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MULTIPLE POLYLOGARITHMS, CYCLOTOMY AND
MODULAR COMPLEXES

A. B. Goncharov

1. Introduction

1. Multiple polylogarithms. We define them by the power series expansion:

Lin1,... ,nm(x1, . . . , xm) =
∑

0<k1<k2<...<km

xk1
1 xk2

2 . . . xkm
m

kn1
1 kn2

2 . . . knm
m

.(1)

Here w := n1 + . . . + nm is called the weight and m the depth.
These power series are convergent for |xi| < 1, and can be continued analyti-

cally via the iterated integral presentation given by theorem 2.1.
The power series (1) generalize both the classical polylogarithms Lin(x)

(m = 1), and multiple ζ-values (x1 = . . . = xm = 1) :

ζ(n1, . . . , nm) :=
∑

0<k1<k2<...<km

1
kn1
1 kn2

2 . . . knm
m

nm > 1.(2)

The multiple ζ-values were invented and studied by Euler [E] and then for-
gotten. They showed up again in such different subjects as quantum groups [Dr]
(the Drinfeld associator), Zagier’s studies [Z1-2], the Kontsevich integrals for
Vassiliev knot invariants, mixed Tate motives over Spec Z [G1-2], and, recently,
in computations in quantum field theory [B], [Kr].

The multiple polylogarithms were studied in [G1-4]. In this paper we in-
vestigate them at N -th roots of unity: xN

1 = . . . = xN
m = 1. Notice that

Li1(x) = − log(1 − x), so if ζN is a primitive N -th root of 1, then Li1(ζN ) is a
logarithm of a cyclotomic unit in Z[ζN , N−1]. In general the supply of numbers
we get coincides with the linear combinations of multiple Dirichlet L-values

L(χ1, . . . , χm;n1, . . . , nm) :=
∑

0<k1<k2<...<km

χ1(k1) . . . χm(km)
kn1
1 kn2

2 . . . knm
m

.(3)

They are periods of mixed Tate motives over the scheme SN := Spec Z[ζN ][ 1
N ]

(see s. 11 of [G2] and [G4]).
To study these numbers we introduce some tools from homological algebra (cy-

clotomic and dihedral Lie algebras, modular complex for GLm(Z)) and geometry
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(a realization of the modular complex in the symmetric space SLm(R)/SOm).
To motivate them we start from a conjecture.

2. Multiple polylogarithms at roots of unity and the cyclotomic Lie
algebras. Let Z≤w(N) be the Q-vector space spaned by the numbers

Lin1,... ,nm(ζα1
N , . . . , ζαm

N ) := (2πi)−wLin1,... ,nm(ζα1
N , . . . , ζαm

N ).(4)

Here we may take any branch of Lin1,... ,nm(x1, . . . , xm). Then Z(N) :=
∪Z≤w(N) is an algebra bifiltered by the weight and by the depth. For example:

Lim(x) · Lin(y) =
∑

k1,k2>0

xk1yk2

km
1 kn

2

= Lim,n(x, y) + Lim+n(xy) + Lin,m(y, x).

(5)

(To prove this split the sum over k1 < k2, k1 = k2 and k1 > k2).
Denote by UC• the universal enveloping algebra of a graded Lie algebra C•.

Let UC∨
• := ⊕n≥0(UC)∨n be its graded dual. It is a commutative Hopf algebra.

Conjecture 1.1. There exists a graded Lie algebra C•(N) over Q such that one
has an isomorphism

Z(N) = UC•(N)∨(6)

of filtered by the weight on the left and by the degree on the right algebras.
b) H1

(n)(C•(N)) = K2n−1(Z[ζN ][ 1
N ]) ⊗ Q.

c) C•(1) is free graded Lie algebra.

Here H(n) is the degree n part of H. Notice that H1
(n)(C•(N)) is dual to the

space of degree n generators of the Lie algebra C•(N).
A construction of the Lie algebra C•(N) using the Hodge theory will be

outlined in s. 3.2. It can be used to deduce conjecture 1.1 from some standard
(but extremely dificult!) conjectures in arithmetic algebraic geometry. The
simplest abelian quotient C1(N) of C•(N) is the group of cyclotomic units in
Z[ζN , N−1], tensored by Q. We call C•(N) the cyclotomic Lie algebra of level
N , and suggest that the ”higher cyclotomy theory” should study its properties.

Examples.

i) Let N = 1. Then by the Borel theorem the only nontrivial modulo
torsion K-groups are K4n+1(Z), which have rank 1 and correspond to
ζ(2n + 1) via the regulator map.

ii) N = 2: the generators should correspond to (2πi)−1 log 2, ζ(3), ζ(5), . . . .
iii) If N > 2, n > 1 one has dimK2n−1(Z[ζN , N−1]) ⊗ Q = ϕ(N)

2 and the
space of generators should correspond to the span over Q of Lin(ζα

N ).
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Remark. Let π
(l)
1 (P1\{0, 1,∞}) be the l-adic completion of the fundamental

group. One has canonical homomorphism

ϕl : Gal(Q/Q) −→ Outπ
(l)
1 (P1\{0, 1,∞}).(7)

It was studied by P. Deligne, Y. Ihara and others (see [Ih] and references there).
Conjecture 1.1 for N = 1 is closely related to some conjectures/questions of
P.Deligne [D] about the image of the map (7) and V. Drinfeld [Dr] about the
structure of the pronilpotent version of the Grothendieck-Teichmuller group.

The left hand side of (6) has an additional structure: the depth filtration. To
study it we proceed as follows.

3. The dihedral Lie coalgebra and modular complexes. Let Z•,•(N) be
associate graded quotient with respect to the weight and the depth filtrations of
the algebra Z(N). We reduce it further introducing the bigraded Q-space

Z•,•(N) :=
Z•,•(N)

(Z>0,>0(N))2
.

The multiple polylogarithms are multivalued functions, however it is easy to
show that the projection of (4) to Z•,•(N) does not depend on the branch we
choose. So Zw,m(N) is the quotient of the Q-space generated by the numbers
(4) of weight w and depth m modulo the subspace generated by the lower weight
and depth numbers, and also by the products of numbers (4) of total weight w.

Here is our strategy for investigation of dimQZw,m(N). Let µN be the group
of N -th roots of unity. In the section 3 a Lie coalgebra D•,•(µN ), called the
dihedral Lie coalgebra, is explicitely constructed. Namely, the generators of the
Q-vector space Dw,m(µN ) correspond to the projections of the numbers (4) to
Zw,m(N), and the defining relations reflect the known Q-linear relations between
these numbers. We prove that Zw,m(N) is a quotient of Dw,m(µN ) (theorem
7.1). A really new data is the cocommutator map δ : D•,•(µN ) −→ Λ2D•,•(µN ).
The dihedral Lie coalgebra is bigraded by the weight and the depth.

We want to understand the cohomology of the Lie coalgebra D•,•(µN ). Here
is the standard cochain complex computing the cohomology of D•,•(µN ):

D•,•(µN ) δ−→ Λ2D•,•(µN ) δ∧id−id∧δ−→ Λ3D•,•(µN ) −→ . . . .(8)

The first arrow is the cocommutator map, and the others obtained via the Leibniz
rule. This complex is bigraded by the weight and depth. Let (Λ∗D(µN ))w,m be
the subcomplex of the weight w and depth m. It is easy to prove that

Dw,1(µN ) = K2w−1(Z[ζN , N−1]) ⊗ Q ⊂ H1
(w)(D•,•(N)).(9)

We construct a certain length m−1 complex of GLm(Z)-modules M∗
(m), called

the rank m modular complex. For m = 2 it is identified with the chain complex
of the classical modular triangulation of the hyperbolic plane:



500 A. B. GONCHAROV

Let Vm be the standard m-dimensional representation of GLm. Denote by
Γ1(N ;m) the subgroup of GLm(Z) consisting of matrices whose last row is con-
gruent to (0, . . . , 0, 1) modulo N .

Theorem 1.2. a) There exists a surjective morphism of complexes

µ(N)∗w,m : Sw−mVm ⊗Γ1(N ;m) M∗
(m) −→ (Λ∗D(µN ))w,m

b) It is an isomorphism if N = 1, or if N is prime and w = m.

A special case of this theorem for m = 2, w = 2 was proved in [G3]. The case
N = 1, m = 2, w is arbitrary was considered in [G1] and in s. 4 of [G3].

We prove in section 6 that the modular complex of rank 3 is (essentially)
quasiisomorphic to the Voronoi complex of the symmetric space SL3(R)/SO3.
Using these results we can estimate from above dimZw,m(N) for m ≤ 3.

4. Applications to multiple ζ-values. Theorem 1.2 together with the rela-
tion between the modular and Voronoi complexes for GL2 and GL3 mentioned
above lead to the following result.

Theorem 1.3.

Hi
(w)(D•,2(1)) = Hi−1(GL2(Z), Sw−2V2) i = 1, 2(10)

Hi
(w)(D•,3(1)) = Hi(GL3(Z), Sw−3V3) i = 1, 2, 3(11)

This allows us to compute the Euler characterisitc of complexes (Λ∗D(1))w,m

for m = 2, 3. Then we find dimQDw,m(1) for m = 2, 3 by induction using as a
starting point (9), which boils down to

dimQDw,1(1) =
{

1 w : odd
0 w : even(12)

Theorem 1.4. a) If w is odd, then dimZw,2(1) = dimDw,2(1) = 0.
b) If w is even then dimZw,2(1) ≤ dimDw,2(1) = [w−2

6 ].

The part a) goes back to Euler, b) was discovered by Zagier [Z2].

Theorem 1.5. a) If w is even, then dimZw,3(1) = dimDw,3(1) = 0.
b) If w is odd then

dimZw,3(1) ≤ dimDw,3(1) = [
(w − 3)2 − 1

48
](13)
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Numerical calculations of multiple ζ’s by Zagier (considerebly extended by
Broadhurst in [B]) suggested that the estimate (13) is exact. Our results about
”motivic” multiple ζ’s allow to deduce this from standard conjectures. The
details will appear elsewhere.
Remark. The philosophy of mixed motives was the main driving force for us.
However constructions and proofs of this paper are ”elementary”, i.e. do not use
motives. The mixed motives/Hodge structures show up only in s. 3.2 to outline
the construction of the cyclotomic Lie algebra, but we do not use s. 3.2 in the
rest of the paper, so the reader may skip it.

2. Properties of multiple polylogarithms

1. Iterated integral presentation. Set∫ an+1

0

dt

a1 − t
◦ . . . ◦ dt

an − t
:=

∫
0≤t1≤...≤tn≤an+1

dt1
a1 − t1

∧ . . . ∧ dtn
an − tn

In1,... ,nm(a1 : . . . : am : am+1) :=∫ am+1

0

dt

a1 − t
◦ dt

t
◦ . . . ◦ dt

t︸ ︷︷ ︸
n1 times

◦ . . . ◦ dt

am − t
◦ dt

t
◦ . . . ◦ dt

t︸ ︷︷ ︸
nm times

The following theorem is the key to properties of multiple polylogarithms.

Theorem 2.1.

Lin1,... ,nm(x1, . . . , xm) = In1,... ,nm(1 : x1 : x1x2 : . . . : x1 . . . xm).

The proof is very easy: develope dt/(ai − t) into a geometric series and inte-
grate. If xi = 1 we get the Kontsevich formula.

2. Relations. . The double shuffle relations. Set

Li(x1, . . . , xm|t1, . . . , tm) :=
∑
ni≥1

Lin1,... ,nm(x1, . . . , xm)tn1−1
1 . . . tnm−1

m

I(a1 : . . . : am : am+1|t1, . . . , tm) :=∑
ni≥1

In1,... ,nm(a1 : . . . : am : am+1)tn1−1
1 . . . tnm−1

m

I∗(a1 : . . . : am : am+1|t1, . . . , tm) :=
I(a1 : . . . : am : am+1|t1, t1 + t2, . . . , t1 + . . . + tm)

Let Σk,n−k be the subset of permutations of n letters {1, . . . , n} consisting of
all shuffles of {1, . . . , k} and {k + 1, . . . , n}. Similar to (5) we see that

(14) Li(x1, . . . , xk|t1, . . . , tk) · Li(xk+1, . . . , xn|tk+1, . . . , tn) =∑
σ∈Σk,n−k

Li(xσ(1), . . . , xσ(n)|tσ(1), . . . , tσ(n)) + lower depth terms.
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Theorem 2.2.

(15) I∗(a1 : . . . : ak : 1|t1, . . . , tk) · I∗(ak+1 : . . . : an : 1|tk+1, . . . , tn) =∑
σ∈Σk,n−k

I∗(aσ(1), . . . , aσ(n) : 1|tσ(1), . . . , tσ(n)).

Proof. It is not hard to prove the following formula

I∗[a1 : . . . : am : 1|t1, . . . , tm] =
∫ 1

0

s−t1

a1 − s
ds ◦ . . . ◦ s−tm

am − s
ds.(16)

The theorem follows from this and the product formula for iterated integrals.
Here is the simplest case: I1(x)I1(y) = I1,1(x, y) + I1,1(y, x). Indeed,

∫ 1

0

dt

t − x
·
∫ 1

0

dt

t − y
=

∫ 1

0

dt

t − x
◦ dt

t − y
+

∫ 1

0

dt

t − y
◦ dt

t − x
.

For multiple ζ’s these are precisely the relations of Zagier, who conjectured
that they provide all the relations between the multiple ζ’s.

Distribution relations. From the power series expansion we immediately get

Proposition 2.3. If |xi| < 1 and l is a positive integer then

Li(x1, . . . , xm|t1, . . . , tm) =
∑

yl
i
=xi

Li(y1, . . . , ym|lt1, . . . , ltm).(17)

3. The dihedral Lie coalgebra of a commutative group

1. Definitions. Let G be a commutative group. We will define a bigraded
Lie coalgebra D•,•(G) = ⊕w≥m≥1Dw,m(G). Let us first define a graded abelian
group D̂•,m(G). The group D•,m(G) is its quotient.

Denote by Cm+1 the principal homogeneous space of the cyclic group Z/(m+
1)Z. Let Z[Cm+1] be the abelian group of Z-valued functions on Cm+1, and
Z[Cm+1]0 is its quotient by constants. Let Pol•(Z[Cm+1]0) be the algebra of
polynomial functions on Z[Cm+1]0 graded by the degree.

Let Dm is the dihedral group of symmetries of the (m + 1)-gon. Set

G
Cm+1
0 := {g = (g1, . . . , gm+1) ∈ Gm+1|g1 · . . . · gm+1 = 1}.(18)

We think about the elements of this group as of m + 1 elements of G with
product 1 located on an oriented circle. Then the group Dm acts on (18). Let
χm : Dm → {±1} be the character trivial on the cyclic subgroup and sending
the involution to (−1)m+1. Set

D̂•+m,m(G) :=
(
Z[GCm+1

0 ] ⊗Z Pol•(Z[Cm+1]0) ⊗Z χm

)
Dm

.
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Elements of the group D̂•,m(G) are presented by the generating functions

(19) {g0, g1, . . . , gm|t0 : . . . : tm} such that g0 · . . . · gm = 1 and
{g0, g1, . . . , gm|t0 : . . . : tm} = {g0, g1, . . . , gm|t + t0 : . . . : t + tm}.

They satisfy the dihedral symmetry relations:

{g0, . . . , gm−1, gm|t0 : t1 : . . . : tm} = {g1, . . . , gm, g0|t1 : . . . : tm : t0}
{g0, . . . , gm|t0 : . . . : tm} = (−1)m+1{gm, . . . , g0|tm : . . . : t0}.

We picture the elements of D̂•,m(G) as m + 1 pairs (g0, t0), . . . , (gm, tm) lo-
cated cyclically on an oriented circle:

g

g

gg

t

t

t

t

t .

.

.
.

.
0

0

1

2

2

3

4

3

4

g
1

One has D̂•,m(G) = ⊕w≥mD̂w,m(G). We define elements

{g1, . . . , gm}n1,... ,nm ∈ D̂w,m(G), w = n1 + . . . + nm, ni ≥ 1(20)

generating D̂w,m(G) as the coefficients of the generating function:

{g0, . . . , gm|t0 : . . . . : tm} :=∑
ni>0

{g0, . . . , gm}n1,... ,nm(t1 − t0)n1−1 . . . (tm − t0)nm−1.

Now one can say that D̂w,m(G) is generated by the elements (20) satisfying the
relations imposed by the dyhedral symmetry.

We call (19) extended nonhomogeneous dihedral words in G. One can also
parametrize the generators using the extended homogeneous dihedral words :

{g0 : g1 : . . . : gm|t0, . . . , tm}, where t0 + . . . + tm = 0,

{g·g0 : . . . : g·gm|t0, . . . , tm} = {g0 : . . . : gm|t0, . . . , tm} for any g ∈ G,

and the dihedral symmetry holds. Namely, the duality between the homogeneous
and nonhomogeneous extended dihedral words is given by

{g0 : g1 : . . . : gm|t0, . . . , tm} �−→
{g−1

0 g1, g
−1
1 g2, . . . , g−1

m g0|t0 : t0 + t1 : . . . : t0 + . . . + tm},
{g0, g1, . . . , gm|t0 : . . . : tm} �−→

{g0 : g0g1 : . . . : g0 . . . gm|t1 − t0, t2 − t1, . . . , t0 − tm}.
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Definition 3.1. D•,m(G) is the quotient of D̂•,m(G) by the following relations:
a) The double shuffle relations (k + l = m, k ≥ 1, l ≥ 1):

∑
σ∈Σk,l

{g0 : gσ(1) : . . . : gσ(m)|t0, tσ(1), . . . , tσ(m)} = 0,

∑
σ∈Σk,l

{x0, xσ(1), . . . , xσ(m)|t0 : tσ(1) : . . . : tσ(m)} = 0

b) The distribution relations (l ∈ Z and |l| divides |G| if the group is finite.)

{xl
0, x

l
1, . . . , xl

m|t0 : t1 : . . . : tm} −
∑

yl
i
=xl

i

{y0, y1, . . . , ym|l · t0 : . . . : l · tm} = 0

except the relation {1}1 =
∑

yl=1{y}1, which is not supposed to hold.

Example. The distribution relations for l = −1 are

{x−1
0 , x−1

1 , . . . , x−1
m |t0 : t1 : . . . : tm} = {x0, x1, . . . , xm| − t0 : . . . : −tm}(21)

Remark. The dihedral symmetry and (21) follow from the double shuffle rela-
tions, just copy the proof of theorem 4.1 below.

Let us define a cobracket δ : D̂•,•(G) −→ D̂•,•(G) ∧ D̂•,•(G) by setting

δ{g0, . . . , gm|t0 : . . . : tm} :=
m−1∑
i=1

m∑
j=0

{gj+i+1, . . . , gj+m, yij |tj+i+1 : . . . : tj+m+1} ∧

{xij , gj+1, . . . , gj+i|tj : . . . : tj+i}
where indices are modulo m+1 and xijgj+1 . . . gj+i = 1, yijgj+i+1 . . . gj+m = 1.
Each term of the formula corresponds to the following procedure: we choose
an arc on the circle between the two neighboring distinguished points, and in
addition choose a distinguished point different from the ends of the arc. Then
we cut the circle in the choosen arc and in the choosen point, make two naturally
oriented circles out of it, and then make the extended dihedral word on each of
the circles out of the initial word in a natural way.

^

.

.

..

.

.

.

.

.
.

.
. .

. .

g g

g

g

g
g

t

t

t

t

t

t
t

t

t

t

g

g

g g

gg

00

1

1 2

2

33

4

4

5

5

6

6

t

t

t

t

t2

2

3
3

4

45

5

6
6

0
1

y

g

x

0

1
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There is a similar formula for the homogeneous dihedral words, just exchange
g’s and t’s on the circle. For example

δ{g0 : g1 : g2|t0, t1, t2} = −{g2 : g0|t0,−t0} ∧ {g1 : g2|t1,−t1}−

−{g0 : g1|t1,−t1} ∧ {g2 : g0|t2,−t2} − {g1 : g2|t2,−t2} ∧ {g0 : g1|t0,−t0}.

Theorem 3.2. δ provides the structure of bigraded Lie coalgebra on both
D̂•,•(G) and D•,•(G).

3.1. 2. The cyclotomic Lie algebra and mixed Tate motives over SN .
Recall that a mixed Hodge structure is called a Hodge-Tate structure if all the
Hodge numbers hp,q with p �= q are zero. The category of mixed Q-Hodge-
Tate structures is canonically equivalent to the category of finite dimensional
comodules over a certain graded pro-Lie coalgebra LHT

• over Q (see [BGSV],
[G4]). One can attach to the iterated integral related to Lin1,... ,nm

(x1, . . . , xm)
by theorem 2.1 above an element LiHn1,... ,nm

(x1, . . . , xm) ∈ LHT
w , the motivic

multiple polylogarithm. See s.9, 11 of [G2] (or [G1]) where LHT
• and a w-framed

mixed Hodge-Tate structure LiHn1,... ,nm
(x1, . . . , xm) were defined. The framed

mixed Hodge structures corresponding to the divergent numbers (4) are defined
as the limiting Hodge structures, (compare with [G1] and s.7). For instance
LiH1 (1) = 0.

Definition 3.3. Cw(N) is the Q-subspace of LHT
w generated by the motivic mul-

tiple polylogarithms at N -th roots of unity of weight w.

Theorem 3.4. C•(N) := ⊕w≥1Cw(N) is a Lie subcoalgebra in LHT
• .

We define the cyclotomic Lie algebra C•(N) as the (graded) dual of C•(N).
The hypothetical abelian category of mixed Tate motives over the scheme SN

is supposed to be canonically equivalent to the category of finite dimensional
modules over a graded Lie algebra L(SN )•, called the motivic Lie algebra of
that scheme, (see [G4] for details). L(SN )• is isomorphic to a free graded Lie
algebra generated by the Q-spaces K2n−1(SN ) ⊗ Q in degree n, n ≥ 1.

One can prove that the Lie algebra C•(N) has the same generators, so it is
a quotient of L(SN )•. However in general it is smaller then L(SN )• since the
main result of [G3] implies that C•(N) is not free when N is sufficiently big. For
instance, if N = p is a prime then

H2
(2)(C•(p), Q) = H1(X1(p), Q)+ ⊕ Z[ζp]∗ ⊗ Q

where X1(p) is the modular curve and + means the coinvariants of the complex
conjugation. So it is non zero if p > 3.

The relation between the dihedral and cyclotomic Lie algberas. Let C•,•(N)
be the associate graded with respect to the depth filtration on the Lie coalgebra
C•(N).
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Theorem 3.5. Assume that xN
i = 1. Then the map

{x1, . . . , xm}n1,... ,nm �−→ LiHn1,... ,nm
(x1, . . . , xm)

provides a surjective morphism of bigraded Lie coalgebras D•,•(µN ) → C•,•(N)

The subspace D1,1(1) is generated by {1}1. Notice that LiH1 (1) = 0.

Conjecture 3.6. D•,•(1)/D1,1(1) = C•,•(1).

But already C1,1(N) is smaller then D1,1(N) if N is not prime ( take N = 25).
Let (l, N) = 1. One has canonical homomorphism

ϕl
N : Gal(Q/Q) −→ Outπ

(l)
1 (P1\{0, {ζα

N},∞}).(22)

The motivic philosophy suggests that the Lie algebra of the Zariski closure of
the image of ϕl

N is isomorphic to the Lie algebra C•(N)∨ ⊗Q Ql.

4. The modular complex

Let Lm be a lattice of rank m. The rank m modular complex is a complex of
left GLm(Z)-modules in degrees [1, m], denoted M•

(m)(Lm) or simply M•
(m):

M1
(m)

∂−→ M2
(m)

∂−→ . . .
∂−→ Mm

(m)

1. The groups M l
(m). Let X be a set and Z[[X]] be the abelian group of infinite

Z-linear combinations
∑

nx{x} of the generators {x}, where x ∈ X. The set
Pm of basises (v1, . . . , vm) of Lm is a principal homogeneous space of GLm(Z).
Then M l

(m) = Z[[Pm]]/Rl
(m). The ”relations” Rl

(m) are defined below.
By definition the generators of the group M1

(m) are

[v1, . . . , vm], where (v1, . . . , vm) is a basis of Lm

We will use other two notation for them:

< v0, . . . , vm >:= [v1, . . . , vm] where v0 + . . . + vm = 0, and

[v1 : . . . : vm] := [v2 − v1, v3 − v2, . . . , vm − vm−1,−vm]

Notice that if v1, . . . , vm is a basis of Lm and v0 + . . . + vm = 0, then omitting
any vector of v0, . . . , vm we also get a basis.

The relations are given by the double shuffle relations: for any 1 ≤ k ≤ m− 1

s(v1, . . . , vk|vk+1, . . . , vm) :=
∑

σ∈Σk,m−k

[vσ(1), . . . , vσ(m)] = 0(23)

s(v1 : . . . : vk|vk+1 : . . . : vm) :=
∑

σ∈Σk,m−k

[vσ(1) : . . . : vσ(m)] = 0(24)



POLYLOGARITHMS, CYCLOTOMY AND MODULAR COMPLEXES 507

Theorem 4.1. The double shuffle relations imply the following dihedral sym-
metry relations: [v1, . . . , vm] = [−v1, . . . ,−vm], and

< v0, . . . , vm >=< v1, . . . , vm, v0 >, < v0, . . . , vm >= (−1)m+1 < vm, . . . , v0 >

Proof. Starting from the shuffle relation s(v1|v2 : . . . : vm):

0 = [v1 : v1 + v2 : . . . : v1 + . . . + vm] + . . . + [v2 : v2 + v3 : . . . : v1 + . . . + vm]

we rewrite it as [v2, . . . , vm, v0] + s(v1|v3, . . . , vm, v0) − [v3, . . . , vm, v0, v1] = 0,
getting the cyclic symmetry for the generators [v1, . . . , vm]. It is easy see that

m∑
k=0

(−1)ks(vk : vk−1 : . . . : v1|vk+1 : . . . : vm) = 0

which means that [v1 : v2 : . . . : vm−1 : vm] = (−1)m+1[vm : vm−1 : . . . : v2 :
v1]. A similar result is proved for the [v1, . . . , vm] generators. Using this we get

[−v1,−v2, . . . ,−vm] = [v1 + . . . + vm : . . . : vm−1 + vm : vm] =

(−1)m+1[vm : vm−1 + vm : . . . : v1 + . . . + vm] =

(−1)m+1[vm−1, . . . , v1, v0] = [v0, . . . , vm−1].

So we proved the dihedral symmetry for the generators [v1, . . . , vm], and thus
for the generators [v1 : . . . : vm].

The generators of the group M l
(m) are the symbols

[v1, . . . , vm1 ] ∧ . . . ∧ [vml−1+1, . . . , vml
](25)

where m = k1 + . . . + kl, mi := k1 + . . . + ki, (v1, . . . , vm) is a basis of Lm,
each of the blocks [Ai] := [vmi+1, . . . , vmi+1 ] satisfy the double shuffle relations,
and the blocks [Ai] anticommute:

. . . ∧ [Ai] ∧ [Ai+1] ∧ . . . = − . . . ∧ [Ai+1] ∧ [Ai] ∧ . . .

2. The differential ∂. We define a differential ∂ : M1
(m) −→ M2

(m) by

∂ : < v1, . . . , vm+1 > �−→ −Cyclem+1

(m−1∑
k=1

[v1, . . . , vk] ∧ [vk+1, . . . , vm]
)

where Cyclem+1

(
f(v1, . . . , vm)

)
:=

∑m+1
i=1 f(vi, . . . , vi+m), the indices are

modulo m + 1. Then we extend ∂ to the complex M•
(m) using the Leibniz rule:

∂([A1] ∧ [A2] ∧ . . . ∧ [An]) :=
n∑

i=1

(−1)i[A1] ∧ . . . ∧ ∂[Ai] ∧ . . . [An]

Theorem 4.2. The differential ∂ is a well defined homomorphism of abelian
groups. One has ∂2 = 0.
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Remark. The modular complex is not the standard cochain complex of any
graded Lie coalgebra.

3. Modular complexes for GL2 and GL3. Here is explicit description of the
modular complexes M•

(m) for m = 1, 2, 3.
1. m = 1. Then [v] = [−v], and M1

(1) = Z.

2. m = 2. Then the modular complex is M1
(2)

∂−→ M2
(2). The group M1

(2) is
generated by < v0, v1, v2 > where v0 + v1 + v2 = 0 and (v1, v2) is a basis in L2.
The differential is:

∂ :< v0, v1, v2 > �−→ −[v1] ∧ [v2] − [v2] ∧ [v0] − [v0] ∧ [v1].(26)

3. m = 3. The complex looks as follows: M1
(3)

∂−→ M2
(3)

∂−→ M3
(3). The

differentials are

∂ : < v0, v1, v2, v3 > �−→
− [v1, v2] ∧ [v3] − [v2, v3] ∧ [v0] − [v3, v0] ∧ [v1] − [v0, v1] ∧ [v2]
− [v0] ∧ [v1, v2] − [v1] ∧ [v2, v3] − [v2] ∧ [v3, v0] − [v3] ∧ [v0, v1]

∂ : [v1, v2]∧ [v3] �−→ −
(
[v1]∧ [v2]+ [v2]∧ [−v1−v2]+ [−v1−v2]∧ [v1]

)
∧ [v3].

4. Modular complexes and modular cohomology. We define the modular
complex MC∗(Γ, V ) of a subgroup Γ of GLm(Z) with coefficients in a right
GLm-module V as follows:

MC∗(Γ, V ) := V ⊗Γ M∗
(m).

Its cohomology are called the modular cohomology MH∗(Γ, V ) of Γ with coef-
ficients in V . If E is the one element group, then MC∗(E, Z) = M∗

(m).
The group GLm(Z) acts from the right on Z[Γ\GLm(Z)], and thus on

Z[Γ\GLm(Z)] ⊗Z V . It is easy to see (Shapiro’s lemma) that one has

MC∗(Γ, V ) =
(
Z[Γ\GLm(Z)] ⊗Z V

)
⊗GLm(Z) M∗

(m).(27)

5. A map from the modular complex for Γ1(N ;m) with coefficients in
Z[t1, . . . , tm] to the cochain complex of the dihedral Lie coalgebra of
µN . One has

(28) Γ1(N ;m)\GLm(Z) = {(α1, . . . , αm)|
αi ∈ Z/NZ, g. c. d.(α1, . . . , αm, N) = 1}.

Indeed, the group GLm(Z) acts from the right on (Z/NZ)m and Γ1(N ;m) is
the stabilizer of the element (0, . . . , 0, 1). The GLm(Z)-orbit of this element is
the right hand side of (28).



POLYLOGARITHMS, CYCLOTOMY AND MODULAR COMPLEXES 509

Consider the right GLm-module structure on Z[t1, . . . , tm] given by ti · g :=∑m
j=1(g

−1)ijtj . We will construct a canonical morphism of complexes

µ(N)∗•,m : MC∗(Γ1(N ;m), Z[t1, . . . , tm]) −→ Λ∗
(
D•,•(µN )

)
depth = m

.

where the left hand side is graded by (degree of a polynomial in ti) +m, and the
right hand side by the weight.

Let Sk[t1, . . . , tm] be the abelian group of degree k polynomials in t1, . . . , tm
with integer coefficients. We will use (27). Let us define first maps

µ1
w,m : MC1(Γ1(N ;m), Sw−m[t1, . . . , tm]) −→ Dm,w(µN ).

Choose a basis (v1, . . . , vm) in Vm. Let α0 + α1 + . . . + αm = 0. Set

µ(N)1•,m :
∑
ni>0

(α1, . . . , αm) ⊗ tn1−1
1 . . . tnm−1

m ⊗ [v1, . . . , vm] �−→

{ζα0
N , ζα1

N , . . . , ζαm

N |0 : t1 : . . . : tm} :=∑
ni>0

{ζα0
N , ζα1

N , . . . , ζαm

N }n1,... ,nm
tn1−1
1 . . . tnm−1

m .

Lemma 4.3. The map µ1
w,m ⊗ Q is a surjective homomorphism.

Proof. It is well defined thanks to the definitions of the modular complex and
the dihedral Lie coalgebra. It is surjective because of the distribution relations.

Define a map

µ(N)l
•,m : MCl(Γ1(N ;m), Z[t1, . . . , tm]) −→ Dm,•(µN )

as follows. Choose a primitive N -th root of unity ζN . Then

µ(N)l
w,m :

∑
ni>0

(α1, . . . , αm) ⊗ tn1−1
1 . . . tnm−1

m ⊗ [v1, . . . , vn1 ] ∧ . . . ∧

[vnl−1+1, . . . , vnl
] �−→ {ζβ1

N , ζα1
N , . . . , ζ

αn1
N |0 : t1 : . . . : tn1} ∧ . . . ∧

{ζβl

N , ζ
αnl−1+1

N , . . . , ζ
αnl

N |0 : tnl−1+1 : . . . : tnl
}

where by definition βi + αni−1+1 + . . . + αni = 0 for i = 1, . . . , l.

Proof of theorem 1.2. By the very definitions the map µ(N)∗•,• is a well defined
morphism of complexes. It is surjective thanks to lemma 4.3. If N = 1 we
have the distribution relations only for l = −1, and they follow from the double
shuffle relations by theorem 4.1. So the map µ(1)∗•,• is an isomorphism.

If N is a prime and w = m > 1 there is one additional distribution rela-
tion, {1, . . . , 1}1,... ,,1 =

∑
xp

i
=1{x1, . . . , xm}1,... ,,1. But the shuffle relations give∑

σ∈Sm
{xσ(1), . . . , xσ(m)}1,... ,1 = 0, which imply the distribution relation.
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5. The Voronoi complex

1. Voronoi’s cell decomposition of SLn(R)/SOn. Let Q(Vm) be the space
of quadratic forms in an m-dimensional vector space Vm over R. Denote by
P(Vm) (resp. P(Vm)) the cone of positive definite (resp. non negative definite)
quadratic forms in Vm. Then

Hm := SLm(R)/SO(m) = P(Vm)/R∗
+

and P(Vm)/R∗
+ is its compactification. For example H2 is the hyperbolic plane.

Any vector f ∈ V ∗
m defines a degenerate non negatively definite quadratic

form ϕ(f) := (f, x)2. Choose a lattice Lm ⊂ V ∗
m. Let GL(Lm) ⊂ GL(Vm) be the

subgroup preserving the lattice Lm. Take the convex hull C(Lm) of the vectors
ϕ(l) in the cone P(Vm) when l runs through all non zero primitive vectors of the
lattice Lm. It is of codimension 1 in Q(Vm) and has a structure of an infinite
polyhedra. Its faces are certain convex polyhedras with vertices ϕ(l1), . . . , ϕ(ln),
li ∈ Lm. Projecting it onto P(Vm)/R∗

+ we get a GL(Lm)-invariant polyhedral
decomposition of Hm called Voronoi’s cell decomposition. Set

ϕ(l1, . . . , ln) := {λ1 · ϕ(l1) + . . . + λn · ϕ(ln)}/R∗, λi ≥ 0, λ1 + . . . + λn = 1.

The cells of the projection of C(Lm) are polyhedras ϕ(l1, . . . , ln) for certain
vectors l1, . . . , ln ∈ Lm. They satisfy the condition rk < l1, . . . , ln >= m.

The non zero vectors of the lattice Lm minimizing the values of a form F on V ∗
m

on Lm\0 are called the minimal vectors of F . A quadratic form F in V ∗
m is called

perfect if the number of minimal vectors of F is at least m(m+1)
2 = dimQ(V ∗

m).
Let s be a codimension 1 face of C(Lm). Let h(s) be the codimension 1

subspace in Q(Vm) parallel to the face s.

Voronoi’s lemma. F ∈ Q(V ∗
m) is orthogonal to the subspace h(s) if and only if

F is a perfect quadratic form. In this case {±l1, . . . ,±ln} is the set of minimal
vectors for F .

Proof. One has (F, ϕ(l)) = F (l). Let (F, x) = c be the equation of the hyperplane
h(s). Since C(Lm) is a convex hull it is located in just one of the subspaces
(F, x) < c or (F, x) > c. Since (F, ϕ(l)) = F (l) could be arbitrary big, the
domain {x|(F, x) < c} does not intersect C(Lm). Further, (F, ϕ(l)) = c for any
vertex ϕ(l) of the face ϕ, so such l’s are minimal vectors for F . Since the face
ϕ is of codimension 1, the number of its vertices is at least dimQ(Vm). So the
form F is perfect. The lemma is proved.

Let v1, . . . , vm+1 vectors of Lm such that v1 + . . . + vm+1 = 0 and v1, . . . , vm

is a basis of L. Set

vi,j := vi + vi+1 + . . . + vj−1 + vj , 1 ≤ i, j ≤ m + 1, i �= j − 1(29)

and indices are modulo m+1. The configuration of vectors vi,j in (29) is linearly
equivalent to the configuration of the roots of the root system Am. See fig. 4
for the configuration of points in P 2 corresponding to the root system A2.
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The convex hull of ϕ(vi,j) is a Voronoi cell, called the cell of type Am, and
the correseponding perfect form is the quadratic form of the root system Am

with the the set of mimimal vectors given by the roots.

Voronoi’s theorem. [V], [M] For m = 2, 3 any cell of top dimension in the
Voronoi decomposition of Hm is GLm(Lm)-equivalent to a cell of type Am.

2. The Voronoi complex. Let

(V (m)
• , d) = (V•(Lm), d) := V

(m)
m(m+1)

2 −1

d−→ V
(m)
m(m+1)

2 −2

d−→ . . .
d−→ V

(m)
m−1

be the complex of (infinite) chains with closed supports associated with the
Voronoi decomposition of Hm. We call it the Voronoi complex of the lattice
Lm. An isomorphism between lattices lifts to an isomorphism between the cor-
responding Voronoi complexes, justifying name the Voronoi complex for GLm.

6. Relating the modular and Voronoi complexes for GL2 and GL3

The modular complex M•
(m) is a cohomological complex placed in degrees

[1, m + 1]. Let us cook up out of him a homological complex sitting in degrees
[2m, m] by setting M

(m)
• := M2m+1−•

(m) .

1. An isomorphism between the modular and Voronoi complexes for
GL2. The Voronoi complex for GL2 looks as follows: V

(2)
• := V

(2)
2

d−→ V
(2)
1 .

It is the chain complex of the classical modular triangulation of the hyperbolic
plane, see the figure on page 2

Define a map of GL2(Z)-modules ψ(2) : M
(2)
• −→ V

(2)
• as follows. Let v1, v2

be a basis of L2, v1 + v2 + v3 = 0. Set

[v1, v2] �−→ ϕ(v1, v2, v3), [v1] ∧ [v2] �−→ ϕ(v1, v2).

Theorem 6.1. a) The map ψ(2) is an isomorphism of complexes M
(2)
• −→ V

(2)
• .

b) Let Γ be a subgroup of GL2(Z). Then for any GL2-module V there are
canonical isomorphisms HM i

(2)(Γ, V ) ⊗ Q = Hi−1(Γ, V ) ⊗ Q.

Proof. a) When (v1, v2) run through all basises of the lattice L2, the triangles
ϕ(v1, v2, v3) where v1 +v2 +v3 = 0 are cells of type A2, and so by Voronoi’s the-
orem produce all the 2-cells of Voronoi’s complex for GL2. Since ψ(2) commutes
with the differentials, we obviously get an isomorphism of complexes.

b) Voronoi’s complex V
(2)
• is a resolution of the trivial GL2(Z)-module Z[2].

This resolution is free over a certain finite index subgroup Γ ⊂ GL2(Z).
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2. A quasiisomorphism between the modular and truncated Voronoi
complexes for GL3. The Voronoi complex for GL3 looks as follows:

(V (3)
• , d) := V

(3)
5

d−→ V
(3)
4

d−→ V
(3)
3

d−→ V
(3)
2

We will suppose that v1, v2, v3 is a basis in L3 and

v1 + v2 + v3 + v4 = 0, v12 := v1 + v2, v23 := v2 + v3, v13 := v1 + v3, . . .

By Voronoi’s theorem the GL3(Z)-orbits of the 5-symplex ϕ(v1, v2, v3,
v4, v12, v23) and its faces provide all cells of the Voronoi decomposition for GL3.

Define a map ψ(3) : M
(3)
• −→ V 3

• /dV
(3)
5 as follows:

[v1] ∧ [v2] ∧ [v3] �−→ ϕ(v1, v2, v3)

[v1, v2] ∧ [v3] �−→ ϕ(v1, v2,−v1 − v2, v3),

[v1, v2, v3] �−→ ϕ(v1, v2, v3, v4, v12) − ϕ(v1, v2, v3, v4, v23).(30)

Theorem 6.2. a) The map ψ(3) provides an injective morphism of complexes
of GL3(Z)-modules M

(3)
• −→ V

(3)
• /dV

(3)
5 . It is a quasiisomorphisms.

b) Let Γ be a subgroup of GL3(Z). Then for any GL3-module V there are
canonical isomorphisms HM i

(3)(Γ, V ) ⊗ Q = Hi(Γ, V ) ⊗ Q, i ≥ 1.

Proof. b) => a). It is similar to the proof of theorem 6.1 a).
a) Let us show that ψ(3) is a well defined morphism of complexes. The map

ψ(3) sends the first shuffle relation to zero already in the group V
(3)
4 :

ψ(3) : s(v1|v2, v3) =
< v1, v2, v3, v4 > + < v2, v1, v3, v4 > + < v2, v3, v1, v4 > �−→

ϕ(v1, v2, v3, v4, v12) − ϕ(v1, v2, v3, v4, v23) + ϕ(v2, v1, v3, v4, v12) −
− ϕ(v2, v1, v3, v4, v13) + ϕ(v2, v3, v1, v4, v23) − ϕ(v2, v3, v1, v4, v13) = 0.

The second shuffle relation looks as follows:

s(u1|u2 : u3) := [u1 : u2 : u3] + [u2 : u1 : u3] + [u2 : u3 : u1] =
[u2 − u1, u3 − u2,−u3] + [u1 − u2, u3 − u1,−u3] + [u3 − u2, u1 − u3,−u1].

Changing the variables v1 := u2 − u1, v2 := u3 − u2, v3 := −u3 we get

< v1, v2, v3, v4 > + < −v1, v12, v3, v41 > + < v2,−v12,−v4, v41 > .

The maps ψ(3) sends it to the boundary of Voronoi’s 5-simplex ϕ(v1, v2, v3,
v4, v12, v23):

ϕ(v1, v2, v3, v4, v12) − ϕ(v1, v2, v3, v4, v23) + ϕ(v1, v12, v3, v23, v2) −
− ϕ(v1, v12, v3, v23, v4) + ϕ(v2, v12, v4, v23, v1) − ϕ(v2, v12, v4, v23, v3) =

dϕ(v1, v2, v3, v4, v12, v23).
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The other components of the map ψ(3) are obviously group homomorphisms.
The map ψ(3) respects the differentials, and it is clearly injective. It is an
isomorphism in all the degrees except 3 and 4. One has

Coker(ψ(3)) =
V

(3)
4

ψ(3)(M (3)
4 )

∂−→ V
(3)
3

ψ(3)(M (3)
3 )

.(31)

Denote by {v1, v2, v3, v4} the set of all unordered 4-tuple of vectors
(v1, v2, v3, v4) in L3 such that v1 + v2 + v3 + v4 = 0 and (v1, v2, v3) is a ba-
sis of L3.

Proposition 6.3. One has canonical isomorphisms

V
(3)
4

ψ(3)(M (3)
4 )

= Z[[{v1, v2, v3, v4}]] =
V

(3)
3

ψ(3)(M (3)
3 )

.(32)

It transforms the differential in (31) to the identity map on Z[[{v1, v2, v3, v4}]].
Therefore the complex Coker(ψ(3)) is acyclic.

Proof. The following observations about the Voronoi cell decomposition are easy
to see from figure 4.

.
. .

.
.

v

v
v

v v
1

2
3

4

v
12

14

figure 4

.

1) A 3-dimensional cell of Voronoi’s decomposition is GL3(Z)-equivalent to
one of the following two: a 3-cell ϕ(v1, v2,−v12, v3), called special 3-cell, or a
3-cell ϕ(v1, v2, v3, v4), called generic 3-cell. So generic 3-cells are parametrized
by the set {v1, v2, v3, v4}.

2) A 5-simplex containing generic 3-cell ϕ(v1, v2, v3, v4) is determined by the
dihedral order of the vectors v1, v2, v3, v4. So a given generic 3-cell is contained
in three 5-simplices. For the 3-cell ϕ(v1, v2, v3, v4) these are

ϕ(v1, v2, v3, v4, v12, v23), ϕ(v2, v1, v3, v4, v21, v13), ϕ(v2, v3, v1, v4, v23, v31).

3) The elements (30) are in bijective correspondence with the pairs
{generic 3-cell, a 5-cell containing it}. The right hand side of (30) is the sum
of the 4-cells containing a given generic 3-cell and contained in a given 5-cell.

The first shuffle relation means that the sum of the elements of type (30)
corresponding to 5-cells containing a given generic 3-cell is zero.
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4) A given 5-simplex has only three generic 3-cells. For the 5-simplex
ϕ(v1, v2, v3, v4, v12, v23) they are

ϕ(v1, v2, v3, v4), ϕ(v12, v4, v23,−v2), ϕ(v12, v3,−v23,−v1).

The sum of the elements (30) corresponding to generic 3-cells of a given 5-simplex
is the second shuffle relation. It is the boundary of that 5-simplex.

The observation 1) implies the second isomorphism in (32). The observations
2) and 3) lead to the first isomorphism in (32). It is easy to check that the
differential is the identity map. The proposition is proved.

7. Applications to multiple ζ-values

1. Regularization and the map Dw,m(N) −→ Zw,m(N). The iterated
integral In1,... ,nm(a1 : . . . : am : 1) is divergent if and only if nm = 1, am = 1. The
power series Lin1,... ,nm(x1, . . . , xm) are divergent if and only if nm = 1, xm = 1.

Theorem 7.1. a) Let |xi| ≤ 1. Then both the power series

Lin1,... ,nl,1,... ,1(x1, . . . , xl, 1 − ε, . . . , 1 − ε)(33)

and the power series Lin1,... ,nl,1,... ,1(x1, . . . , xl, 1, . . . , 1, 1 − ε) corresponding to

In1,... ,nl,1,... ,1(a1 : . . . : al : 1 : . . . : 1 : 1 − ε)(34)

admit asymptotic expansions which are polynonials in log ε. Their coefficients
are explicitely computable sums of multiple polylogarithms.

b) The constant terms of these expansions differ by lower depth multiple poly-
logarithms, and the other terms are of lower depth. In particular if xN

i = 1 they
define the same element Reg Lin1,... ,nm

(x1, . . . , xm) ∈ Z•,•(N).
c) The map {x1, . . . , xm}n1,... ,nm �−→ Reg Lin1,... ,nm(x1, . . . , xm) provides a

surjective linear map Dw,m(N) −→ Zw,m(N).

Proof. Direct integration gives us

I1,... ,1(1 : . . . : 1 : 1 − ε) =
∫

0<t1<...<tm<1−ε

dt1
1 − t1

∧ . . . ∧ dtm
1 − tm

=
(− log ε)m

m!
.

Computing (
∑

k>0
(1−ε)k

k )m and using then induction in m − l we get

(− log ε)m

m!
= Li1,... ,1(1 − ε, . . . , 1 − ε)

+
∑

0<i<m

(lower depth multiple ζ’s)(log ε)i.

Assume nl �= 1 or xl �= 1. Applying the power series product formula to

Lin1,... ,nl
(x1, . . . , xl) · Li1,... ,1(1 − ε, . . . , 1 − ε)

and then to
Lin1,... ,nl

(x1, . . . , xl) · Li1,... ,1(1, . . . , 1, 1 − ε),
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and using the induction on m − l, we get parts a) and b) of the theorem.
c) The power series (resp. the iterated integral) product formulas clearly hold

for the asymptotic expansions (33) (resp. (34)). So the shuffle relations are valid.
The distribution relations for l > 0 hold for (33). The distribution relations for
l = −1 follows from the shuffle relations and theorem 4.1.

Corollary 7.2. dimZ(1)w,m = 0 if w + m is odd.

Proof. Indeed, (21) implies that dimD(1)w,m = 0 if w + m is odd.

2. Proof of theorem 1.3. It follows from theorems 1.2, 6.1 and 7.1.

3. Proof of theorem 1.4. If w > 2 then H0(GL2(Z), Sw−2V2) = 0, and
∑
w

dimH1(GL2(Z), Sw−2V2) · tw =
1

(1 − t4)(1 − t6)
− 1.(35)

So by (10) the generating function for the Euler characteristic of the complex
D•,2 −→ Λ2D•,1 is given by (35). Using formula (12) we get the result.

Proof of theorem 1.5. Since Sw−3V3 for w > 3 is not a self dual GL3-module,
the kernel of the restriction of Hi(GL3(Z), Sw−3V3) to the boundary of the
Borel-Serre bordification vanishes by a theorem of Borel [BW]. Computing the
boundary contribution to the cohomology we get

Hi(GL3(Z), Sw−3V3) =
{

0 i = 1, 2
H1

usp(GL2(Z), Sw−2V3) i = 3(36)

Combining formulas (11) and (36) we get the cohomology of the complex
D•,3 −→ D•,2 ⊗ D•,1 −→ Λ3D•,1. Using theorems 1.4 and 7.1, formula (12),
and the Euler characteristic argument, we obtain the theorem.
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