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A UNIFIED APPROACH TO VORTEX MOTION LAWS OF
COMPLEX SCALAR FIELD EQUATIONS

F.-H. Lin and J. X. Xin

Abstract. In this short note, we give a unified rigorous derivation of vortex mo-
tion laws of nonlinear wave (NLW) and nonlinear heat (NLH) equations based on
the fluid dynamic approach the authors recently developed in solving the nonlin-
ear Schrödinger (NLS) equation. Hence in all three complex scalar field equations,
the motion laws follow from the Euler-type equations, and the knowledge of the
finite mass Radon defect measure.

1. A summary of basic facts

Let us consider as ε ↓ 0 the two-dimensional complex scalar field equations:

1
log ε−1

uε,tt = ∆uε + ε−2uε(1 − |uε|2),(1)

the nonlinear wave (NLW) equation;

1
log ε−1

uε,t = ∆uε + ε−2uε(1 − |uε|2),(2)

the nonlinear heat (NLH) equation, or the Ginzburg-Landau equation; and

iuε,t = ∆uε + ε−2uε(1 − |uε|2),(3)

the nonlinear Schrödinger (NLS) equation, on a bounded domain Ω ⊂ R
2 with

smooth boundary. The boundary condition is: uε|∂Ω = g(x), with g : ∂Ω → S
1 a

smooth map of degree d > 0. The initial condition contains d vortices of degree
one so that the total initial energy has the asymptotic expression:

(4) Eε(uε(0, x)) =∫
Ω

eε(uε(0, x)) ≡
∫

Ω

1
2
|∇uε|2 +

(1 − |uε|2)2
4ε2

= dπ log
1
ε

+ O(1),

for NLH and NLS; and

Eε(uε(0, x)) +
1

2 log 1
ε

∫
Ω

|uε,t(0, x)|2 = dπ log
1
ε

+ O(1),(5)

for NLW.
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The basic property independent of the equations is energy concentration:

eε(uε)dx

π log 1
ε

⇀
d∑

j=1

δaj , M(Ω),(6)

for a sequence ε = εk ↓ 0, where aj ’s are distinct d points inside Ω, see Lin [3] and
[4]. However, the dynamics of these points depends critically on the equations.

Recently, the present authors [5] formulated the conservation of linear mo-
mentum of NLS as the Euler equation:

∂tp(uε) = 2 div (∇uε ⊗∇uε) −∇Pε,(7)

where the linear momentum p(uε) = uε ∧∇uε, and the pressure is:

Pε = |∇uε|2 + uε · ∆uε − |uε|4 − 1
2ε2

.

They then projected (7) onto the locally divergence-free fields, and analyzed the
resulting equation. It follows that the vortices move Lipschitz continuously on
the time scale t ∼ O(1). Also the solution uε has weak limit:

uε ⇀ eiha(x)
d∏

j=1

x − aj

|x − aj | ≡ ua,(8)

away from aj ’s in space time L1, and that ha is a harmonic function on Ω
satisfying ha,τ |∂Ω = −Θa,τ + g ∧ gτ , Θ the total phase of the product term
in (8), and τ the tangential unit vector. It then follows from a refined energy
argument that the quadratic tensor product weakly converges as:

∇uε ⊗∇uε ⇀ v ⊗ v + µ, M(Ωa),(9)

where µ is a symmetric tensorial Radon defect measure of finite mass over Ω.
Under the energy almost minimizing condition on the initial data:

Eε(uε)(0) = dπ log
1
ε

+ πW (a(0)) + o(1),(10)

where W = W (a) = W (a1, · · · , ad) the renormalized energy, see [1], [3], it is
shown in [5] that the defect measure µ = 0 in (9) and the vortex motion law
is: a′

j = −J∇aj
W , J being the clockwise rotation matrix. If the initial energy

is an O(1) amount above the minimum value (for the prescribed initial vortex
locations a(0)), the defect measure µ = 0, and further knowledge of its structure
is necessary to deduce the law. Physically, an excessive O(1) energy can allow
phase (sound) waves to form and interact with vortices, while almost energy
minimizing condition (10) provides only vortex self-energy dπ log 1

ε and vortex-
vortex interaction energy πW (a(0)).
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For NLW, the analogous Euler equation is:
(

uε,t∇uε

log ε−1

)
t

= div (∇uε ⊗∇uε) + ∇Pε,(11)

with the pressure:

Pε =
u2

ε,t

2 log ε−1
− (1 − |uε|2)2

4ε2
− |∇uε|2

2
.

To analyze (11), the following energy (in)equalities are needed:

Eε(uε) ≤ dπ log
1
ε

+ O(1),
1

log 1
ε

∫
Ω

|uε,t|2 ≤ C,(12)

d

dt

∫
BR

x
eε(uε)
log 1

ε

= −
∫

BR

uε,t · ∇u

log 1
ε

− d

dt

∫
BR

|uε,t|2
2 log2 1

ε

−
∫

∂BR

x · uε,ν
uε,t

log 1
ε

,(13)

with BR ⊂ Ω, any small ball of radius R. These and related energy inequalities
imply the Lipschitz continuous motion of vortices, see [4]. From (12), (13) and
the energy concentration, it follows that as measures:

uε,t∇uε

π log 1
ε

⇀ −
d∑

j=1

a′
j(t)δaj(t).(14)

Moreover, the weak limit and quadratic terms also obey (8) and (9). The same
energy argument [5] shows µ ∈ M(Ω). In addition under the energy almost
minimizing condition (10), the defect measure µ = 0.

For NLH, energy inequalities similar to (12) hold, and the Euler equation is:

d

dt

(
xeε(uε)
log 1

ε

)
= −(log

1
ε
)−2x|uε,τ |2 + div(∇uε ⊗∇uε) + ∇Pε,(15)

with pressure:

Pε =
1

log 1
ε

x · uε,t · ∇uε +
1
2
|∇uε|2 +

1
4ε2

(1 − |uε|2)2.

The first term on the right hand side of (15) tends to zero in L1([0, T ];L1(Ω)).
The rest of the note is organized as follows. In section 2, we derive the vor-

tex motion law for NLW: a′′
j = −∇aj W , under the energy almost minimizing

condition (10) and so µ = 0. The proof also works for the motion law of NLH:
a′

j = −∇aj W , which was proved earlier in Lin [3]. In this case, energy mini-
mizing condition (10) is not needed at t = 0. The defect measure µ = 0 due
to energy dissipation and gradient dynamics, which imply the strong conver-
gence of solutions away from vortices [3]. We end the note with a few remarks,
comparing the three equations.
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2. Motion law of NLW and remarks

Let us consider a test function ϕ ∈ C∞
0 (Ω), ϕ = n · x, for x ∈ BR/2(aj(s)),

and ϕ = 0, for x ∈ BR(aj(s)), where R is a small positive number, and n is a
fixed unit direction. Let time t ∈ [s, s + k] with k a fixed small positive number.
Multiplying ∇⊥ϕ = (−ϕx2 , ϕx1) on both sides of NLW Euler (11), integrating
over BR(aj(s)) × [s, s + k], we get:

∫
BR(aj)

uε,t∇uε

log ε−1
· ∇⊥ϕ

∣∣s+k

s
=

∫ s+k

s

dt

∫
BR(aj)

div (∇uε ⊗∇uε) · ∇⊥ϕ.(1)

Passing ε ↓ 0, we find using basic facts of section 1 that:

πa′
j(t) · n⊥∣∣s+k

s
= lim

ε↓0

∫ s+k

s

dt

∫
BR(aj)

(∇uε ⊗∇uε) : ∇∇⊥ϕ

= lim
ε↓0

∫ s+k

s

dt

∫
BR(aj)\BR/2(aj)

(∇uε ⊗∇uε) : ∇∇⊥ϕ

=
∫ s+k

s

dt

∫
BR(aj)\BR/2(aj)

(v ⊗ v + µ) : ∇∇⊥ϕ

=
∫ s+k

s

dt

∫
BR(aj)

(v ⊗ v + µ) : ∇∇⊥ϕ

=
∫ s+k

s

dt

∫
BR(aj)

v ⊗ v : ∇∇⊥ϕ,(2)

where in the last equality we have used the almost energy minimizing assumption
(10) to exclude µ. We also see that in general µ does not contribute if div µ =
−∇Pµ, globally on Ω for a distribution Pµ.
It follows via integration by parts that:

πa′
j(t) · n⊥∣∣s+k

s
=

∫ s+k

s

dt

∫
BR(aj(s))\BR/2(aj(s))

(v ⊗ v) : ∇∇⊥ϕ

= −
∫ s+k

s

dt

∫
BR(aj(s))\BR/2(aj(s))

v · ∇v · ∇⊥ϕ

+
∫ s+k

s

dt

∫
∂BR/2(aj(s))

(v ⊗ v) : (ν ⊗ n⊥)

= −
∫ s+k

s

dt

∫
∂BR/2(aj(s))

(v · ∇v · ν⊥)(n · x)

+
∫ s+k

s

dt

∫
∂BR/2(aj(s))

(v ⊗ v) : (ν ⊗ n⊥).(3)
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Dividing (3) by k and letting k ↓ 0, we obtain:

(4) πa′′
j (s) · n⊥ =

−
∫

∂BR/2(aj(s))

(v · ∇v · ν⊥)(n · x) +
∫

∂BR/2(aj(s))

(v ⊗ v) : (ν ⊗ n⊥).

Letting n = (1, 0), and aj = (ξj , ηj), we calculate with the explicit expression
for v = (v1, v2) as x ∼ aj : v1 = Hj,ξ − r−1 sin θ, v2 = Hj,η + r−1 cos θ,
where Hj is the smooth part of the vortex phase Θa + ha at aj , (r, θ) is the
local polar coordinate. We find that each term on the right hand side of (4)
contributes −πHj,ξ, and so: πη′′(s) = −2πHj,ξ. Similarly with n = (0, 1), we
find: −πξ′′(s) = −2πHj,η. By the conjugation relation between Hj and W ,
[1], we have: Ja′′

j = −2∇Hj = −J∇aj
W, where J is the π/2 clockwise rotation

matrix. The vortex motion law: a′′
j = −∇aj

W follows. For NLH, the argument
is the same except the left hand side of the motion law is a′

j due to (6) and (15).
We have completed the proof of the vortex motion laws of NLW and NLH.

A few remarks are in order. The left hand sides of the Euler-like equations
of NLW and NLH concentrate. Hence away from vortices, we have essentially
the steady state Euler equation. The pressure Pε is in L1([0, T ];L1(Ωa)), Ωa =
{Ω\(a1, · · · , ad)}. Letting P ′ be the weak L1 limit of Pε, and passing ε ↓ 0 on
Ωa, we have from (11) or (15) that:

div(v ⊗ v) + ∇P = 0, div v = 0, P = Pµ + P ′,(5)

in the sense of distribution, where P is the total pressure. It follows that div(v ·
∇v) = −∆P , and P is smooth on Ωa. Solving for P near each vortex aj gives
the general expression of:

P =
1
2
r−2 + αr−1 cos θ + βr−1 sin θ + γ log r + · · · ,

where · · · are either higher spherical harmonic terms with frequencies at least
two or bounded regular terms, r = |x − aj |. Calculating circulation from (5)
gives to leading order:

πβ =
∫

∂Br(aj)

ξPθ = −
∮

∂Br(aj)

ξv · ∇v d0l = πHj,ξ(aj).

So β = Hj,ξ(aj). Similarly, α = −Hj,η(aj).
In contrast, the NLS pressure Pε is not controled by energy inequality and not

known to stay in L1 as ε ↓ 0. Also the left hand side p(uε) converges to a smooth
function away from vortices, and p(uε) itself does not concentrate. Hence it is
convenient to project the Euler equation to divergence free fields and calculate
circulations [5]. The limiting equation is the time dependent Euler. It turns
out that in the asymptotic expression for the limiting total pressure P , α and β
are undertermined in general. The energy almost minimizing condition (10) of
course implies that α = β = 0 in this case.
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Last but not the least, we remark that the regime where defect measure
forms is beyond the reach of early formal asymptotic derivations, see [6], [7],
among others. From our analysis, we gain new understanding that the motion
law holds as suggested in formal derivations if the divergence of the finite mass
defect measure is a global pressure gradient or is the defect measure if supported
away from the vicinities of vortices. In most early formal works, the connection
with the field aspect of the problem, namely pressure, is not exploited, much less
the fluid dynamic perspective of all three scalar field equations. Analogous defect
measure is well-known to play a significant role in the study of weak solutions
of two-dimensional incompressible Euler equation in fluid dynamics [2].
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