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MULTILINEAR ESTIMATES AND FRACTIONAL
INTEGRATION

Carlos E. Kenig and Elias M. Stein

Introduction

The purpose of this note is to describe several results about multilinear oper-
ators of fractional integral type. The simplest example that arises is the bilinear
operator acting on functions of R

n given by

I(f, g)(x) =
∫

Rn

f(x − y)g(x + y)K(y) dy,

where K(y) = |y|−n+α, 0 < α < n.
Now if n = 1, and we take instead of the locally integrable kernel K(y) =

|y|−1+α the singular integral kernel K(y) = 1/y, then I becomes the bilinear
Hilbert transform. In that case, we know by the work of Lacey and Thiele [L-T]
that I maps Lp1 × Lp2 → Lr, where

1
r

=
1
p1

+
1
p2

, 1 < p2 < ∞,

and the pi are additionally restricted by the requirement r > 2
3 (instead of

r > 1
2 ). The condition r > 2

3 is a consequence of the methods used in their
proof, and may not be necessary; these methods are intricate and at a crucial
point rely on L2 estimates.

Returning to the fractional integration case K(y) = |y|−n+α, we shall prove
below — by very elementary considerations — that I maps Lp1 ×Lp2 → Lr for
the full range: i.e., when 1 < pi ≤ ∞, i = 1, 2, and

1
r

=
1
p1

+
1
p2

− α

n
,

with the only other limitation being 0 < α, and r < ∞. (These last two
restrictions are necessary for the integral I to be finite; i.e., for all f, g ∈ Lp1 ×
Lp2 .)
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We will establish this result in the greater generality of (k+1)-linear mappings,
with k ≥ 1. Thus we shall consider an operator Iα defined by

Iα(f1, f2, . . . , fk+1)(x)

=
∫

Rnk

f1(�1)f2(�2) · · · fk+1(�k+1)K(x1, . . . , xk) dx1 · · · dxk.

Here xj ∈ R
n, 1 ≤ j ≤ k and also x ∈ R

n; so (x1, . . . , xk) ∈ R
nk and

(x1, . . . , xk, x) ∈ R
n(k+1). The �j = �j(x1, . . . , xk, x), for 1 ≤ j ≤ k + 1, are

linear mappings from R
n(k+1) to R

n, which are assumed to be appropriately
non-degenerate and independent (see assumptions (H1), (H2) and (H3) below).
If we set

K(x1, . . . , xk) = |(x1, . . . , xk)|−nk+α,

then we obtain the boundedness of Iα from Lp1 ×Lp2 × · · · ×Lpk+1 to Lr when

1
r

=
k+1∑
j=1

1
pj

− α

n
,

under the assumptions that 1 < pj ≤ ∞ for all j, and α > 0, r < ∞. If under
the same circumstances we relax the restrictions on the pj so that 1 ≤ pj ≤ ∞,
then the mapping is bounded from Lp1 × · · · × Lpk+1 to weak Lr. In the case
when r ≥ 1, our results can be obtained using the rearrangement inequality in
[B-L]. However, this approach does not apply to the more novel case r < 1.

The multilinear results above raise naturally several additional questions.

(1) For multilinear operators of the above kind, with integration over R
nk,

what happens if they involve fewer than k + 1 functions, or more than
k + 1 functions? In the first case, results for the full range of possible
exponents are easy to obtain, and represent a step in the proof of our
theorem (see Lemma 7, for the case of k functions; the case of fewer
functions follows in a similar way). For the second case, some partial
results are known (see [G]), but under the crucial restriction that r ≥ 1.
The interesting question if there are results when r < 1 in this case
remains open.

(2) We may ask what happens when we replace the fractional integral kernel
K(x1, . . . , xk) = |(x1, . . . , xk)|−kn+α by a Calderón-Zygmund kernel K
on R

nk. The issue is then the question of extending the Lacey-Thiele
results to this (k + 1)-linear context. Incidentally, there is an analogous
problem in the k-linear case. For the range r > 1 the desired estimates
go back to the work of [C-M]. We show (in Theorem 8) how some of
their ideas can be adapted to obtain the corresponding results for the
full range of exponents.

Recently, after this work was completed, we learned of independent but related
work of Grafakos and Kalton in this area. Their work will appear in [G-K].
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We are grateful to L. Grafakos for pointing out a missing hypothesis in our
original statement of Theorem 3.

We now turn to the precise statements, and proofs of our results.

Main Results

Fix k ∈ N. For each 1 ≤ i ≤ k + 1, 1 ≤ j ≤ k + 1, we are given an n × n
matrix Aij . We then define linear mappings �j : R

n(k+1) → R
n, 1 ≤ j ≤ k + 1,

by
�j(x1, x2, . . . , xk, x) = A1jx1 + A2jx2 + · · ·Akjxk + Ak+1 jx.

We let A = (Aij) i=1,... ,k+1
j=1,... ,k+1

be the corresponding (k +1)n× (k +1)n matrix. For

0 < α < kn, we define

Iα,A(f1, . . . , fk+1)(x) =∫
Rn

f1(�1(x1, . . . , xk, x)) · · · fk+1(�k+1(x1, . . . , xk, x))
dx1 · · · dxk

|(x1, . . . , xk)|nk−α
.

The functions fi, 1 ≤ i ≤ k + 1, will be in Lpi(Rn), with 1 ≤ pi ≤ ∞, and with

1
p1

+
1
p2

+ · · · + 1
pk+1

>
α

n
.

Let
1
q

=
1
p1

+
1
p2

+ · · · 1
pk+1

− α

n
,

and note that we are allowing for the possibility that q < 1.
We will make the following assumptions about A.

(H1) For each 1 ≤ j ≤ k + 1, Ak+1 j is an invertible n × n matrix.
(H2) A is an invertible (k + 1)n × (k + 1)n matrix.
(H3) For each j0, 1 ≤ j0 ≤ k +1, consider the kn× kn matrix Aj0 = (Aj0)lm,

where

(Aj0)�m =
{

A�,m 1 ≤ � ≤ k, 1 ≤ m ≤ k, m < j0
A�,m+1 1 ≤ � ≤ k, 1 ≤ m ≤ k, j0 ≤ m.

We assume that, for each 1 ≤ j0 ≤ k +1, Aj0 is an invertible kn× kn matrix.
Our main result is:

Theorem 1. Assume that (H1), (H2), (H3) hold. Then,

(a) If 1 < pi, i = 1, . . . , k + 1,

||Iα,A(f1, . . . , fk+1)||Lq(Rn) ≤ C
k+1∏
i=1

||fi||Lpi (Rn).
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(b) If at least one pi equals one, then

||Iα,A(f1, . . . , fk+1)||Lq,∞(Rn) ≤ C
k+1∏
i=1

||fi||Lpi (Rn).

(Here Lq,∞ denotes the “weak type” Lq space; see [S-W] for the defini-
tion of the Lorentz spaces Lq,∞.)

To illustrate this result, consider the case k = 1, and suppose that A11 = I,
A21 = I, A12 = −I, A22 = I. It is then easy to see that (H1), (H2) and (H3)
hold. The resulting bilinear operator is

Bα(f, g)(x) =
∫

f(x + t)g(x − t)
dt

|t|n−α
, 0 < α < n,

and a special case of Theorem 1 is:

Theorem 2. Assume that 0 < α < n, 1
p1

+ 1
p2

> α
n , 1

q = 1
p1

+ 1
p2

− α
n , and that

f ∈ Lp1 , g ∈ Lp2 , 1 ≤ pi ≤ ∞. Then,

(a) If 1 < pi, i = 1, 2,

||Bα(f, g)||Lq ≤ C||f ||Lp1 ||g||Lp2 .

(b) If 1 ≤ pi, i = 1, 2, and either p1 or p2 is one,

||Bα(f, g)||Lq,∞ ≤ C||f ||Lp1 ||g||Lp2 .

In order to illustrate the ideas in the proof of Theorem 1, we will sketch first
the proof of Theorem 2. We will find very useful in the sequel the following
multilinear interpolation theorem for Lorentz spaces.

Theorem 3 (S. Janson [J] ). Suppose that an �-linear operator T : Lp1j,1 ×
· · · × Lp
j,1 → Lqj ,∞, where 0 < pij

≤ ∞, 0 < qj ≤ ∞, for � + 1 points
( 1

p1j
, . . . , 1

p
j
), 1 ≤ j ≤ � + 1 in R

�, that do not lie on the same hyperplane.
Suppose further that there are real numbers α0, α1, . . . , α� with αi > 0 for i =
1, . . . , �, so that 1/qj = α0 +

∑�
i=1 αi/pij, for j = 1, . . . , � + 1. Then

T : Lp1,s1 × · · · × Lp
,s
 → Lq,s,

where 1 ≤ sj ≤ ∞, 1
s = 1

s1
+ · · · 1

s

, and ( 1

p1
, 1

p2
, . . . , 1

p

, 1

q ) lies in the open
convex hull of ( 1

p1j
, 1

p2j
, . . . , 1

p
j
, 1

qj
).

Remark 4. If pj ≥ 1, and 1
p1

+ 1
p2

+ . . . 1
p


≥ 1
q , since we can take sj = pj, and

1
s ≥ 1

q , so that Lq,s ⊂ Lq, we obtain that T : Lp1 × · · · × Lp
 → Lq.
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Sketch of the proof of Theorem 2. We first establish (b) when p1 = p2 = 1. We
need a preliminary result. Let

B(f, g)(x) =
∫
|t|≤1

f(x + t)g(x − t) dt,

Bk(f, g)(x) =
∫
|t|≤2−k

f(x + t)g(x − t) dt.

Lemma 5. The following statements hold:

(i) ||B(f, g)||
L

1
2

≤ C||f ||L1 ||g||L1 .

(ii) ||B(f, g)||L1 ≤ C||f ||L1 ||g||L1 .
(iii) ||Bk(f, g)||

L
1
2

≤ C2−nk||f ||L1 ||g||L1 .

(iv) ||Bk(f, g)||L1 ≤ C||f ||L1 ||g||L1 .

Proof. We assume, without loss of generality, that f ≥ 0, g ≥ 0.∫
Rn

B(f, g)(x) dx =
∫
|t|≤1

∫
f(x + t)g(x − t) dxdt.

Using the change of variables y = x+t, z = x−t, (ii) follows. (iv) follows by the
same argument. We next establish (i). For !a ∈ Z

n, we let Q�a be the unit size
cube in R

n, whose bottom left coordinate is !a, and we let Q∗
�a be Q�a, expanded

five times. We let F = B(f, g), f�a =
∫

Q�a
f , g�a =

∫
Q�a

g. Then

F�a =
∫

Q�a

F =
∫

Q�a

∫
|t|≤1

f(x + t)g(x − t) dtdx ≤ C

∫
Q∗

�a

f ·
∫

Q∗
�a

g,

where we have used the same change of variables as before. Thus,

F�a ≤ Cf∗
�ag∗�a, where f∗

�a =
∫

Q∗
�a

f, g∗�a =
∫

Q∗
�a

g.

Since
∫

Q�a
F

1
2 ≤ (F�a)

1
2 ≤ C(f∗

�a )
1
2 (g∗�a)

1
2 , we obtain that

∫
F

1
2 ≤ C

(∑
�a

f∗
�a

) 1
2

(∑
�a

g∗�a

) 1
2

.

Finally since the {Q∗
�a} have finite overlap,

∑
�a f∗

�a ≤ C||f ||L1 , and similarly for
g, and (i) follows. (iii) follows from (i) by scaling, and Lemma 5 is established.

Let p1 = 1, p2 = 1, 1
q = 2 − α

n . Let

Fk(x) =
∫
|t|�2−k

f(x + t)g(x − t)
dt

|t|n ,
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so that
Bα(f, g)(x) ≤

∑
k

2−kαFk(x) = H(x).

Note that Lemma 5 (iii) and (iv) give

||Fk||
L

1
2
≤ C||f ||L1 ||g||L1 , ||Fk||L1 ≤ C2kn||f ||L1 ||g||L1 ,

respectively. Write H(x) = F1 + F2, where F1 =
∑

k≤k0
2−kαFk(x), F2 =∑

k>k0
2−kαFk(x), so that

||F1||L1 ≤ C2k0(n−α)||f ||L1 ||g||L1 , and

||F2||2
L

1
2
≤

∑
k>k0

2−kα/2||Fk(x)||2
L

1
2
≤ C2−k0α/2||f ||2L1 ||g||2L1 .

Then,

|{Bα(f, g) > λ}| ≤
∣∣∣∣
{

F1 ≥ Cλ

2

}∣∣∣∣ +
∣∣∣∣
{

F2 ≥ Cλ

2

}∣∣∣∣
≤ C

λ
2k0(n−α)||f ||L1 ||g||L1 +

C

λ
1
2
2

−k0α

2 ||f ||2L1 ||g||2L1 .

Note that we can assume that ||g||L1 = ||f ||L1 = 1 and choose k0 so that
2k0(n−α)/λ ∼ 2−k0α/2/λ

1
2 . This gives the estimate C/λq, 1

q = 2 − α
n as desired.

To finish the proof of (b), note that, if g ∈ L∞, we have

Bα(f, g)(x) ≤ ||g||L∞

∫
f(x + t)

dt

|t|n−α
,

and so (b) follows in this case by ordinary fractional integration. If g ∈ Lp2 ,
1 < p2 < ∞, f ∈ L1, we obtain the desired result (b) by fixing f and using
Theorem 3 in g, with � = 1. In this case, note that 1

q > 1
p2

, so we can only
conclude that Bα(f, g) ∈ Lq,∞ (in fact, Lq,p2). To obtain (a), we use Remark 4,
this time with � = 2. In fact, consider the open convex set in R

2,

C =
{

(z1, z2) : z1 + z2 >
α

n
, 0 < z1 < 1, 0 < z2 < 1

}
.

Then, since α
n < 1, the closure of C meets each side of the square 0 ≤ z1 ≤ 1,

0 ≤ z2 ≤ 1, and for each pair of points on different sides of the square intersected
with the closure of C, we can find a third point, on a third side of the square
intersected with the closure of C, and thus, not collinear with the first two
points. Moreover, the interior of the convex hull of all such pairs of points is
exactly C. Therefore, in view of Remark 4, which applies to our situation, the
preceding remarks, and symmetry, it suffices to show the “weak type” inequality
for p1 = 1,∞ and 1 < p2 < ∞. The case p1 = 1 is covered by (b), while the
case p1 = ∞ holds because

Bα(f, g)(x) ≤ ||f ||L∞

∫
g(x − t)

dt

|t|n−α
,
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and so (a) follows in this case by ordinary fractional integration. Theorem 2 is
now completely proved.

Remark 6. When g(x) = δ0(x), Bα(f, g)(x) = f(2x)/|x|n−α, which shows that
in (b) the strong type inequality fails.

We now turn to the proof of Theorem 1. The general scheme of the proof
is identical to the one we just gave for Theorem 2. We will need a further
multilinear extension of ordinary fractional integration.

Lemma 7. Let k ∈ N,

1
s

=
1
r1

+
1
r2

+ · · · + 1
rk

− α

n
> 0,

with 0 < α < kn, 1 ≤ ri ≤ ∞, and define

Iα,k(f1, . . . , fk)(x) =
∫

f1(x − y1)f2(x − y2) · · · fk(x − yk)
|(y1, . . . , yk)|kn−α

dy1 · · · dyk.

Then,

(a) If each ri > 1,

||Iα,k(f1, . . . , fk)||Ls ≤ C
k∏

i=1

||fi||Lri .

(b) If ri = 1 for some i,

||Iα,k(f1, . . . , fk)||Ls,∞ ≤ C
k∏

i=1

||fi||Lri .

We will take Lemma 7 temporarily for granted, and use it to give the proof
of Theorem 1. We will then return to the proof of Lemma 7.

Proof of Theorem 1. We first establish (b) when p1 = p2 = · · · = pk+1 = 1. The
general scheme is identical to the one used in the proof of Theorem 2. We let

MA(f1, f2, . . . , fk+1)(x) =∫
|(x1,... ,xk)|≤1

f1(�1(x1, . . . , xk, x)) · · · fk+1(�k+1(x1, . . . , xk, x)) dx1 · · · dxk,

and,

MA,s(f1, f2, . . . , fk+1)(x) =∫
|(x1,... ,xk)|≤2−s

f1(�1(x1, . . . , xk, x)) · · · fk+1(�k+1(x1, . . . , xk, x)) dx1 · · · dxk,

and, we have the analogue of Lemma 5:
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(i) ||MA(f1, . . . , fk+1)||
L

1
k+1

≤ C
∏k+1

r=1 ||fr||L1 ,

(ii) ||MA(f1, . . . , fk+1)||L1 ≤ C
∏k+1

r=1 ||fr||L1 ,

(iii) ||MA,s(f1, . . . , fk+1)||
L

1
k+1

≤ C2−nsk
∏k+1

r=1 ||fr||L1 ,

(iv) ||MA,s(f1, . . . , fk+1)||L1 ≤ C
∏k+1

r=1 ||fr||L1 .

(ii) and (iv) follow by considering the change of variables y = L(x1, . . . , xk, x),
y ∈ R

(k+1)n, where

y1 = �1(x1, . . . , xk, x), . . . , yk+1 = �k+1(x1, . . . , xk, x).

Hypothesis (H2) guarantees that L is an isomorphism, and thus (ii) and (iv)
follow as in Lemma 5. (iii) follows from (i) by rescaling. Finally, if Q�a is as in
the proof of Lemma 5, x�a is the center of Q�a, and

y�a = L(0, 0, . . . , 0, x�a) = (Ak+1 1x�a, Ak+1 2x�a, . . . , Ak+1 k+1x�a),

then, if for each j = 1, . . . , k + 1, we let Q∗
�a,j = Ak+1 jx�a + Q∗, where Q∗ is a

cube centered at the origin, of side length M , we can choose M , depending only
on n, k, A, so that

L({|(x1, . . . , xk)| ≤ 1} × Q�a) ⊂ Q∗
�a,1 × · · · × Q∗

�a,k+1.

Moreover, since (H1) holds, the cubes Q∗
�a,j have finite overlap, depending only

on n, k, A, and this gives (i) just as in the proof of Lemma 5. Next, with

Fs(x) =
∫
|(x1,... ,xk)|�2−s

f1(�1(x1, . . . , xk, x)) · · ·

· · · fk+1(�k+1(x1, . . . , xk, x))
dx1 · · · dxk

|(x1, . . . , xk)|kn
,

we have Iα,A(f1, . . . , fk+1)(x) ≤ ∑
s 2−sαFs(x) = H(x), and

||Fs||
L

1
k+1

≤ C
k+1∏
r=1

||fr||L1 , ||Fs||L1 ≤ C2skn
k+1∏
r=1

||fr||L1 .

We will then write H(x) = F1 + F2,

F1 =
∑
s≤s0

2−sαFs(x), F2 =
∑
s>s0

2−sαFs(x),

and choose s0 so that
2s0(kn−α)

λ
=

2−s0α/k+1

λ1/k+1
,

to obtain |{Iα,A > λ}| ≤ C
λq , 1

q = (k + 1)− α
n , as desired. To finish up the proof

of (b) in Theorem 1, we proceed inductively. We will assume that the statement
in (b) is proved when j +1 of the pi’s are equal to one, and then prove (b) when
j of the pi’s equal one. Since we have just shown that (b) holds when all the pi

are 1, this suffices. Thus assume (by symmetry), p1 = 1, p2 = 1, . . . , pj = 1, 1 <
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pj+1 ≤ ∞, . . . , 1 < pk+1 ≤ ∞, with j + 1
pj+1

+ · · · + 1
pk+1

> α
n . We can assume

1 ≤ j ≤ k. Set 1
q = j + 1

pj+1
+ · · · + 1

pk+1
− α

n , and fix f1, . . . , fj ∈ L1. With
� = k + 1 − j, we consider the �-linear operator

T (g1, g2, . . . , g�)(x) = Iα,A(f1, . . . , fj , g1, . . . , g�)(x).

We will use Theorem 3 to show that

T : Lpj+1 × Lpj+2 × · · · × Lpk+1 → Lq,∞.

Consider the open convex set in R
�,

C =
{

(z1, . . . , z�) : j + z1 + z2 + · · · + z� >
α

n
, 0 < zi < 1, i = 1, . . . , �

}
.

We will first assume that � > 1. First, note that C is the open convex hull
of those points in the faces of Q0 = {(z1 . . . , z�) : 0 ≤ zi ≤ 1, 1 ≤ i ≤ �}
which are also in the half-plane H = {(z1 . . . , z�) : j + z1 + z2 + · · · + z� > α

n}.
Moreover, if !z ∈ C, and !z1, !z2 are each in the intersection of a face of Q0 with
H, and !z belongs to the line segment between !z1 and !z2, then !z1 and !z2 must
belong to different faces of Q0, and hence must be linearly independent. Also
note that H meets the interior of each of the 2� faces of Q0 in a non-empty
open subset. (Here and in the sequel, when referring to the interior of a face,
or an open subset of a face, we mean this as subsets of the R

�−1 dimensional
hyperplane which contains the face.) Next, observe that, given any pair of points
!z1 = (z1

1 , . . . , z1
� ), !z2 = (z2

1 , . . . , z2
� ), each in the intersection of a different face of

Q0 with H (and hence linearly independent) we can find �−2 points !z3, !z4, . . . , !z�

so that each point is in the intersection of a different face of Q0 with H, and so
that {!z1, !z2, . . . , !z�} is linearly independent.

(To see this, recall that !z1 and !z2 are linearly independent. If L2 is the 2-
dimensional subspace that they span, and F3 is any face of Q0 different from
the faces F1 and F2 to which !z1 and !z2 belong, then L2 meets F3 along an
affine space A2. Note that L2 cannot be contained in the (� − 1) dimensional
hyperplane containing F3 (since !z1, !z2 �∈ F3), and so, dimA2 ≤ 1. Since �−2 > 0
(otherwise there is nothing to do), � − 1 > 1, and hence can find a point !z3 in
the interior of F3 intersected with H, which is not in A2. Thus, {!z1, !z2, !z3} are
linearly independent. We continue in this fashion, until we have � points. This
is possible because if we have {!z1, !z2, . . . , !zr} linearly independent, each in a
different face, and if we let Lr be their linear span, and Fr+1 is a further face,
and

Ar = Lr ∩ (� − 1 dimensional hyperplane containing Fr+1),

then Ar

⊂
�= Lr, dim (Lr) = r, so if r ≤ � − 1, then dimAr ≤ r − 1 ≤ � − 2, and

thus we can find !zr+1 in the interior of Fr+1 intersected with H, and not in Ar.)
By linear independence, there exists a unique hyperplane L in R

�, which
contains !z1, !z2, . . . , !z�. Let F�+1 be a face of C different from the ones containing
!z1, . . . , !z�. Then L cannot be contained in the hyperplane containing F�+1, and
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so the dimension of the intersection of L with that hyperplane does not exceed
�− 2. Hence, we can find a further point !z�+1 in the interior of F�+1 intersected
with H, which is not L. By the uniqueness of L, {!z1, !z2, . . . , !z�, !z�+1} are not in
the same hyperplane.

Because of the above considerations, Theorem 3, and symmetry, we need only
show our weak type estimate when ( 1

pj+1
, . . . , 1

pk+1
) = (z1, . . . , z�) is such that

z1 is either 0 or 1, 0 ≤ zi < 1, i = 1, 2, . . . , �.
If z1 = 0, g1 ∈ L∞, and

T (g1, . . . , g�)(x) ≤

||g1||L∞

∫
f1(�1(x1, . . . , xk, x)) · · · fj(�j(x1, . . . , xk, x))

g2(�j+2(x1, . . . , xk, x)) · · · g�(�k+1(x1, . . . , xk, x))
dx1 · · · dxk

|(x1, . . . , xk)|nk−α
.

At this point, hypotheses (H1) and (H3) easily reduce matters to Lemma 7. (See
Remark 10 below.)

If z1 = 1, g1 ∈ L1, and the required bound now follows from the fact that
j + 1 of the pi’s are equal to one.

If � = 1, we only require two points to apply Theorem 3, and the argument
is much simpler, and thus (b) is established.

We now turn to the proof of (a) in Theorem 1. As in the proof of Theorem
2, we will use Remark 4. The argument will be similar to the one used above to
give the proof of (b). Consider the open convex set in R

k+1,

C = {(z1, . . . , zn) : z1 + z2 + · · · + zk+1 > α/n, 0 < zi < 1, i = 1, . . . , k + 1},
where, as always, 0 < α < kn. The half-plane H = {z1 + · · · + zk+1 > α/n}
meets the interior of each face of the cube Q0 = {0 < zi < 1, i = 1, . . . , k + 1}
in an open set, and thus, arguing as in the proof of (b), but this time using
Remark 4 (since 1

q < 1
p1

+ · · · + 1
pk+1

), we are reduced to showing the “weak
type” estimate, when p1 = 1 or ∞, 1 < pj ≤ ∞, j = 2, . . . , k + 1,

1
p1

+
1
p2

+ · · · + 1
pk+1

− α

n
> 0.

When p1 = ∞, hypotheses (H1) and (H3) quickly reduce matters to Lemma 7
(see Remark 10 below), and when p1 = 1 the desired result follows from (b).

Proof of Lemma 7. Since α > 0, some ri < ∞. If, say, r�+1 = · · · = rk = ∞,
1 ≤ � < k, because α

n < 1
r1

+ · · ·+ 1
r


≤ �, so that kn−α > (k − �)n, integration
in y�+1, . . . , yk reduces matters to the case when all ri are finite (and k = �).
Thus, we can assume that all ri < ∞. Now, observe that if 0 < ci, i = 1, . . . , k,
and 0 < α <

∑k
i=1 ci, we can find 0 < αi < ci such that α =

∑k
i=1 αi. Apply
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this observation to ci = n/ri, and let 1
si

= 1
ri

− αi

n . Since
∑k

i=1
1
si

= 1
s , 0 <

αi

n < 1
ri

≤ 1, 1 < si < ∞, and

|y1|n−α1 |y2|n−α2 · · · |yk|n−αk ≤ |(y1, . . . , yk)|nk−α (α =
k∑

i=1

αi),

it follows that Iα,k(f1, . . . , fk)(x) ≤ ∏k
i=1 Iαi(fi)(x), where Iαi is the standard

fractional integral operator. The lemma now follows by Hölder’s inequality (or
its Lorentz space version when some ri = 1).

A Singular Integral Version

We will conclude with a “singular integral” version of Lemma 7, which allows
one to extend to exponents below 1, results of Coifman-Meyer [C-M1, C-M2,
C-M3, C-M4, C-M5].

Theorem 8. Let k ∈ N, 1 ≤ ri < ∞, 1 ≤ i ≤ k,

1
s

=
1
r1

+ · · · + 1
rk

,

and let K denote a Calderón-Zygmund kernel in R
nk (i.e. K is homogeneous

of degree −nk, it is smooth away from the origin, and has mean value 0 on the
unit sphere in R

nk). For fi ∈ Lri , let

TK(f1, . . . , fk)(x) = p.v.

∫
f1(x − y1) · · · fk(x − yk)K(y1, . . . , yk) dy1 · · · dyk.

Then:

(a) If each ri > 1, then

||TK(f1, . . . , fk)||Ls ≤ C
k∏

i=1

||fi||Lri .

(b) If ri = 1 for some i, then

||TK(f1, . . . , fk)||Ls,∞ ≤ C
k∏

i=1

||fi||Lri .

Remark 9. When ri > 1, s > 1, (a) is due to Coifman-Meyer [C-M1], [C-M2],
who also proved that if s = 1, the weak-type estimate holds. Note that in [C-M3],
[C-M4] it is also allowed that (k − 1) of the ri be ∞. Our point here is the
extension to the case s < 1, and also adapts ideas used by them, in particular
Lemma 4.8 in [C-M1].
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Proof of Theorem 8. We will only do the k = 2 case here. We also do, for
simplicity, the case n = 1. We first prove the case s = 1

2 , r1 = 1, r2 = 1 in (b).
Thus let fi ∈ L1, and assume, without loss of generality, that ||fi||L1 = 1. Let
λ > 0, and we want to show that

|{x : |TK(f1, f2)| > λ}| ≤ C/λ
1
2 .

We next perform a Calderón-Zygmund decomposition (see [S]) of fi, at “height”
λ

1
2 , i.e. we write fi = bi + gi, where bi =

∑
k bi,k, supp bi,k ⊂ Ii,k,

∫
Ii,k

bi,k =

0, {Ii,k}k are a disjoint collection of intervals, |∪kIi,k| ≤ C/λ
1
2 ,

∫
Ii,k

|bi,k| ≤
Cλ

1
2 |Ii,k|, and ||gi||L∞ ≤ Cλ

1
2 . Note that

∫ |bi| ≤ C, and that, for q > 1,∫ |gi|q ≤ Cλ
q−1
2 ,

{TK(f1, f2) > λ} ⊂
{TK(b1, b2) > λ/4} ∪ {TK(b1, g2) > λ/4}
∪ {TK(g1, b2) > λ/4} ∪ {TK(g1, g2) > λ/4}

= E1 ∪ E2 ∪ E3 ∪ E4.

Let Ω∗
i = ∪kIi,k

∗, where Ii,k
∗ is the interval with the same center as Ii,k, but

expanded three times.
We first estimate E1 = E1\(Ω∗

1∪Ω∗
2)∪E1∩(Ω∗

1∪Ω∗
2). The second of the above

sets has the required estimate. Thus, assume x ∈ E1, x �∈ (Ω∗
1 ∪ Ω∗

2). Then,
TK(b1, b2)(x) =

∑
k,j TK(b1,k, b2,j)(x). Fix k, j and consider TK(b1,k, b2,j)(x).

We can assume, by symmetry, that |I1,k| ≤ |I2,j |. Let u1,k be the center of I1,k.
Then,

TK(b1,k, b2,j)(x) =
∫ ∫

b1,k(x − y1)b2,j(x − y2)K(y1, y2) dy1dy2,

=
∫ ∫

b1,k(u1)b2,j(x − y2)K(x − u1, y2) du1dy2,

=
∫ ∫

b1,k(u1)b2,j(x − y2),

[K(x − u1, y2) − K(x − u1,k, y2)] du1dy2.

Since for x �∈ I∗1,k, |K(x − u1, y2) − K(x − u1,k, y2)| ≤ C
|I1,k|

|(x−u1,k,y2)|3 , u1 ∈ I1,k,

|(x−u1,k, y2)|3 ≥ |x−u1,k| 32 |y2| 32 and, for x �∈ I∗1,j , u2 ∈ I2,j , |x−u2| � |x−u2,j |,
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where u2,j is the center of I2,j , we have:

|TK(b1,k, b2,j)(x)| ≤ C

∫ ∫ |b1,k(u1)|
|x − u1,k| 32

|I1,k| 12 |b2,j(u2)|
|x − u2,j | 32

|I2,j | 12 du1du2,

≤ Cλ
|I1,k| 32 |I2,j | 32

|x − u1,k| 32 |x − u2,j | 32
,

≤ Cλ|I1,k| 32 |I2,j | 32
(�(I1,k) + |x − u1,k|) 3

2 (�(I2,j) + |x − u2,j |) 3
2
.

Hence for x �∈ Ω∗
1 ∪ Ω∗

2, we have:

|TK(b1, b2)(x)| ≤
∑
j,k

|I1,k| 32
(�(I1,k) + |x − u1,k|) 3

2

|I2,j | 32
(�(I1,k) + |x − u2,j |) 3

2
· Cλ.

Let

Gi,α(x) =
∑

k

|Ii,k|1+α

(�(Ii,k) + |x − ui,k|)1+α
, for α > 0,

be the Marcinkiewicz function, and recall (see [S]) that
∫ Gi,α(x) dx ≤ Cα| ∪k

Ii,k| ≤ Cα/λ
1
2 . We have

|E\(Ω∗
1 ∪ Ω∗

2)| ≤
C

λ
1
2

∫
(G1, 1

2
(x) · G2, 1

2
(x))

1
2 dx · λ 1

2 ≤ C/λ
1
2

by Cauchy-Schwarz. We estimate E4 using the Coifman-Meyer [C-M2] result,
with r1 = 4, r2 = 4, s = 2, to see that

|E4| ≤ 1
λ2

∫
|TK(g1, g2)|2 ≤ C

λ2
||g1||2L4 ||g2||2L4 ≤ C

λ2
λ

3
4 λ

3
4 =

C

λ
1
2
.

To estimate E2, we estimate its part disjoint from Ω∗
1. If x �∈ I∗1,k, using the

same estimate as before, we see that

|TK(b1,k, g2)(x)| ≤ C

∫ ∫ |b1,k(u1)|
|(x − u1,k, y2)|3 |I1,k||g2(x − y2)| du1dy2,

≤ Cλ
1
2

∫ ∫ |b1,k(u1)||I1,k|
|(x − u1,k, y2)|3 du1dy2.

Performing the y2 integration we obtain

≤ Cλ
1
2 |I1,k|

|(x − u1,k)|2
∫

|b1,k( u1)| du1 ≤ Cλ|I1,k|2
(�(I1,k) + |x − u1,k|)2 .

Thus |TK(b1, g2)(x)| ≤ CλG1,1(x), and so |E2\Ω∗
1| ≤ C

∫ G1,1(x) ≤ C/λ
1
2 , as

desired. Since the esimate for E3 is similar, this concludes this case. To finish
the proof of (b), fix f1 ∈ L1, ||f1||L1 = 1, and first assume that f2 ∈ L∞,
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||f2||L∞ = 1. Given λ > 0, perform the Calderón-Zygmund decomposition of f1,
at height λ, so that f1 = b1 + g1. By the argument above, for x �∈ Ω∗

1,

|TK(b1, f2)(x)| ≤ C||f2||L∞λG1,1(x),

and
∫ G1,1(x) ≤ C/λ. Also,

|{TK(g1, f2) > λ}| ≤ 1
λ2

∫
|TK(g1, f2)|2 ≤ C

λ2
||g1||2L2 ||f2||2L∞ ≤ C

λ
,

(by the Coifman-Meyer result [C-M4]), giving the fact that TK(f1, f2) is in
weak L1. Using Theorem 3 (with � = 1), we now obtain that, for f2 ∈ Lr2 ,
TK(f1, f2) ∈ Ls,∞, 1

s = 1 + 1
r2

, 1 ≤ r2 ≤ ∞, which yields (b). Finally, to obtain
(a), we use (b) and Remark 4 above, together with the Coifman-Meyer result
[C-M4] for 1 < r1 < ∞, r2 = ∞, and r1 = ∞, 1 < r2 < ∞.

Concluding Remarks

Remark 10. The operators Iα,k, and TK appearing in Lemma 7 and Theorem
9 can be put in a more general form in parallel with the (k + 1)-linear operators
arising in Theorem 1. Here we define Iα,k and TK as∫

Rnk

f1(�1)f2(�2) · · · fk(�k)K(x1, . . . , xk) dx1 · · · dxk

with K(x) = |(x1, . . . , xk)|−nk+α, or K(x) a Calderón-Zygmund kernel on R
nk.

Also

�j = �j(x1, . . . , xk, x) =
k∑

i=1

Aijxi + Ak+1,jx, 1 ≤ j ≤ k.

We make the following assumptions analogous to (H1), (H2), (H3):

(h1) For each j, 1 ≤ j ≤ k, the matrix Ak+1,j is invertible.
(h2) The kn × kn matrix (Ai,j) 1≤i≤k

1≤j≤k
is invertible.

Then the conclusions of Lemma 7 and Theorem 9 still hold in this more
general term. This can easily be deduced from the special cases already proved.
First we replace the functions f1 by f ′

1 with f ′
j(A

−1
k+1,j(x)) = fj(x). Then we

write A−1
k+1�j = x−∑k

i=1 A′
ijxi with A′

ij = −A−1
k+1,j ·Aij . Finally one makes the

linear change of variables yj =
∑k

i=1 A′
ijxi.
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