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AVERAGES OVER CURVES WITH TORSION

Daniel Oberlin, Hart F. Smith, and Christopher D. Sogge

Abstract. We establish Lp Sobolev mapping properties for averages over certain
curves in R

3, which improve upon the estimates obtained by L2 − L∞ interpola-
tion.

Let T be the operator given by convolution in R
3 against a smooth cutoff of

arclength measure on the helix γ(t) =
(
cos t, sin t, t

)
,

T f(x) =
∫

f(x1 − cos t , x2 − sin t , x3 − t) φ(t) dt .

For 1 < p < ∞, let Hs,p(R3) denote the nonhomogeneous Sobolev space con-
sisting of functions in Lp(R3) whose fractional derivative of order s also lies in
Lp(R3). We consider the following question:

For which values of s (depending on p) does T : Lp(R3) → Hs,p(R3) ?

By duality, it suffices to consider 2 ≤ p < ∞. As shown by the first two authors
in [OS], a necessary condition is that

s ≤ 1
6 + 1

3p if 2 ≤ p ≤ 4 ,

s ≤ 1
p if 4 ≤ p < ∞ .

Simple arguments (see for example the lemma below) show that T : L2(R3) →
H

1
3 ,2(R3) . Interpolation with the trivial L∞(R3) boundedness of T yields a

sufficient condition of s ≤ 2
3p . In particular, interpolation yields

(1) T : L4(R3) → H
1
6 ,4(R3) .

In this note, we combine the arguments of [OS] with Bourgain’s [B] improvement
of the conic square function estimate of Mockenhaupt [M] to obtain the following.

Received July 8, 1998.
All authors are partially supported by the NSF.
1991 Mathematics Subject Classification. 42B15, 42B20.
Keywords and phrases. Fourier transform, convolution operator, oscillatory integral.

535



536 DANIEL OBERLIN, HART F. SMITH, AND CHRISTOPHER D. SOGGE

Theorem. There exists σ > 0 such that

(2) T : L4(R3) → H
1
6+σ,4(R3) .

We should point out that T is a model for curve-averaging operators whose
canonical relations have two-sided Whitney folds. In two dimensions these op-
erators are much easier to analyze and optimal results are known. See e.g., [SS]
and [SW].

In three dimensions, the translation invariant operators of this type are the
averages over curves with non-vanishing torsion (a curve γ(t) has non-vanishing
torsion if the vectors

{
γ′(t), γ′′(t), γ′′′(t)

}
are linearly independent for each t.)

The helix and the twisted cubic, γ(t) = (t, t2, t3) , are basic examples. We
restrict attention here to the helix since this operator has the light cone in ξ
as its folding set. A modification of Bourgain’s estimate to conic hypersurfaces
with one non-vanishing principle curvature would yield the theorem for general
curves with torsion.

The value of σ is related to the exponent τ in equation (132) of [B], which
is not explicitly determined. Any σ < 1

3τ works. In particular, an optimal
value τ = 1

4 would yield the nearly optimal condition σ < 1
12 . Recently, Tao

and Vargas [TV] have modified Bourgain’s arguments and obtained a definite
value of τ . The authors would like to thank T. Tao for a helpful conversation
regarding Bourgain’s work.

To begin the proof of (2), let

(3) T̂ (ξ) =
∫

e−iξ1 cos t−iξ2 sin t−iξ3 t φ(t) dt

denote the Fourier multiplier associated to T .
Let ξ′ = (ξ1, ξ2) . The oscillatory integral (3) has no critical points for |ξ′| <

|ξ3|. The following thus holds.∣∣T̂ (ξ)
∣∣ = O(|ξ|−N ) ∀N , if |ξ′| ≤ .99 |ξ3| .

For |ξ′| > |ξ3| there are two, nondegenerate critical points. The following is
thus a consequence of Van der Corput’s Lemma,∣∣T̂ (ξ)

∣∣ ≤ C |ξ|− 1
2 , if |ξ′| ≥ 1.01 |ξ3| .

A simple interpolation argument implies (2) for the operator obtained by con-
icly restricting T̂ (ξ) to either of the above regions. Indeed, since these bounds
imply that these two localized pieces gain a 1/2-derivative on L2, the interpo-
lation argument behind (1) yields estimates of the form (2) for each term with
the desired σ = 1/12.

It thus suffices to establish (2) for the operator S obtained by restricting the
multiplier T̂ (ξ) to the region A, defined by .98 ≤ |ξ′| / |ξ3| ≤ 1.02, via a smooth
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conic cutoff. Let Sλ denote the operator obtained by further restricting to the
region λ ≤ |ξ3| ≤ 2λ . The theorem is then a result of showing that, for some
number a > 0, for all λ > 2,

(4) ‖Sλ‖4,4 ≤ C
(
log λ

)a
λ− 1

6− τ
3 .

We restrict attention to ξ3 > 0 . Following [OS], we make a further decomposition
of Sλ by decomposing the conic set A into a union of conic sets Aj

λ as follows:

for j ≥ 1, set Aj
λ = {1 + 2j−1 λ− 2

3 ≤ |ξ′| / ξ3 ≤ 1 + 2j λ− 2
3 } ;

set A0
λ = {1 − λ− 2

3 ≤ |ξ′| / ξ3 ≤ 1 + λ− 2
3 } ;

for j ≤ −1, set Aj
λ = {1 − 2|j| λ− 2

3 ≤ |ξ′| / ξ3 ≤ 1 − 2|j|−1 λ− 2
3 } .

Introducing a suitable partition of unity on the Fourier transform side leads to
the decomposition

Sλ =
∑

j

Sj
λ.

Inequality (4) will follow from

(5) ‖Sj
λ‖4,4 ≤ C

(
log λ

)a
λ− 1

6− τ
3 2

|j|
2 (τ− 1

4 )

for all j and λ. At this point we make a further decomposition as in [M] of Aj
λ

into sets Ajm
λ supported in ξ′ sectors of angle δ

.= 2|j|/2λ− 1
3 . This leads to a

decomposition

Sj
λ =

δ−1∑
m=1

Sjm
λ .

In the notation of Theorem 1.0 of [M], we have

Ŝjm
λ (ξ) = ψ̂m

(
λ−1ξ′, λ−1(1 + δ2) ξ3

)
T̂ (ξ) .

The quantity N of that theorem is related to j and λ by N = δ−1 .

Lemma.
‖Sjm

λ ‖4,4 ≤ C λ− 1
4 δ

1
4 .

Proof. The proof is almost identical to that of the Lemma in [OS], and is ob-
tained by interpolating the following estimates

(6)
‖Sjm

λ ‖2,2 ≤C (λδ)−
1
2 ,

‖Sjm
λ ‖∞,∞ ≤C δ .
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The first estimate in (6) is the bound |Ŝj
λ(ξ)| ≤ C (λ δ)−

1
2 , which follows from

Van der Corput’s Lemma as shown in [OS]. For the second estimate, we consider
the term m corresponding to the ξ′ sector along the negative ξ2 axis. The
convolution kernel of Sjm

λ , written in the new coordinates(
y1, y2, y3

)
=

(
x1, x2 + αx3, αx3 − x2

)
, α = (1 + δ2)−1 ,

takes the form

K(y) = λ3 δ3

∫
φ(t) θ

(
λ δ (y1−cos t) , λ δ2 (y2−sin t−αt) , λ (y3+sin t−αt)

)
dt .

Here and below, θ denotes a Schwartz function with seminorms bounded in-
dependent of j, m, λ , and with θ̂(η) = 0 for η3 ≤ 1. We need to show that
‖K‖L1 ≤ C δ , and may thus replace φ(t) by φδ(t) which vanishes for |t| ≤ 10 δ .
We write θ = ∂3θ for some new θ to express K(y) as

λ2δ3

∫ (
φδ(t)

α − cos t

)′
θ(· · · ) dt + λ3δ4

∫
sin t φδ(t) θ(· · · )

α − cos t
dt

+ λ3δ5

∫
(α + cos t) φδ(t) θ(· · · )

α − cos t
dt .

The inequality α−cos t ≥ t2/10 for |t| ∈ [10 δ, π], together with |φ′
δ(t)| ≤ C δ−1 ≤

C λ1/3, yields the desired L1(dy) norm bounds on the first and third terms. The
desired bound for the second term follows by a further integration by parts of
the same kind. �

To conclude the proof of (5), we apply Bourgain’s estimate (132) of [B] to
obtain ∥∥∥ ∑

m

Sjm
λ f

∥∥∥
4
≤ C δτ− 1

4

∥∥∥( ∑
m

|Sjm
λ f |2

) 1
2

∥∥∥
4
.

The number of indices m is O(δ−1), so∑
m

∣∣Sjm
λ f(x)

∣∣2 ≤ C δ−
1
2

( ∑
m

∣∣Sjm
λ f(x)

∣∣4 ) 1
2
.

With f̂m representing the localisation of f̂ to an appropriate sector in ξ′, we
thus have ∥∥∥ ∑

m
Sjm

λ f
∥∥∥

4
≤ C δτ− 1

2

∥∥∥( ∑
m

|Sjm
λ f |4

) 1
4

∥∥∥
4

≤ C λ− 1
6− τ

3 2
|j|
2 (τ− 1

4 )
∥∥∥( ∑

m
|fm|4

) 1
4

∥∥∥
4

≤ C λ− 1
6− τ

3 2
|j|
2 (τ− 1

4 )
∥∥∥( ∑

m
|fm|2

) 1
2

∥∥∥
4
.

A result of Córdoba [C] gives∥∥∥( ∑
m

|fm|2
) 1

2
∥∥∥

4
≤ C | log δ |a ‖f‖4

for some positive a, which completes the proof of (5).
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