anb. If it is nondegenerate on H, we say that the integral is
nice. It is obvious that

(@A B,7) = (a,BN7).

Hence if A has a nice integral, (H, A, (-,-)) is a Frobenius algebra.

1.4. Formal Frobenius supermanifolds from DGBYV algebras. The
construction of Frobenius manifold structure is based on the existence of a solu-
tionI'=>"T, to

T+ L[l eT] =0,
AT =0,

which satisfies the following conditions: (a) I'y = 0; (b) 'y = > ale;, €, €
Ker ¢ N Ker A, where the classes of e;’s generate H = H(A,¢); (c) for n > 1,
I', € ImA is a homogeneous super polynomial of degree n in z7’s, such that
the total degree of I',, is even; (d) 2° only appears in I';. Such a solution is
called a mormalized universal solution. Under suitable conditions, its existence
can be established inductively. This is how Tian [23] and Todorov [24] proved
that the deformation of complex structures on a Calabi-Yau manifold is unob-
structed. It was later generalized by Bershadsky-Cecotti-Ooguri-Vafa [2] to the
case of extended moduli space of complex structures of a Calabi-Yau manifold.
Barannikov and Kontsevich [1] used the above results to construct formal Frobe-
nius manifold structures. They also remarked that similar construction can be
carried out for DGBYV algebras with suitable conditions. The detailed exposition
was given in Manin [17]. Their result is summarized as the following

Theorem 1.1. Let (A, A,0,A,[-e]) be a DGBV algebra satisfying the following
conditions:
(1) H=H(A,J) is finite dimensional.
(2) There is a nice integral on A.
(3) The inclusions (Ker A,6) — (A,0) and (Kerd, A) — (A, A) induce
isomorphisms of cohomology.

Then there is a formal Frobenius manifold structure on H.
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1.5. Potential function. The potential function of the formal Frobenius
manifold structure in Theorem 1.1 was explicitly given in [1] and [17]: let T’ =
I'y + AB be a normalized solution, then

P = / lrs _Lipas.
6 2

Note that this is the action given in Bershadsky et al [2] in different notations.

Following Manin [17], we shall rewrite the second term in a different form so that

the potential function is clearly seen to depend only on the normalized solution

I'. This turns out to be very useful in the identification. Since AI' = 0, we have

[[el]=A(AT)— (AD)AT — T A (AT) = A(T AT).

Hence,
/5B/\AB—/A53/\B——/5AB/\B
1
= —/6(1“—1“1)/\3:—/5FAB:/§[F.F]/\B
1 1
= 5/A(F/\F)/\B:5/1“/\F/\AB.
So we have

1 1 1 1
&= [ SI°—TATAAB= | =T — T AT A (I = T9).
(3) /6 ITATA /6 ITATA(-TY)

2. Formal Frobenius manifold structure on de Rham cohomology

2.1. DGBYV algebra in Poisson geometry. Let w € I'(X,A?TX) be a
bi-vector field. It is called a Poisson bi-vector if the Schouten-Nijenhuis bracket
[w,w] of w vanishes [26]. Let A = Q(X) with the ordinary wedge product A,
and the exterior differential d. Following Koszul [13], we consider A : Q*(X) —
Q*~1(X) defined by Aa = w F da — d(w F «), for a € Q*(X), where I is the
contraction. Koszul [13] proved that A? = 0 and dA + Ad = 0. He also defined
the following bracket:

@.Bla = (=D (Al@nB) = (Aa) A B = (~D)la A (A)).

a,f € Q(X), and showed that (A,A,0 = d,A,[- e:]) is a DGBV algebra, even
though he did not explicitly use the term DGBYV algebras. For example, the
recognization of DGBV algebras in Poisson geometry can be found in Xu [28].

When X is closed and oriented, let [ : A — R be the ordinary integral of
differential forms over X. Then clearly (1) is satisfied. To check (2), we need
the following

Lemma 2.1. If o, 8 € Q*(X) satisfy |a] + || = dim (X) + 2, then we have

/X(wm)Aﬁ:/XaA(ww).
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Proof. Without loss of generality, we assume that the bi-vector field w =
we; A e; for some vector fields e; over X, where w" are smooth functions on
X. (Indeed, we use a partition of unity to decompose w into a sum of bi-vector
fields which can be written this way.) Notice that (e; F a) A § and o A (e; F )
have degree |a| + || — 1 = dim(X) + 1, hence they must vanish. Then we have

/X(wl—a)/\ﬂ:/xwij(eil—ejl—a)/\ﬂ
= [wtet ey @) a8 [ W g ) At )

X

= (=1l /Xwijej Flan (e F B)] —w?(=1D)a A (e e - B)

_ —/Xwija/\(ej}—eil—ﬂ):/Oé/\(U”_ﬂ)-

X

Proposition 2.1. For any bi-vector field on a closed oriented X, we have

J@ayns= v [ anap

X

Proof. Using Aa = w F da—d(w F «), Lemma 2.1 and Stokes theorem, we have

/X(Aa)/\ﬁ:/X(wl—da)/\ﬂ—/Xd(wl—a)Aﬂ
= /da/\(wl—ﬂ)+(—1)a|/(wl—a)Adﬁ
X X
= (=Dl [ o w Dl [ oA (w
(0 [ andtwr g+ (0 [ anqras)

= (—1)'“'/}(a/\Aﬁ.

O

By Poincaré duality, [ induces a nondegenerate pairing on H = H(A,d),
which is the de Rham cohomology. Since X is compact, H is finite dimensional.
Hence only Condition 3 in Theorem 1.1 remains to satisfy. Thus, we have

Theorem 2.1. Assume that (X, w) is a closed oriented Poisson manifold such
that the inclusions i : (Ker A,d) — (2(X),d) and j : (Kerd,A) — (Q(X),A)
induce isomorphisms H (i) and H(j) on cohomologies respectively. Then there is
a structure of formal Frobenius manifold on H*(X).

For a symplectic manifold (X?",w), Brylinski [4] defined the symplectic star
operator x,, : QF(X) — Q*~k(X). He showed that A = (—1)* %, d*,, on QF(X)
(Brylinski [4], Theorem 2.2.1, where § is used instead of A). From this it is clear
that H(i) is an isomorphism if and only if H(j) is an isomorphism. Hence it
suffices to consider H (7).

On a symplectic manifold (X2",w), notice that the inclusion ¢ : Kerd N
Ker A — (Q(X), d) factors through the inclusions ¢ : Ker dNKer A — (Ker A, d)
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and i : (KerA,d) — (Q(X),d). It is easy to see that H(v) is surjective with
kernel dKer A. Therefore, we have an isomorphism

H(¢) : Kerd N Ker A/dKer A = H(Ker A, d).

Similarly, the kernel of H(¢) is Imd N Ker A, so we have an injective homomor-
phism

H(¢) : KerdNKer A/Imd N Ker A — H(X).
Also since dKer A C Imd N Ker A, we have a surjective homomorphism ¢ :
Kerd N Ker A/dKer A — Kerd N Ker A/Imd N Ker A. To summarize, we get a
commutative diagram

Kerd N Ker A/dKer A H), H(Ker A, d)

| J

Kerd NKerA/IndNKerA ——  H(X).
H(¢)

It is then clear that H (i) is injective if and only if dKer A = Imd N Ker A
(see also Manin [17], (5.14)). On the other hand, H(i) = H(¢)qH (¢) ", from
which we see that H(i) is surjective if and only if H(¢) is surjective. The
problem of surjectivity of H (¢) is equivalent to the following question asked by
Brylinski [4]: whether every class in H(X) can be represented by an element in
KerdnKer A. He answered this question affirmatively for K&éher manifolds. For
general symplectic manifolds, Mathieu [18] and Yan [29] proved the following
result by different methods:

Proposition 2.2. For any symplectic manifold (X?",w), not necessarily com-
pact, the following two statements are equivalent:
(a). H(¢) is surjective.
(b). For each 0 < k < n, L* : H"*(X) — H"T*(X) is surjective, where L
18 induced by wedge product with w.

For closed symplectic manifolds, Mathieu [18] observed that (b) is equivalent
to each L* being an isomorphism on H"~*(X) because H"~%(X) and H"*(X)
have the same dimension. If (b) holds, one says that (X,w) satisfies the hard
Lefschetz theorem. So H (i) is surjective if and only if the symplectic manifold
(X,w) satisfies the hard Lefschetz theorem. One can find examples which do
not satisfy the hard Lefschetz theorem in Mathieu’s paper. So not every closed
symplectic manifold satisfies the conditions in Theorem 2.1. Nevertheless, we
will show that closed Kahler manifolds do satisfy these conditions.

2.2. De Rham Frobenius manifolds for Kihler manifolds. In Cao-
Zhou [6], we constructed formal Frobenius manifold structure on the Dolbeault
cohomology for Kéhler manifolds by DGBV algebra method. Here we carry out
a similar construction on the de Rham cohomology.

For a Kéhler manifold (X,w), let L(a) = w A «, and A be the adjoint of the
operator L defined by the Hermitian metric. Then we have

A =Ad—Ad = [A,d].
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From the Hodge identities (Griffith-Harris [11], p. 111), we get
A = —4x(d°)* = /—1(0* — 0%).
Where
4
It is clear that A* = —47d® = —/—1(0 — 9). Let Ox = AA* + A*A.

Lemma 2.2. We have Ua = O, where J = dd* + d*d s the Hodge Laplacian.

Proof. An easy calculation gives

A*A = 99" + 00" — 0" — 9O,
AN = 0"0+0"0— 00— 9%0.

Then we have
Oa = 0s + Og + (00* + 8*9) — (00* + 9*0).

The lemma follows from the following well-known formulas in Kahler geometry
(Griffiths-Harris [11], p. 115):

(4) 0 =20, = 203,
5) 0" + %9 = 00" + 079 = 0.

Standard Hodge theory argument gives a decomposition
QX)=HodImA & ImA*",
where H is the space of harmonic forms on X. Furthermore, the inclusion

(H,0) C (2(X),d) induces an isomorphism H(Q(X),A) = H. Notice that A
commutes with [Ja, so it commutes with [J.

Lemma 2.3. On a Kdhler manifold, dA* + A*d =0 and Ad* + d*A = 0.

Proof. The first identity follows from the following identity

1 _
dd® = —d°d = ——00.
27
Taking formal adjoint gives the second identity. O

Proposition 2.3. Let (X,w) be a closed Kihler manifold, then the inclusions
i:(KerA,d) C (2X),d) and j: (Kerd,A) C (X),A) induce isomorphisms
on cohomology.
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Proof. By Hodge theory, we have the following orthogonal decompositions:
UX)=HoImd®Imd* =H®ImA & ImA*.
It follows that we have a five-fold decomposition:
QX)=HoeImdAdImd"A®ImdA* & Imd"A*.

It is then clear that Ker A = H®Im dA @ Imd*A, Kerd|ker o = H®ImdA and
Imd|ker o = ImdA. Therefore, H(Ker A,d) = H. It then follows that H(i) is
an isomorphism. Similarly for H(j). O

In conclusion, we have

Theorem 2.2. For any closed Kdahler manifold X, there is a structure of formal
Frobenius manifold on H*(X) obtained from Theorem 1.1 for the DGBV algebra
(QUX), A, d, A @:]a).

2.3. Explicit formula for I'. For a closed Kéahler manifold X, by Hodge
theory, we can take e;’s to be harmonic. Hence we automatically have e; €
Kerd N Ker A. In general I';, € Im A for n > 2. Since we have

ImA = ImdA®Imd* A,

we will require I';, to be in Imd*A. Then we have the following uniqueness
result.

Lemma 2.4. LetI' =) T, be a normalized universal solution to the Maurer-
Cartan equation

1
(6) dF+§[F0F]A:0,
with T'y = Zj zle;, ej harmonic, I'y, € Imd*A, forn > 1. Then I satisfies

(7) F:F1—%GﬁAﬂVﬂU:Fl—%fGWoFM,

where G : Q(X) — Q(X) is the Green’s operator of 0. Alternatively, for n > 1,
1 1
(8) Tn=—5 Y Gd'[[eTja=—5 Y Gd"A(T; ATy).

2 2
jt+k=n Jjt+k=n

Proof. This is equivalent to solving the Maurer-Cartan equation inductively by
imposing the above conditions. Since AI' =0, [['eT'Ja = A(I' AT). So we need
to solve

df:-%A@Ary

Take d* on both sides: .
d*dl’ = _§d*A(F AT).

Since d*I" = 0, this is equivalent to

DF:—%fA@AP)



26 HUAI-DONG CAO AND JIAN ZHOU

Taking Green’s operator on both sides then proves (7). Expanding in power
series yields (8). O

Conversely, it is straightforward to verify the following;:

Lemma 2.5. LetI' =) T, be a power series withI'y = Zj zlej, e; harmonic,
and forn > 1,

]' *k
Tp=—5 Z Gd*A(Tj ATy).
Jj+k=n

Then T is a solution to the Maurer-Cartan equation (6).

We call a solution as in Lemma 2.4 analytically normalized. Restricting an
analytically normalized solution to H®"“", we get a power series on H*®"*". Now
by modifying a standard argument in Kodaira-Spencer-Kuranishi deformation
theory (see e.g. Morrow-Kodaira [19]. Chapter 4, Proposition 2.4), this series
has a positive convergent radius. This method was also used by Tian [23] and
Todorov [24].

3. Identification with formal Frobenius supermanifold on Dolbeault
cohomology

By Hodge theory, one can identify the Dolbeault cohomology of a closed
Kahler manifold with its complexified de Rham cohomology. In this section, we
identify the formal Frobenius manifold constructed in Theorem 2.2 with the one
we constructed on the Dolbeault cohomology in [6].

3.1. Formal Frobenius manifold structure on Dolbeault cohomol-
ogy. We review the construction of Cao-Zhou [6] in this section. Let (X, g,.J)
be a closed Kéhler manifold with Kéahler form w. We need a slight modification.
Consider the quadruple (Q2**(X),A,d = 9, A = —/—10%). It is well-known that
0% =0, (0")2 =0, and 90* + 0*0 = 0. Also, 0 is a derivation. Set

laeb]_ 1 = —V/=1(=1)l* (a*(a AD)— 8 anb— (—1)lla A a*b) .

It was proved in [6] that (Q**(X),A,0 = 0,A = —/—19",[ & ]_ /=15-) is a
DGBYV algebra. Furthermore, let [ x : 29*(X) — C be the ordinary integration
of differential forms. Then [ « 18 a nice integral for the above DGBV alge-
bra. Hodge theoretical argument similar to the one in last section shows that
the two natural inclusions i : (Ker 8*,0) — (Q2**(X),0) and j : (Kerd,0*) —
(Q**(X),0*) induce isomorphisms on cohomology. Therefore, Theorem 1.1 ap-
plies to give a formal Frobenius manifold structure on the Dolbeault cohomology.

Remark 3.1. Similarly, set
[aeb] —15. = V—1(-1)I*/(0"(a A b) — 0"a A b — (—1)1"la A 5*D).

Then (Q%*(X),A,0 = 0, A = /—10*,[ o ] /=15+) is also a DGBV algebra.
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3.2. The identification. By Hodge theory, there is a natural isomorphism
between H(Q**(X),0) and Hg, the space of d-harmonic forms. Now Oz = 300,
the space of [-harmonic forms is the same as the space of [z-forms. Let I' =
>, 'n be a normalized solution to

— 1
9) ol + §[F ol'l_ /=15 =0,

such that I'y = Zj 2le;, e; O-harmonic, and T, € Im9*9*, for n > 1. By the
method of §2.3, we have

(10) T, = %F1 S G0 (T; ATY).

jt+k=n

Lemma 3.1. We have Gd*A = —/—1G50"0*.

Proof. This follows from d = 8 + 0, A = /=1(0* — 9*) and G = }Gj. O

As a corollary, we see that the Maurer-Cartan equations (6) and (9) share
the same analytically normalized solutions. By the explicit formula (3) for the
potential function, we have

Theorem 3.1. For any closed Kdhler manifold X, the formal Frobenius mani-
fold structure on Dolbeault cohomology in §3.1 can be identified with the formal
Frobenius manifold structure on complexified de Rham cohomology in §2.2.
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