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SIMPLY CONNECTED 4-MANIFOLDS NEAR THE
BOGOMOLOV-MIYAOKA-YAU LINE

András I. Stipsicz

Abstract. In the following paper, we construct simply connected symplectic
4-manifolds with characteristic numbers satisfying c21 > 8 9

10
χh.

1. Introduction

The geography problem of compact complex surfaces, (i.e., the characteriza-
tion of pairs (a, b) ∈ Z×Z corresponding to minimal complex surfaces via χh = a
and c2

1 = b,) is a well-studied part of algebraic geometry. (See [Ch1, Ch2, P].
Here χh stands for the holomorphic Euler characteristic and c2

1 for the square of
the first Chern class of the surface at hand.) In the light of recent advances in
symplectic topology and smooth 4-manifold theory, the same question has been
raised for minimal symplectic and for irreducible 4-manifolds. The definitions of
the invariants χh and c2

1 has been extended by the formulae

χh(X) =
1
4
(σ(X) + e(X)) and c2

1(X) = 3σ(X) + 2e(X),

where X is a closed, oriented 4-manifold with odd b1(X) − b+
2 (X), σ(X) is its

signature and e(X) is its Euler characteristic. (Note that for a symplectic 4-
manifold X the difference b1(X)− b+

2 (X) is always odd.) Results of Gompf and
Mrowka [GM], Szabó [Sz], Fintushel and Stern [FS1, FS2], and many others show
that the answer for the different classification questions (for complex surfaces,
symplectic 4-manifolds, and for smooth irreducible 4-manifolds,) is qualitatively
different, even if we assume that — for sake of simplicity — our manifolds are
simply connected. Gompf and Mrowka [GM] showed the first examples of simply
connected irreducible (in fact, symplectic) 4-manifolds not carrying complex
structures, then Szabó [Sz] found simply connected (irreducible) 4-manifolds
with no symplectic structures. These works were followed by constructions of
Fintushel and Stern [FS1, FS2] providing hordes of similar examples. (See also
[GS, Pa, S1].) All the above examples shared the property that their signature
σ was negative — equivalently, c2

1 < 8χh.
Besides CP

2 (with c2
1(CP

2) = 9, χh(CP
2) = 1 and σ(CP

2) = 1,) complex
surfaces of positive signature were hard to find. Using various branched cover
constructions, such examples have been constructed in [Ch1, Ch2, H, MT, PPX,
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So]. It is known that if S is a complex surface, then c2
1(S) ≤ 9χh(S) (the

Bogomolov-Miyaoka-Yau inequality); moreover for S differing from CP
2, the

equality c2
1(S) = 9χh(S) holds if and only if the unit disk U = {(z1, z2) ∈

C
2

∣∣ |z1|2 + |z2|2 < 1} covers S (implying, in particular, that c2
1(S) = 9χh(S)

for a compact complex surface S �= CP
2 means |π1(S)| = ∞). Examples of

surfaces with positive signature found by the above authors are either far from
the Bogomolov-Miyaoka-Yau (BMY-)line c2

1 = 9χh or have large fundamental
groups. In the following we will construct a family B(d) (d ≥ 4) of simply
connected symplectic 4-manifolds close to the BMY-line.

Theorem 1.1. For d ≥ 4, the simply connected, symplectic 4-manifolds B(d)
given in Section 3 satisfy c2

1

(
B(d)

)
> 8 9

10χh

(
B(d)

)
with finitely many exceptions.

Corollary 1.2. There are infinitely many irreducible 4-manifolds (admitting
nontrivial Seiberg-Witten invariants,) satisfying c2

1 > 8 9
10χh.

It is still an open (and intriguing) question whether simply conneceted ir-
reducible (or symplectic) 4-manifolds exist on the BMY-line or behind it, i.e.
X with c2

1(X) ≥ 9χh(X). (Again, we are interested in examples different from
CP

2.) One has to be careful about asking the violation of the BMY-inequality by
an irreducible 4-manifold. By reversing the orientation of, say a minimal elliptic
surface we clearly have such an example. Requiring nonvanishing Seiberg-Witten
invariants, for example, the question becomes much harder and more interesting.

In Section 2 of the paper we recall the construction of the complex surfaces
H(n) lying on the BMY-line; then using H(n) for appropriate n in Section 3 we
will construct B(d) and show the properties announced above. We append two
standard constructions in Section 4 for sake of completeness.

2. Surfaces on the BMY-line

In constructing H(n) we will follow the description given in [Ch2]. Assume
that D is a Riemann surface (complex 1, real 2 dimensional manifold) of genus
2. We take a Z5-action on D generated by γ : D → D which has exactly 3
fixed points Q1, Q2 and Q3. (The existence of such an action is shown in the
Appendix.) It is easy to see that the quotient of D by this Z5-action is CP

1; let us
denote the quotient map by ϕ : D → CP

1. The diagonal in CP
1×CP

1 is denoted
by ∆; take the inverse image of ∆ in D×D via ϕ×ϕ : D×D → CP

1 ×CP
1 and

denote it by F ⊂ D × D. Note that since [∆] = [CP
1 × {pt.}] + [{pt.} × CP

1] ∈
H2(CP

1×CP
1; Z), we have that [F ] = 5

(
[D×{pt.}]+[{pt.}×D]

) ∈ H2(D×D; Z).

Lemma 2.1. F consists of the union of 5 complex curves (F1, . . . , F5) each
diffeomorphic to D. Each Fi goes through (Q1, Q1), (Q2, Q2) and (Q3, Q3) ∈
D × D. Moreover, Fi intersects Fj in (Qk, Qk) transversally, otherwise these
curves are disjoint and [Fi]2 = −2 for 1 ≤ i ≤ 5.
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Proof. The curve Fi is the graph of the map γi : D → D; consequently [Fi]2 =
[Fj ]2. Since F5 is the diagonal of D × D, we have [F5]2 = −2. By the fact that( ∑

[Fi]
)2 =

(
5
(
[D × {pt.}] + [{pt.} × D]

))2 = 50, the lemma follows.

If we blow up D×D in the points (Qi, Qi) (i = 1, 2, 3), the proper transform
of F consists of 5 disjoint curves F̃1, . . . , F̃5 ⊂ D×D#3CP

2. Since in the second
homology group of D×D#3CP

2 we have [F̃1]+. . .+[F̃5] = 5
(
[D×{pt.}]+[{pt.}×

D]
)−5e1−5e2−5e3 (where ei is the homology class of the exceptional sphere of

the ith blow-up), we can take the 5-fold cyclic branched cover of D × D#3CP
2

along F̃1 ∪ . . . ∪ F̃5. The resulting smooth complex surface is denoted by H(1);
the characteristic numbers of H(1) can be easily computed:

Lemma 2.2. The Euler characteristic e
(
H(1)

)
of H(1) is equal to 75, its sig-

nature is σ
(
H(1)

)
= 25, hence c2

1

(
H(1)

)
= 225 and

χh

(
H(1)

)
=

1
12

(
c2

(
H(1)

)
+ c2

1

(
H(1)

))
= 25.

Consequently, c2
1

(
H(1)

)
= 9χh

(
H(1)

)
, so H(1) is on the Bogomolov-Miyaoka-

Yau line.

Note that the composition of the maps H(1) → D×D#3CP
2 → D×D

pr−→ D
gives a fibration of H(1) over D, the regular fiber being a curve which is a 5-fold
cover of D branched in 5 points, hence it is a curve of genus 16. Each F̃i gives
rise to a section of this fibration, the image of this section is a curve of genus 2
with self-intersection −1.

Any n-fold cover of H(1) will be on the BMY-line as well. This can be seen in
two ways: The Euler characteristic and the signature are multiplied by n under
an n-fold cover, so direct computation shows the statement. Alternatively, since
H(1) is on the BMY-line (and H(1) �= CP

2), the unit disk U is its universal
cover, which is the same for any n-fold cover, implying that the latter is also
on the BMY-line. We define H(n) as a particular n-fold cover of H(1): Take
φn : Dn → D n-fold cover of D and pull H(1) → D back via φn. The resulting
complex surface H(n) obviously fibers over the Riemann surface Dn of genus
(n + 1) with fibers of genus 16 and has the following characteristic numbers:

Proposition 2.3. The Euler characteristic e
(
H(n)

)
of H(n) is equal to 75n,

σ
(
H(n)

)
= 25n, hence c2

1

(
H(n)

)
= 225n and χh

(
H(n)

)
= 25n. The inverse

image of a section of H(1) gives a section of H(n) → Dn; the corresponding
submanifold is a Riemann surface of genus (n + 1) with self-intersection −n.
(For more about H(n) see [Ch2] or [GS].)
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3. Construction of the 4-manifolds

Consider a 4-manifold X admitting a Lefschetz fibration f : X → CP
1 such

that the genus of the generic fiber is 16, moreover f admits a simply connected
fiber and a section with self-intersection −1. An example of such a Lefschetz fi-
bration is given at the end of the Appendix. (For more about Lefschetz fibrations
see [GS].) Taking the fiber connected sum of H(n) and X we get a 4-manifold
Y (n) still admitting a Lefschetz fibration over Dn. Y (n) is symplectic [G1], and
has the following characteristic numbers:

Lemma 3.1. Assume that σ(X) = s and e(X) = t. Then for the 4-manifold
Y (n) we have σ(Y (n)) = 25n + s, e(Y (n)) = 75n + t + 60, consequently,
c2
1

(
Y (n)

)
= 225n + 120 + 3s + 2t = 225n + 120 + c2

1(X), and χh

(
Y (n)

)
=

25n + 15 + 1
4 (s + t) = 25n + 15 + χh(X).

By sewing a section of H(n) to a section of X we get a section of Y (n) → Dn;
its image Σn turns out to be an embedded surface of genus (n + 1) with self-
intersection −(n + 1). Since for any Lefschetz fibration and preassigned (finite)
set of disjoint sections there is a symplectic structure on the 4-manifold making
the sections symplectic [G2, GS], we can assume that Σn ⊂ Y (n) is a symplectic
submanifold. Applying the result of the next theorem it will be easy to get a
hold on the fundamental group of the 4-manifold Y (n).

Theorem 3.2. If the 4-manifold M4 admits a Lefschetz fibration f : M → C
over the Riemann surface C with connected fibers, with at least one simply con-
nected fiber and with a section Σ, then the embedding Σ ↪→ M induces an iso-
morphism π1(Σ) ∼= π1(M).

Proof. For a Lefschetz fibration there is an exact sequence

π1(F ) → π1(M) → π1(C) → π0(F ),

where F is the generic fiber. Since the fibers are connected, we have π0(F ) = 0;
by the existence of a simply connected fiber we have that the homomorphism
π1(F ) → π1(M) is the zero homomorphism. This implies that the projection
M → C induces an isomorphism π1(M) → π1(C). Since the composition of the
section τ : C → M with the above projection as

C
τ−→ M

f−→ C,

results idC , we get that τ induces an isomorphism on the fundamental groups,
and this proves the lemma.

For d ≥ 4 let us take n = 1
2 (d − 1)(d − 2) − 1 ≥ 1. The smooth holomorphic

curve Cd ⊂ CP
2 representing d-times the generator is a Riemann surface of

genus n + 1; blowing it up h = d2 − n − 1 = 1
2 (d2 + 3d − 2) times we get the

curve C̃d ⊂ CP
2#hCP

2 of genus n + 1 with self-intersection n + 1. Forming the
symplectic normal connected sum (cf. [G1]) of (Y (n), Σn) with (CP

2#hCP
2, C̃d)
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(recall the definition of n and h in terms of d,) we get a symplectic 4-manifold
B(d).

Theorem 3.3. The symplectic 4-manifold B(d) is simply connected, and its
characteristic numbers are given as follows: σ

(
B(d)

)
= 12d2 − 39d + s + 2,

e
(
B(d)

)
= 40d2 − 117d + 62 + t, hence c2

1

(
B(d)

)
= 116d2 − 351d + 130 + c2

1(X)
and χh

(
B(d)

)
= 13d2 − 39d + 16 + χh(X).

Proof. Since the normal circle of C̃d ⊂ CP
2#hCP

2 is contractible along any
of the exceptional spheres, the complement of C̃d in CP

2#hCP
2 is obviously

simply connected. Lemma 3.2 shows that each element of π1

(
Y (n)

)
can be

represented by a loop contained by the section Σn. This, however, implies that
the map π1

(
∂(Y (n) − νΣn)

) → π1

(
Y (n) − νΣn

)
induced by the embedding

is a surjection. Now the application of the Seifert-Van Kampen theorem for
B(d) = (Y (n)−νΣn)∪∂(Y (n)−νΣn) (CP

2#hCP
2− C̃d) shows that B(d) is simply

connected. The signature of CP
2#hCP

2 obviously equals 1 − h = 2 − d2 + n =
1 − d2 + 1

2 (d − 1)(d − 2) = − 1
2 (d2 + 3d − 4), which implies the formula for

σ
(
B(d)

)
. The Euler characteristic of CP

2#hCP
2 equals 3 + h = 2 + d2 − n =

3+d2− 1
2 (d−1)(d−2) = 1

2 (d2 +3d+4), hence e
(
B(d)

)
can be easily computed;

the rest obviously follows.

Proofs of Theorem 1.1 and Corollary 1.2. Now it is easy to see, that

lim
d→∞

c2
1

(
B(d)

)
χh

(
B(d)

) =
116
13

> 8
9
10

.

Consequently c2
1

(
B(d)

)
> 8 9

10χh

(
B(d)

)
holds with finitely many exceptions,

proving Theorem 1.1. By blowing down B(d) if possible, we end up with a
minimal (simply connected) symplectic, hence irreducible 4-manifold B̃(d). The
symplectic structure ensures the nontriviality of the Seiberg-Witten invariants,
and since blowing down does not change χh and increases c2

1, the resulting
irreducible 4-manifolds B̃(d) obviously satisfy c2

1

(
B̃(d)

)
> 8 9

10χh

(
B̃(d)

)
(with

finitely many exceptions). This last observation proves Corollary 1.2.

Remarks 3.4.

• In the notation we did not record the manifold X, although B(d) depends
on the choice of X. Using the 4-manifold provided by the Appendix we
get that c2

1

(
B(d)

)
= 116d2 −351d+70 and χh

(
B(d)

)
= 13d2 −39d+17.

Various choices of X give simply connected irreducible 4-manifolds of
positive signature with different characteristic numbers. Combining this
freedom with the observation described in [S1], one we can prove that
most lattice points in Z × Z satisfying 0 ≤ b ≤ 8 9

10a correspond to a
simply connected minimal symplectic (hence irreducible) 4-manifold.
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• It can be shown that for d ≥ 4 the symplectic 4-manifold B(d) is min-
imal, hence irreducible: Since Y (n) is a relatively minimal Lefschetz
fibration over a Riemann surface of positive genus, the result of [S2]
applies and shows that Y (n) is minimal. Adapting the method of W.
Lorek now the minimality of B(d) follows. For sake of brevity we do not
give the complete argument here — the a priori necessary blow-downs
(resulting in B̃(d),) provide examples proving our main result.

• The routine exercise of determining the bound d0 for which d ≥ d0

implies c2
1

(
B(d)

)
> 8 9

10χh

(
B(d)

)
is left to the reader.

4. Appendix

First we will show a Z5-action on D required at the beginning of Section 2:
Take the (singular) curve A = {[x0 : x1 : x2] ∈ CP

2 | x5
0 − x3

1x2(x1 + x2) = 0}
in CP

2 and blow up CP
2 in [0 : 0 : 1] (the singular point of the curve A). The

proper transform Ã still has one singular point, but the proper transform D of
an additional blow-up will be smooth. Hence we have found a smooth curve
D in CP

2#2CP
2; restricting the blow-down map CP

2#2CP
2 → CP

2 to D and
composing it with the projection CP

2 − [1 : 0 : 0] → {x0 = 0} ≈ CP
1 (mapping

[x0 : x1 : x2] to [0 : x1 : x2]) we get a map ϕ : D → CP
1. This map is simply

an explicit description of the 5-fold cyclic branched cover D → CP
1 branched in

three points Q1, Q2, Q3 ∈ CP
1. Consequently we have a Z5-action (the generator

is denoted by γ : D → D) on D; the fixed points of γ are the inverse images of
Qi (i = 1, 2, 3) (still denoted by Qi in D). The above Z5-action can be explicitely
seen on A as multiplication of x0 by a fifth root of unity (providing fixed points
[0 : 0 : 1], [0 : 1 : 0] and [0 : 1 : −1]). An easy application of the adjunction
formula now shows that D has genus 2.

Next, we show that a Lefschetz fibration with the properties listed at the
begining of Section 3 exists. (Recall that we have to find f : X → CP

1 such that
the generic fiber has genus 16, f admits a simply connected fiber and it also has
a section of square −1.) Let us fix p1, . . . , p34, 34 distinct points in CP

1 and take
the (singular) curve G =

⋃2
i=1(CP

1 × {pi}) ∪
⋃34

j=1({pj} × CP
1) ⊂ CP

1 × CP
1.

The double branched cover of CP
1×CP

1 branched along G is a singular complex
surface, the desingularized of which being diffeomorphic to CP

2#69CP
2 [GS].

Composing the double branched cover map ρ : CP
2#69CP

2 → CP
1 × CP

1 with
the projection pr2 : CP

1 × CP
1 → CP

1 to the second factor, we get a Lefschetz
fibration f : CP

2#69CP
2 → CP

1. The generic fiber of f is a curve of genus
16 (the double branched cover of CP

1 branched in 34 points). There are two
singular fibers (originated from the parts CP

1 × {pi} of the branch locus); each
singular fiber is a plumbing of 35 spheres along a star-shaped tree, consequently
these singular fibers are simply connected. Moreover, the curves {pj}×CP

1 ⊂ G
give rise to 34 sections of f , each being a rational curve with self-intersection −1.
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Consequently X = CP
2#69CP

2 with the above fibration provides an example
of a 4-manifold required in Section 3. Note that for the above X we have
σ(X) = −68 and e(X) = 72 (hence c2

1(X) = −60 and χh(X) = 1), so the values
of s and t and hence the characteristic numbers of the corresponding B(d) are
the ones given in Remark 3.4.

Remark 4.1. An alternative way for constructing X with the above properties
can be carried out in the following way. Assume that the manifold N is de-
fined by the Kirby diagram consisting of a 0-framed torus knot T (2, 33) linked
geometrically once with a (−1)-framed unknot. Take the compactified Milnor
fiber Mc(2, 33, 65) corresponding to the singularity x2 + y33 + z65 = 0 and glue
it to N along its boundary, so get X = N ∪∂ Mc(2, 33, 65). It can be shown
that this closed 4-manifold admits a complex structure and a Lefschetz fibration
f : X → CP

1 with fibers of genus 16, such that the torus knot T (2, 33) gives a
(singular) fiber which is obviously simply connected (since it is homeomorphic to
S2), and the (−1)-framed unlink gives rise to a section of f with self-intersection
−1. Consequently this latter construction provides an alternative choice for X.
For related constructions of Lefschetz fibrations see [GS].
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