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VOLUMES, MIDDLE-DIMENSIONAL SYSTOLES, AND
WHITEHEAD PRODUCTS

Ivan K. Babenko, Mikhail G. Katz, and Alexander I. Suciu

Abstract. Let X be a closed, orientable, smooth manifold of dimension 2m ≥ 6
with torsion-free middle-dimensional homology. We construct metrics on X of
arbitrarily small volume, such that every orientable, middle-dimensional subman-
ifold of less than unit volume necessarily bounds. Thus, Loewner’s theorem has
no higher-dimensional analogue.

1. Introduction

Let (X, g) be a closed, orientable Riemannian manifold of even dimension 2m.
The following notion was introduced by Marcel Berger in [4], [5].

Definition 1.1. The k-systole of (X, g), sysk(g), is the infimum of areas of non-
bounding cycles represented by maps of k-dimensional manifolds into X.

In this note, we will be interested in the following question: Does there exist
a constant, C, such that every metric g on X satisfies

sys2m(g) ≤ C · vol2m(g)?(1.1)

If there is no such C, we say that X is systolically free.
In the case of surfaces of positive genus the answer to question (1.1) is affir-

mative. For a history of the problem (dating to C. Loewner’s solution in the
case X = S1 × S1), see M. Berger [5] and P. Sarnak [16]. In the case m ≥ 2,
this question has been referred to by M. Gromov as the “basic systolic problem”
([9], p. 357); see also the subsection “Systolic reminiscences” of [10], section 4.48.
Progress on the problem became possible once Gromov described a special family
of metrics on S1 × S3, and surgical procedures suitable for generalizations ([10],
section 4.45); see also [12] and [2].

The purpose of this note is to prove the following result (see Theorem 2.3 for
a statement in the more general context of CW-complexes).

Theorem 1.2. Let X be a closed, orientable, smooth manifold of dimension 2m.
If m ≥ 3 and Hm(X) is torsion-free, then X is systolically free.

An underlying theme of this paper is the influence of homotopy theory on the
geometric inequality (1.1). The basic idea is to establish the systolic freedom of a
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complicated manifold, X, by “folding away” some of the topology of X into lower-
dimensional cells attached to a simpler manifold, Y , whose systolic freedom is
already established. The notion of “folding away” is captured in Definition 2.4 of
a “meromorphic map,” f : X −−→Y . The starting point is Gromov’s sequence
of metrics (2.3), which establishes the systolic freedom of products of spheres.

Our topological tools are, on one hand, the Hilton-Milnor theorem calculat-
ing homotopy groups of a wedge of spheres, and, on the other hand, theorems
of B. Eckmann and G. Whitehead on composition maps in homotopy groups
of spheres. Our geometric tools are the coarea inequality of [8] and pullback
arguments for simplicial metrics as described by the first author in [1].

The case m = 2 of (1.1) remains open, but it has been reduced to either CP2 or
S2 ×S2 by the first two authors in [2]. Even if we restrict the class of competing
metrics to homogeneous ones, the inequality (1.1) is violated in certain cases such
as S3 × S3, see [13].

One may view our construction as a way of producing metrics for which the
systole and the mass in middle dimension do not agree, compare [7].

An announcement of this paper appeared in [13].
The structure of the paper is as follows:

• In section 2, we define “meromorphic maps” between regular
CW-complexes, which allows us to correlate their systolic freedom. We
use this technique to give a short proof of the systolic freedom of Sm×Sm.

• In section 3, we find maps from the (2m−1)-skeleton of X to a wedge of
m-spheres that induce monomorphisms in Hm(−, Q), and self-maps of
∨Sm that send π2m−1(∨Sm) to the subgroup generated by Whitehead
products.

• In section 4, we prove our theorem in the case where bm(X) = 1, by
mapping X meromorphically to Sm × Sm.

• In section 5, we present the proof in the general case. This is achieved
by mapping X meromorphically to the 2m-skeleton of a product of suf-
ficiently many m-spheres.

2. Systolic freedom of CW-complexes and meromorphic maps

In order to prove Theorem 1.2, we will enlarge the class of manifolds to that
of piecewise smooth, simplicial complexes, for which one can still define metrics,
volumes, and systoles. We will actually prove our theorem in the context of
finite, regular CW-complexes. Such a complex K can be triangulated so that the
resulting simplicial complex is a subdivision of K (see [14], p. 80).

Definition 2.1. A finite, regular CW-complex K of dimension 2m is called sys-
tolically free if

inf
g

vol2m(g)
sys2m(g)

= 0,(2.1)

where the infimum is taken over all metrics g on K. This amounts to the existence
of a sequence of metrics {gj} such that

sys2m(gj) ≥ j vol2m(gj).(2.2)
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Remark 2.2. The systolic freedom of K (or the absence thereof) is independent
of the piecewise smooth simplicial structure that one chooses in its homotopy
type. This independence is verified by means of the simplicial approximation
theorem and by the pullback arguments for metrics from [1], [2].

Theorem 2.3. Let K be a finite, regular CW-complex of dimension 2m ≥ 6. If
Hm(K) is torsion-free, then K is systolically free.

This theorem (which slightly generalizes Theorem 1.2), will be proved at the
end of section 5. The key to the proof is the following notion, inspired by complex
analysis and surgery theory.

Definition 2.4. Let X and Y be 2m-dimensional CW-complexes. A “meromor-
phic map” from X to Y is a continuous map f : X → W such that

(i) W is a CW-complex obtained from Y by attaching cells of dimension at
most 2m − 1;

(ii) f∗ : Hm(X) → Hm(W ) is a monomorphism.

We shall denote such “maps” by f : X −−→Y , and drop the quotation marks.

Example 2.5. Let X be a complex surface and X̂ → X its blow-up at a point
p ∈ X. Then the classical meromorphic map X → X̂ can be modified in a
neighborhood of p and extended to a continuous map from X to X̂ ∪f B3 where
the 3-ball is attached along the exceptional curve.

Proposition 2.6 ([2]). Let X and Y be finite, regular CW-complexes. Suppose
X admits a meromorphic map to Y . If Y is systolically free, then X is also
systolically free.

Proof (sketch). Let f : X → W = Y ∪ ⋃
i Bki

i be the given meromorphic map.
The attached cells (of dimension ki < 2m) do not affect the 2m-dimensional
volume, and thus W is still systolically free, by the cylinder construction of [2],
Lemma 6.1. We now pull back to X the systolically free metrics on W . Thus X
is systolically free.

Proposition 2.7. Let X be an orientable, smooth manifold of dimension n =
2m. Suppose Y is obtained from X by performing surgery on embedded, framed
k-spheres, with 1 ≤ k < m. Then there exists a meromorphic map from X to Y .

Proof. Let Wn+1 be the cobordism between X and Y defined by the surgeries.
We claim that the inclusion X ↪→ W is the desired meromorphic map. Indeed, W
is obtained by attaching handles Dk+1 ×Dn−k to X × I, or dually, by attaching
handles Dn−k × Dk+1 to Y × I. Hence, W has the homotopy type of Y , with
cells of dimension n − k ≤ n − 1 attached to it, and so condition (i) is satisfied.
Since k < m, condition (ii) is satisfied also.

The main geometric ingredient in the proof of Theorem 2.3 is the special case
of a product of spheres, first proved in [12]. We provide a different proof in
Proposition 2.8 below, using CW-complexes and meromorphic maps.
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In order to give the reader a heuristic understanding of the fundamental exam-
ples, let us begin by describing Gromov’s construction of systolically free metrics
on S1×S3, see [10], section 4.45. We translate Gromov’s succinct example, from
the language of global Riemannian geometry into the dual language of differential
forms.

Let S1 be the unit circle with standard 1-form dz, and let S3 be the unit
3-sphere with standard contact 1-form b. Gromov’s metrics {gj} are obtained
by modifying the product metric of a circle of length 2π with a 3-sphere of
radius R =

√
1 + j2, by adding a non-diagonal term −2jb dz (symmetric tensor

product). Explicitly, let us complete b to a basis (b, b′, b′′) of 1-forms which is
orthonormal with respect to the metric of unit radius, so that db = b′ ∧ b′′. Then
Gromov’s metrics are given by:

gj = (dz − jb)2 + b2 + R2(b′2 + b′′2).(2.3)

Roughly speaking, from the point of view of an individual Hopf fiber of S3,
each metric looks like a square torus of size 2π with respect to a judiciously
chosen basis. Meanwhile, from the point of view of the hypersurface S3 of radius
R, the metric gj looks like a family of metrics on S3 parametrized by a circle of
length 2π

R .
Let ∗ be the Hodge star operator of the metric gj . Then:

∗(dz) = ∗(dz − jb) + j ∗ b = (b − j(dz − jb)) ∧ R2db

= R4b ∧ db − jR2dz ∧ db.
(2.4)

The form ∗dz is closed, since d∗dz = R4db∧db = 0. We normalize ∗dz to obtain
a calibrating form 1

R ∗dz, whose restriction to the 3-sphere S3 ⊂ S1×S3 coincides
with the volume form R3b ∧ db of this round sphere of radius R. Estimating the
volume and the systoles yields:

lim
j→∞

vol4(gj)
sys1(gj) · sys3(gj)

= lim
j→∞

j2

1 · j3
= 0.(2.5)

This example generalizes to all products of spheres, except S1×S1 and possibly
S2×S2, see [12], [3], [15], [2]. For each such product Sm×Sk, there is a sequence
of metrics {gj} such that

lim
j→∞

volm+k(gj)
sysk(gj) sysm(gj)

= 0.(2.6)

The existence of metrics on Sm × Sk satisfying (2.6) is proved in two steps, first
for m > k, and next for m = k. The first step is done by direct geometric
construction, see [2], proof of Proposition 4.2. The second step was actually
done beforehand, in [12]. In order to give a flavor of the arguments involved, we
provide a self-contained proof of the second step, assuming the first step.

Proposition 2.8 ([12]). For m ≥ 3, the product Sm × Sm is systolically free.
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Proof. Choose an integer k such that 1 ≤ k < m. Performing surgery on
a standard Sk ⊂ Sm yields Sk × Sm−k. Let f : Sm −−→Sk × Sm−k be the
associated meromorphic map, and take the map

id×f : Sm × Sm −−→Sm × Sk × Sm−k.(2.7)

By Proposition 2.6, it suffices to prove that the manifold X = Sm × Sk × Sm−k

is systolically free. Let {gj} be a sequence of metrics on Sm ×Sk as in (2.6). Let
hj be a metric on Sm−k of volume volm−k(hj) = sysm(gj)

sysk(gj)
. Consider the metric

gj⊕hj on X, and let z be a cycle representing a non-zero multiple of [Sk×Sm−k].
Let p : X → Sm−k be the projection to the last factor. By the coarea inequality,
we obtain the following lower bound for the volume of z in (X, gj ⊕ hj):

volm(z) ≥
∫

(Sm−k,hj)

volk(z ∩ p−1(x)) dx ≥ volm−k(hj) sysk(gj)

= sysm(gj),
(2.8)

where the middle inequality uses intersection numbers for cycles and transversal-
ity arguments in the context of maps of manifolds into X (cf. Definition 1.1 and
[2], Lemma 6.1.). Hence

vol2m(gj ⊕ hj)
sys2m(gj ⊕ hj)

=
volm−k(hj) volm+k(gj)

sys2m(gj)
=

volm+k(gj)
sysk(gj) sysm(gj)

−−−→
j→∞

0,

(2.9)

proving the systolic freedom of X and therefore that of Sm × Sm.

3. Whitehead products and maps to wedges of spheres

In this section, we establish some lemmas that will be needed in the proof
of Theorem 2.3. The main idea is to use high-degree self-maps of the m-sphere
Sm as in R. Thom [18] to handle torsion in homotopy. In what follows, we will
denote a wedge of b copies of Sm by ∨bSm

r , or simply ∨Sm.
A basic tool is the Hilton-Milnor theorem, which computes the homotopy

groups of a wedge of spheres in terms of the homotopy groups of the factors. In
particular, it gives the following splittings (see e.g. [20]):

πk(∨Sm
r ) =

⊕
r
πk(Sm

r ) for k ≤ 2m − 2,(3.1)

πk(∨Sm
r ) =

⊕
r
πk(Sm

r ) ⊕
⊕

r<s
Z[er, es], for k = 2m − 1,(3.2)

where [er, es] is the Whitehead product of the fundamental classes of the corre-
sponding spheres.

Another tool that we need is a formula of B. Eckmann [6] and G. White-
head [19] on the “distributive law” in maps from spheres to spheres. Let φq :
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Sm → Sm be a map of degree q. Let φq� : πk(Sm) → πk(Sm) be the induced
map. Then, if x ∈ πk(Sm),

φq�(x) = qx for k ≤ 2m − 2,(3.3)

φq�(x) = qx +
(

q

2

)
H(x) [e, e] for k = 2m − 1,(3.4)

where H(x) ∈ Z is the Hopf invariant of x, and e ∈ πm(Sm) is the fundamental
class, see [20], p. 537.

Let K be a finite CW-complex of dimension 2m− 1. Let Ki be the i-skeleton
of K.

Lemma 3.1. There exists a map f : K → ∨bSm, where b = rankHm(K/
Km−1), such that

f∗ : Hm(K)/ tors(Hm(K)) → Hm(∨bSm) is injective.(3.5)

Proof. From the exact sequence of the pair (K, Km−1) we see that the homo-
morphism Hm(K) → Hm(K/Km−1) is injective. This reduces the problem to
the case when K is (m−1)-connected. If m = 1, there is a homotopy equivalence
f : K → ∨bS1, and we are done. Thus, we may also assume that m ≥ 2.

Let Hm(K) → Zb, b = bm(K), be the quotient by the torsion subgroup.
Since K is (m − 1)-connected, this homomorphism is realized by a map to the
corresponding Eilenberg-MacLane space, f : K → K(Zb, m). Now K(Zb, m) =
(K(Z, m))b, and K(Z, m) is obtained from Sm by adding cells in dimensions
m + 2 and higher. Hence, by the cellular approximation theorem, we get a map
fm+1 : Km+1 → ∨bSm by restricting to (m + 1)-skeleta. Clearly, this map
satisfies (3.5). Thus, if m = 2, we are done.

If m ≥ 3, we extend the map fm+1 to f = f2m : K2m → ∨bSm by induction on
skeleta, proceeding as in Serre [17], pp. 278 and 287–288. Given i with m+1 ≤ i ≤
2m−2, let fi : Ki → ∨bSm be a map satisfying (3.5). By [17], the group πi(Sm)
is finite; let q be its order. Then, by (3.1) and (3.3), the map (∨φq) ◦ fi extends
to a map fi+1 : Ki+1 → ∨bSm. Clearly, fi+1 satisfies (3.5). This completes the
inductive step, and the proof.

Lemma 3.2. A wedge of m-spheres, m ≥ 2, admits a self-map φ : ∨bSm →
∨bSm such that

(i) The map φ� : π2m−1(∨bSm) → π2m−1(∨bSm) has image contained in the
subgroup generated by all the Whitehead products;

(ii) The map φ∗ : Hm(∨bSm) → Hm(∨bSm) is injective.

Proof. For b = 1, every Whitehead product is proportional to [e, e], where e is
the fundamental class of Sm. Let x ∈ π2m−1(Sm). Then we can write

2x = s + H(x)[e, e](3.6)
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for some s of finite order. Consider the map φ = φq : Sm → Sm, with q even.
Substituting (3.6) into (3.4), we obtain:

φ�(x) =
q

2
(s + H(x)[e, e]) +

(
q

2

)
H(x)[e, e](3.7)

=
q

2
s +

q2

2
H(x)[e, e].

Thus, it suffices to take

q = 2 |tors (π2m−1(Sm))| .(3.8)

Alternatively, a theorem of G. Whitehead [19] insures that the subgroup of
π2m−1(Sm) generated by Whitehead products is precisely the kernel of the sus-
pension homomorphism E : π2m−1(Sm) → π2m(Sm+1). Thus, it suffices to pick
q =

∣∣π2m(Sm+1)
∣∣, which is less than or equal to the value from (3.8).

For b > 1, we pick φ = ∨bφq, with q as in (3.8). The splitting from (3.2) and
an argument as above insure that φ satisfies (i) and (ii).

Remark 3.3. For m odd, m ≥ 3, we can actually choose q so that φ� = 0, since,
in that case, π2m−1(Sm) is a finite group, and all its elements have Hopf invariant
0.

Remark 3.4. Let F be C, H or Ca, and let K = FP2 be the corresponding
projective plane. With the usual decomposition into 3 cells for K, we have
K2m−1 = FP1 = Sm, where m = dim(F). The smallest positive integer q for
which φq : Sm → Sm satisfies conditions (i) and (ii) from Lemma 3.2 can be
computed explicitly in these examples. Recall that π2m−1(Sm) = Z⊕ Tm, where
Tm is a finite cyclic group, of order equal to 1, 12, or 120 respectively when F is
C, H, or Ca. Let a be the infinite order generator defined by the Hopf map, and
let s be a generator of the torsion part (taken to be 0 when F = C). A result
of H. Toda (see [11]) states that [e, e] = 2a ∓ s. From this formula and (3.7) we
obtain for q even:

φq�(a) =
q

2
2a +

(
q

2

)
[e, e] = ±q

2
s +

q2

2
[e, e].(3.9)

Thus, the necessary and sufficient condition for (i) and (ii) to hold is that q be a
non-zero multiple of 2 |Tm|.

4. Meromorphic maps to Sm × Sm

In this section, we prove Theorem 2.3 in the particular case where
Hm(K/Km−1) = Z, by constructing a meromorphic map h : K −−→Sm × Sm.
The essential ingredients of the general case are already present here, but the
proof is more transparent in this simpler situation.

Proof of Theorem 2.3 (particular case). Let K be a finite, regular CW-complex
of dimension 2m ≥ 6. Assume Hm(K/Km−1) = Z.

By Lemma 3.1, there is a map f : K2m−1 → Sm such that f∗ : Hm(K2m−1/
Km−1) → Hm(Sm) is injective. By Lemma 3.2, there is a map φ = φm

q :
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Sm → Sm of degree q �= 0 that maps π2m−1(Sm) to the subgroup generated
by the Whitehead product [e, e]. The map φ ◦ f : K2m−1 → Sm also maps
π2m−1(K2m−1) to this subgroup, while inducing a monomorphism on Hm.

Now let a1 and a2 be the generators of πm(Sm × Sm), corresponding to the
inclusions of the factors. Recall that Sm×Sm = Sm∨Sm∪[a1,a2]B

2m. Attaching
an (m + 1)-cell along the diagonal map (1, 1) : Sm → Sm × Sm, we obtain the
2m-dimensional regular CW-complex

W = Sm × Sm ∪a1+a2 Bm+1.(4.1)

Since m ≥ 2, the complex W satisfies condition (i) in Definition 2.4. Let α :

Sm → W be the composite Sm (1,0)→ Sm × Sm ↪→ W . Then

α([e, e]) = [a1, a1] since α(e) = a1(4.2)
= [a1,−a2] since a1 + a2 = 0 in πm(W )
= 0 since [a1, a2] = 0 in π2m−1(Sm × Sm).

Now let h : K2m−1 → W be the composite K2m−1 f→ Sm φ→ Sm α→ W . By
the above, h� : π2m−1(K2m−1) → π2m−1(W ) is the 0 map. Thus, h extends over
the 2m-cells of K, to a map h : K → W . Since h is clearly injective on Hm, we
have defined a meromorphic map from K to Sm × Sm. By Proposition 2.8, the
manifold Sm ×Sm is systolically free. Hence, by Proposition 2.6, the complex K
is also systolically free.

5. Meromorphic maps to skeleta of products of spheres

Before proving the general case of Theorem 2.3, we establish the systolic free-
dom of a model space by a “long cylinder” argument.

Let X be a triangulated manifold of dimension n. Let A be the n-skeleton of
X × I where I is an interval. Then A = X × ∂I ∪ Xn−1 × I. Let g+ and g−
be two metrics on X, and g0 another metric dominating both g+ and g−. Let g
be the metric on A obtained by restricting the metric gt ⊕ dt2 of X × I, where
I = [−L, L], with L = - + 1 > 1, and

gt =

{
g0 if |t| ≤ -,

(1 − λ)g0 + λg± if t = ±(- + λ), with 0 ≤ λ ≤ 1.
(5.1)

Lemma 5.1. For k ≥ 2 and - sufficiently large, we have sysk(g) ≥ β, where

β =
1
2

min (sysk(g+), sysk(g−)) .(5.2)

Proof. Suppose z is a non-bounding k-cycle in A such that volk(z) < β. Let
p : A → [0, L] be the restriction of the map X × I → [0, L] given by (x, t) �→ |t|.
The coarea inequality yields a point t0 ∈ [0, -] such that the (k − 1)-cycle γ =
z ∩ p−1(t0) satisfies

volk−1(γ) ≤ 1
-

volk(z).(5.3)
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By the isoperimetric inequality for cycles of small volume ([8], Sublemma
3.4.B′) applied to g0|Xn−1 , there is a constant C = C(g0|Xn−1) with the following
property: Every (k− 1)-cycle γ in Xn−1 with vol(γ) < 1

C bounds a k-chain D in
Xn−1, of volume

volk(D) ≤ C volk−1(γ)
k

k−1 .(5.4)

By choosing - > βC we insure that the isoperimetric inequality applies to γ.
Moreover, we need to choose - so that volk(D) < β. Thus we also require

C
(

β
�

) k
k−1

< β, that is, - > k
√

βCk−1.

Write D = D− +D+ where D± ⊂ Xn−1×{±t0}. Consider the decomposition
of z into a sum of cycles, z = z−+z0+z+, where z− = p−1([0, t0])∩(X×[−L, 0])+
D−, z0 = p−1([0, t0])+D+ −D−, and z+ = p−1([0, t0])∩ (X × [0, L])−D+. Now
let ε = 0, +, or −. We have

volk(zε) ≤ volk(z) + volk(D) < β + β = min (sysk(g+), sysk(g−)) .(5.5)

Hence zε is a boundary for every ε and so [z] = 0. The contradiction proves the
lemma.

Lemma 5.2. Let B = (×cSm)2m be the 2m-dimensional skeleton of a product
of c copies of the m-sphere, c ≥ 2, m ≥ 3. Then B is systolically free.

Proof. We choose the following representative B0 in the homotopy class of B.
Take the Cartesian product of the wedge ∨cSm with the wedge of

(
c
2

)
intervals

Irs = [0, L] for sufficiently large L = - + 1. At the end of each interval, attach a
2m-cell along the Whitehead product, [er, es], of the fundamental classes of the
spheres Sm

r × {L} and Sm
s × {L} in ∨cSm × Irs:

B0 =
(∨c

Sm
)
×

(∨
r<s

Irs

)
∪

⋃
r<s

D2m
rs .(5.6)

We precompose the projection p : ∨Irs → [0, L] with the projection to the
second factor of ∨Sm × ∨Irs and extend it to a map p : B0 → [0, L] by setting
p(D2m

rs ) = L.
Now we apply the argument of Lemma 5.1 with n = 2m to B0, as follows.

Identify each cell closure Xrs = D
2m

rs with Sm×Sm by means of a diffeomorphism
Xrs

ρrs→ Sm × Sm. Then pull back a sequence of free metrics {gj} on Sm × Sm

provided by Proposition 2.8 to obtain a sequence of free metrics {ρ∗rs(gj)} on
Xrs, which play the role of the metrics g± from Lemma 5.1.

Let (Xn−1, g0) be the wedge of round spheres Sm∨Sm of sufficiently big radius
so that g0 dominates all of the metrics ρ∗rs(gj)|Xn−1 . We obtain a lower bound for
the m-volume of a non-bounding m-cycle z in B0 by means of a decomposition
z = z0 +

∑
r<s zrs, where zrs is a cycle in ∨cSm × Irs ∪[er,es] D2m

rs ⊂ B0. This
decomposition is obtained by the coarea inequality applied to the projection
p : B0 → [0, L]. This proves the systolic freedom of B0, and hence that of B, by
Remark 2.2.
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Proof of Theorem 2.3 (general case). Let K be a finite, regular CW-complex of
dimension 2m ≥ 6, with tors(Hm(K)) = 0. Let f : K2m−1 → ∨bSm be a map
as in Lemma 3.1, and let φ : ∨bSm

r → ∨bSm be a map as in Lemma 3.2. Then
the composite φ ◦ f : K2m−1 → ∨bSm maps π2m−1(K2m−1) to the subgroup of
π2m−1(∨bSm) generated by the Whitehead products in the wedge, while inducing
a monomorphism on Hm.

Let B be the 2m-skeleton of a product of c = 2b copies of Sm, as in Lemma
5.2. We construct a meromorphic map from ∨bSm to B much as in the case
b = 1. Namely, let αr : Sm

r → Sm
r × Sm

b+r be the inclusion into the first factor.
Let W be the CW-complex obtained by attaching (m + 1)-cells to B along the
“diagonals” ar + ab+r. Define α : ∨bSm → W to be the composite

α : ∨bSm
r

∨bαi→ ∨b(Sm
r × Sm

b+r) ↪→ B ↪→ W,(5.7)

and let h = α ◦ φ ◦ f : K2m−1 → W . Then h� sends π2m−1(K2m−1) to 0.
Therefore, h extends to a map h : K → W . Clearly, h∗ : Hm(K) → Hm(W )
is injective. Thus, we have defined a meromorphic map from K to X. By
Lemma 5.2 and Proposition 2.6, K is systolically free.
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Nancy 1 for hospitality during the completion of this work.

References

1. I. Babenko, Asymptotic invariants of smooth manifolds, Russian Acad. Sci. Izv. Math. 41
(1993), 1–38.

2. I. Babenko and M. Katz, Systolic freedom of orientable manifolds, Ann. Sci. École Norm.
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Mathématique de France, 1996, pp. 291–362.

10. , Metric structures for Riemannian and non-Riemannian spaces, Progr. Math., vol.
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28 (1954), 17–86.
19. G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math. 51 (1950), 192–

237.
20. , Elements of homotopy theory, Grad. Texts in Math., vol. 61, Springer-Verlag, New

York, 1978.
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