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ABC INEQUALITIES FOR SOME MODULI SPACES OF
LOG-GENERAL TYPE

Minhyong Kim

Let B be a smooth projective curve of genus γ over the complex numbers
and let f : A→B be a non-isotrivial semi-abelian scheme over B with projective
generic fiber of relative dimension g. Let U ⊂ B be the locus above which the
fibers are projective, and let S = B−U (a finite set). Thus f : AU→U is abelian,
and f : A→B is the connected component of its Neron model. Denote by g0

the dimension of the fixed part of A and s = |S|. We will adopt the convention
of using the same notation for the map f and several of its restrictions, unless
an explicit danger of confusion forces us to do otherwise. Let e : B→A be the
identity section, and let W := e∗ΩA/B . Various authors have dealt with upper
and lower bounds for the degree of W . Faltings [5], for example, shows that
deg(W ) ≤ g(3γ+s+1) while Moret-Bailly [7] shows that deg(W ) ≤ (g−g0)(γ−1)
in the case where A/B is smooth. Arakelov [1] had earlier given the bound
(g − g0)(γ − 1 + s/2) when A is the connected component of the Jacobian of
a family of stable curves. In this paper, we improve a bit on Faltings, in the
general case:

Theorem 1. Let f : A→B be a non-isotrivial semi-abelian scheme of relative
dimension g with projective generic fiber. Then

deg(W ) ≤ (g − g0)
2

(2γ − 2 + s),

where g0 is the dimension of the fixed part and s is the number of non-projective
fibers.

Note that the degree is zero in the isotrivial case, so that the inequality still
holds except for the obvious exception of γ = 0.

The method of proof is an easy extension of Moret-Bailly’s (and Szpiro’s [10],
which gives our general result for g = 1), and is likely to be known to experts.

The reason it might still be worth writing down in full is because of the
recently emerging connection with the ABC conjectures. That is, let Ag,n be
the moduli space of principally polarized abelian varieties of dimension g with
full level-n structure. For n ≥ 3, we have that Ag,n is of log-general type. In fact,
according to Mumford ([8], Proposition 3.4), Ag,n has a toroidal compactification
Ag,n ↪→ Ag,n, such that the compactification divisor D has normal crossings and
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if K is the canonical divisor of Ag,n, then K + D is the pull-back of an ample
line bundle on the Baily-Borel compactification A∗

g,n. The geometric version
of the ABC conjectures deals with maps from curves to varieties of log-general
type [2]. In our case, if P : B→Ag,n is a map whose image does not lie in D,
let S = P−1(D) (this is the inverse image as sets, without multiplicities) and
U = B − S. Then there is a family f : A→B of semi-abelian varieties such that
AU is the abelian family induced by P |U .(It also has a level structure which will
be unimportant for our purposes.) As in the beginning, let W = e∗ΩA/B . Then
(detW )(g+1) � P ∗(K + D) ([5], pp. 339-340). So as a result, we get

Corollary 1.

deg(P ∗(K + D)) ≤ g(g + 1)
2

(2γ − 2 + s).

This is an inequality of the sort conjectured by Buium for varieties of log
general type, only more precise. Vojta has also conjectured such inequalities at
the ’98 ABC workshop in Tucson, AZ.

For completeness, we outline how one gets the same kind of inequalities for
the moduli space of curves. That is, let Mg,n be the moduli space of curves of
genus g ≥ 1 with a level n ≥ 3 structure on its Jacobian. Then Mg,n is of log-
general type ([8], Proposition 4.3). Let Mg,n be the compactification of Mg,n

constructed by taking the normalization in Mg,n of the Deligne-Mumford moduli
space of stable curves. Finally, let Y →Mg,n be a smooth allowable modification
([8], p. 268), and D ⊂ Y be the inverse image of the compactification divisor
of Mg,n. Now, if P : B→Y is a map from a curve B whose image does not
lie in D, S = P−1D, and U = B − S, then there is a family of stable curves
f : C→B such that CU is the smooth family induced by P |U . Let ωC/B be the
relative dualizing sheaf. By Mumford ([8], proof of proposition 4.3), we have
that det(f∗(ωC/B))13 = P ∗(KY + 2D). So we get the following corollary of
Arakelov’s inequality mentioned above:

deg P ∗(KY + 2D) ≤ 13g

2
(2γ − 2 + s).

1. Proof of theorem

Let f : A→B, U , S, s be as in the previous section. We need to prepare
the situation a bit. First, let A0 be the fixed-part. Then we may replace A by
the connected component of the Neron model of AU/(A0)U , which is semi-stable
since A is, and use the fact that e∗(ΩA0/B) is trivial to reduce to the case where
A has no fixed-part (but the dimension is g − g0).

Next, note that when we make a base-change that is unramified outside S,
the quantities 2γ − 2 + s and deg(W ) just multiply by the degree of the base
change. (The first by the Hurwitz formula, and the second by the fact that
the formation of W = e∗(ΩA/B) commutes with base change.) Thus, making a
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base-change to the field generated by the three-torsion of A we may assume that
the A has a level three structure.

By Chai-Faltings [3], theorem VI.1.1, we have the existence of a proper smooth
variety X with a map g : X→B and an isomorphism XU � AU , such that
D = g−1(S) is a divisor with normal crossings and with the crucial property
that

g∗(ΩX/B(log D)) � W.

On the other hand, associated to the family f : AU→U we have the variation
of complex Hodge structures E0 := R1f∗(Ω·

XU /U ), which is (among other things)
a bundle with a connection

∇0 : E0→E0 ⊗ ΩU .

E0 also has the sub-bundle giving the Hodge filtration F0 ⊂ E0 which we know
to be canonically isomorphic to W |U . Denote by E the Deligne extension of E0

to a bundle on B with a log-connection

∇ : E→E ⊗ ΩB(S).

Then by Steenbrink [9], E has a sub-bundle F , the saturation of F0, which can
be identified with g∗(ΩX/B(log D)). Thus, we get an isomorphism W � F ⊂ E.
Hence, we need only bound the degree of F . Denote by G0 the quotient E0/F0

which therefore extends to the bundle G = E/F = R1g∗(OX). The (flat)
polarization < ·, · > makes the bundle with connection (E0,∇0) self-dual, and
F0 maximal isotropic, so that there is also an induced duality between F0 and
G0. We will denote the duality paring between F0 and G0 by the same brackets
as the polarization. We need the following

Lemma 1. The bundle E is also self-dual.

Proof. In fact, it is self-dual as a bundle with log-connection. To see this recall
that E is characterized by the fact that it has a log-connection ∇ which extends
the connection on E0 and such that the residue operators on the points of S
have eigenvalues in the interval [0, 1). Since the dual connection ∇v on the dual
bundle Ev is defined by ∇vφ(e) = dφ(e) − φ(∇e), we see that the eigenvalues
of the residues of ∇v are the negative of those associated to ∇. However, since
the abelian variety AU has semi-stable reduction, the monodromy operator is
unipotent, and thus, the eigenvalues of the residues are zero. Thus they are
also zero for ∇v. But this implies that (Ev,∇v) is also a Deligne extension for
((E0)v, (∇0)v) � (E0,∇0), so we have an isomorphism (E,∇) � (Ev,∇v).

From this lemma and the fact that a saturated subsheaf is determined by its
generic stalk, we get that F and G are also in duality.

On X we have the exact sequence of sheaves

0→g∗ΩB(S)→ΩX(log D)→ΩX/B(log D)→0
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from which we get the log Kodaira-Spencer map

ρ : F→G ⊗ ΩB(S).

As in [7], consider the exact sequences

0→ΩB(S)→g∗(ΩX(log D))→N→0

and
0→N→F→G ⊗ ΩB(S).

(Where N is defined by these sequences.)

Lemma 2. deg(N) = 0.

Proof. We will prove this by showing that N is preserved by the log-connection
of E. This together with the fact that the eigenvalues of the residues for the log-
connection are zero, will imply that detN has a regular connection, and hence,
is of degree zero.

It suffices to check that N |U ⊂ F0 ⊂ E0 is preserved by the connection, or
even just to show that it is generically preserved by the connection. For this
reason, we will be localizing on the base several times in the argument to follow,
without special mention. For a section α of ΩX , denote by [a] its image in ΩX/B .

Recall the usual computation of the Gauss-Manin connection [6] on the sub-
space F0 of E0 (We will do the computation on a section over U , the local sheaf
theoretic argument being exactly the same.): Let φ ∈ F0(U) so that it is an ele-
ment of ΩXU /U (XU ). There exists a covering {Ui} of XU such that φ is locally
liftable to φi ∈ ΩXU

. Let t be a local parameter on the base and v = d
dt . Then

∇vφ has two components, the F0 component is given locally by the formula
((∇vφ)0)i = [αi] ∈ ΩXU /U , where

dφi = αi ∧ dt ∈ Ω2
X ,

(From the fact that [dφ] = 0 in Ω2
XU /U , we get that dφi is of the form (·) ∧ dt,

and the [αi]’s glue together, although the αi may not, in general) while the G0

component is given by the 1-cocycle {φi(v) − φj(v)}. Now, when φ ∈ N , from
the first exact sequence defining N , there is a global (along the fibers) lifting φ′

of φ (after possibly shrinking U), and the G0 component is zero, so we have the
global element

dφ′ ∈ Ω2
X .

But we also have the contraction operator i(v) : Ω2
X→Ω1

X , so that we have an
element i(v)(dφ′) ∈ ΩXU

. Locally, if we write (dφ′)i = αi ∧ dt, we get that
i(v)(dφ′) = αi(v)dt − αi, and hence, [−i(v)(dφ′)] = ∇vφ, i.e., ∇vφ is globally
liftable. So ∇vφ ∈ N , as was to be shown.

Now we examine the map ρ : F→G ⊗ ΩB(S).
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Lemma 3. ρ factors through the dual of F/N :

ρ : F→(F/N)v ⊗ ΩB(S) ⊂ G ⊗ ΩB(S)

Proof. Given the duality between F and G, the dual of F/N is exactly the
annihilator in G of N ⊂ F . Since all the subsheaves in question are saturated,
we may check generically that the image of ρ annihilates N . But ρ relates to
the Gauss-Manin connection according to the composition:

ρ : F ⊂ E
∇→ E ⊗ ΩB(S)→G ⊗ ΩB(S).

Now, if s, t ∈ F0, we have < s, t >= 0 so for any local vector field v on U ,

< ∇vs, t > + < s,∇vt >= v < s, t >= 0.

Now, the polarization induces the perfect pairing between F0 and G0 (by the
isotropy of F0). So we have

< ρ(s), t > + < s, ρ(t) >= 0

for any s, t ∈ F0. Hence, if we assume s ∈ N , then ρ(s) = 0, so < s, ρ(t) >= 0
for all t ∈ F0, which is what we want.

From the lemma, we have an injection

F/N ↪→ (F/N)v ⊗ ΩB(S)

of vector bundles of the same rank. Taking top exterior powers gives us an
injection of line bundles, so

deg(F/N) ≤ deg(F/N)v + r(2γ − 2 + s),

where r is the rank of F/N , and hence,

deg(F/N) ≤ r

2
(2γ − 2 + s) ≤ (g − g0)

2
(2γ − 2 + s).

Since N has degree 0, we get

deg(W ) = deg(F ) ≤ (g − g0)
2

(2γ − 2 + s)

as was to be shown.
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