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ON BLOWUP FORMULAE FOR THE

S-DUALITY CONJECTURE OF VAFA AND

WITTEN II: THE UNIVERSAL FUNCTIONS

Wei-ping Li and Zhenbo Qin

1. Introduction

This is a continuation of our work [L-Q] on blowup formulae for the S-duality
conjecture of Vafa and Witten. In [V-W], Vafa and Witten formulated some
mathematical predictions about the Euler characteristics of instanton moduli
spaces derived from the S-duality conjecture in physics. From these mathe-
matical predictions, a blowup formula was proposed based upon the work of
Yoshioka [Yos]. Roughly speaking, the blowup formula says that there exists a
universal relation between the Euler characteristics of instanton moduli spaces
for a smooth four manifold and the Euler characteristics of instanton moduli
spaces for the blowup of the smooth four manifold. The universal relation is
independent of the four manifold and related to some modular forms. In [L-Q],
we verified this blowup formula for the gauge group SU(2) and its dual group
SO(3) when the underlying four manifold is an algebraic surface. In fact, we
proved a stronger blowup formula in [L-Q], i.e. a blowup formula for the virtual
Hodge numbers of instanton moduli spaces. However, in [L-Q], we did not find a
closed formula for the universal function which appears in this stronger blowup
formula. Our goal of the present paper is to determine a closed formula for this
universal function.

To state the blowup formulae proved in [L-Q], we recall some standard defini-
tions and notations. Let φ : X̃ → X be the blowing-up of an algebraic surface X
at a point x0 ∈ X, and E be the exceptional divisor. For simplicity, we always
assume that X is simply connected. Fix a divisor c1 on X, c̃1 = φ∗c1 − aE
with a = 0 or 1, and an ample divisor H on X with odd (H · c1). For an
integer n, let MH(c1, n) be the moduli space of Mumford-Takemoto H-stable
rank-2 bundles with Chern classes c1 and n, MG

H(c1, n) be the moduli space of
Gieseker H-semistable rank-2 torsion-free sheaves with Chern classes c1 and n,
and MU

H(c1, n) be the Uhlenbeck compactification of MH(c1, n) from gauge the-
ory [Uhl, Don, LiJ]. It is well-known that both the Gieseker moduli spaces and
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the Uhlenbeck compactification spaces are projective. For r � 0, the divisors
Hr = r·φ∗H−E on X̃ is ample; moreover, all the moduli spaces MHr (c̃1, n) (resp.
MG

Hr
(c̃1, n), MU

Hr
(c̃1, n)) can be naturally identified. So we shall use MH∞(c̃1, n)

(resp. MG
H∞

(c̃1, n), MU
H∞

(c̃1, n)) to denote the moduli space MHr (c̃1, n) (resp.
MG

Hr
(c̃1, n), MU

Hr
(c̃1, n)) with r � 0.

For a complex algebraic scheme Y (not necessarily smooth, projective, or
irreducible), let e(Y ;x, y) be the virtual Hodge polynomial of Y . When Y is
projective, e(Y ; 1, 1) is the topological Euler characteristic of Yred. Our Theorem
A in [L-Q] gives the following blowup formula for the Gieseker moduli spaces:

(1.1)
∑

n

e(MG
H∞(c̃1, n);x, y)qn− c̃21

4 = (q
1
12 · ˜̃

Za) ·
∑

n

e(MG
H(c1, n);x, y)qn− c21

4

where ˜̃
Za = ˜̃

Za(x, y, q) is a universal function of x, y, q, a with

˜̃
Za(1, 1, q) =

∑
n∈Z

q(n+ a
2 )2

[q
1
24

∏
n≥1(1 − qn)]2

.

Assuming that MH(c1, n) (respectively, MH∞(c̃1, n)) is dense in the Gieseker
moduli space MG

H(c1, n) (respectively, MG
H∞

(c̃1, n)) for every n, we also have a
blowup formula for the Uhlenbeck compactification spaces (Theorem B in [L-Q]):

∑
n

e(MU
H∞(c̃1, n);x, y)qn− c̃21

4 = (q
1
12 · Z̃a) ·

∑
n

e(MU
H(c1, n);x, y)qn− c21

4

where Z̃a = Z̃a(x, y, q) is a universal function of x, y, q, a with

Z̃a(1, 1, q) =
∑

n∈Z
q(n+ a

2 )2

q
1
12 (1 − q)

.

Our main results are the following closed formulae for ˜̃
Za(x, y, q) and

Z̃a(x, y, q).

Theorem 1.2. The universal function ˜̃
Za(x, y, q) is equal to

∑
n∈Z

(xy)
(2n+a)2−(2n+a)

2 q
(2n+a)2

4

[q
1
24

∏
n≥1(1 − (xy)2nqn)]2

.
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Theorem 1.3. The universal function Z̃a(x, y, q) is equal to

1
q

1
12 (1 − xyq)

[∑
s≥0

(xy)
(2s+a)2+(2s+a)

2 q
(2s+a)2

4

2s+a∏
j=1

1 − (xy)2j−2qj

1 − (xy)2jqj

+
∑

s≥(1−a)

(xy)
(2s+a)2+(2s+a)−2

2 q
(2s+a)2

4

2s+a−1∏
j=1

1 − (xy)2j−2qj

1 − (xy)2jqj

]

where we make the convention that
0∏

j=1

1−(xy)2j−2qj

1−(xy)2jqj = 1.

The paper is organized as follows. In section two, we verify Theorem 1.2
by taking X = F1 (the one-point blownup of P2). In section three, we prove
Theorem 1.3 by using a not-closed formula of Z̃a(x, y, q) obtained in [L-Q].

2. The universal function ˜̃
Za(x, y, q)

In this section, we derive a closed formula for the universal function˜̃
Za(x, y, q). Our strategy is to compute the virtual Hodge polynomials of the
Gieseker moduli spaces of semistable rank-2 sheaves over F1 and its blownup.
These Gieseker moduli spaces are actually smooth and have been studied ex-
tensively (see [E-G, F-Q] for example). Adopting a formula of Göttsche [Got],
we calculate the (virtual) Hodge polynomials of these Gieseker moduli spaces.

Then using the definition of ˜̃
Za(x, y, q), we can determine a closed formula for˜̃

Za(x, y, q).
First of all, we recall virtual Hodge polynomials for complex algebraic schemes

(not necessarily smooth, projective, or irreducible). Virtual Hodge polynomials
were introduced by Danilov and Khovanskii [D-K]. They can be viewed as a tool
for computing the Hodge numbers of smooth projective varieties by reducing
to computing those of simpler varieties. For a complex algebraic scheme Y ,
Deligne [Del] proved that the cohomology Hk

c (Y, Q) with compact support carries
a natural mixed Hodge structure which coincides with the classical one if Y is
projective and smooth. For each pair of integers (s, t), define the virtual Hodge
number

es,t(Y ) =
∑

k

(−1)khs,t(Hk
c (Y, Q)).

Then the virtual Hodge polynomials of Y is defined by

e(Y ;x, y) =
∑
s,t

es,t(Y )xsyt.

Virtual Hodge polynomials satisfy the following properties (see [D-K, Ful, Che]):
(2.1) When Y is projective, e(Y ; 1, 1) is the Euler characteristic χ(Yred) of

Yred. When Y is projective and smooth, e(Y ;x, y) is the usual Hodge
polynomial.
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(2.2) If Z is a Zariski-closed subscheme of Y , then

e(Y ;x, y) = e(Z;x, y) + e(Y − Z;x, y).

So if Y =
∐n

i=1 Yi is a disjoint union of finitely many locally closed
subsets (i.e. each Yi is the intersection of an open subset and a closed
subset), then

e(Y ;x, y) =
n∑

i=1

e(Yi; x, y).

(2.3) If f : Y → Z is a Zariski-locally trivial bundle with fiber F , then

e(Y ;x, y) = e(Z;x, y) · e(F ; x, y).

(2.4) If f : Y → Z is a bijective morphism, then e(Y ;x, y) = e(Z; x, y). In
particular, we have e(Y ;x, y) = e(Yred; x, y).

Next, we recall a result of Göttsche. Let X be an algebraic surface with
effective anti-canonical divisor −KX , and let q(X) be its irregularity. Fix a
divisor c1 on X and an integer n. In [Got], Göttsche studied the change of
the virtual Hodge polynomial e(MG

H(c1, n);x, y) as the ample divisor H crosses
walls of type (c1, n). In addition, a detailed study of the change of the Gieseker
moduli space MG

H(c1, n) as H crosses walls of type (c1, n) can be found in [E-G,
F-Q]. The next lemma follows immediately from the Theorem 3.4 (1) in [Got].

Lemma 2.5. Assume that X is an algebraic surface with effective −KX . Let
H and L be ample divisors not lying on any wall of type (c1, n). Then

e(MG
H(c1, n);x, y) = e(MG

L (c1, n);x, y) + ((1 − x)(1 − y))q(X)·

·
∑

ζ

(xy)�ζ− ζ2+ζKX
2 −χ(OX) 1 − (xy)ζKX

1 − (xy)
·

∑
s+t=�ζ

e(Hilbs(X);x, y)e(Hilbt(X);x, y)

where �ζ = (4n − c2
1 + ζ2)/4, and ζ rus over all the classes in Num(X) which

define walls of type (c1, n) and satisfy ζH < 0 < ζL. �
Now let X be a rational ruled surface with effective −KX . Then q(X) = 0.

Let f be a general fiber of the ruling. Fix a divisor c1 and an ample divisor H
such that both (f · c1) and (H · c1) are odd. Fix an integer n. Since (H · c1)
is odd, H does not lie on any wall of type (c1, n). Since (f · c1) is odd, it is
well-known [H-S, Qi2] that there exists an open chamber Cn of type (c1, n) such
that MG

Ln
(c1, n) = ∅ for Ln ∈ Cn and that the divisor class f is contained in the

closure of Cn. Note that since the divisor f is nef and contained in the closure
of Cn, the condition ζH < 0 < ζLn is equivalent to ζH < 0 < ζf . Let

(2.6) ΛH = {ζ ∈ Pic(X)| ζH < 0 < ζf and ζ ≡ c1 (mod 2)}.
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Then ζ defines a nonempty wall of type (c1, n) with ζH < 0 < ζLn if and only
if ζ ∈ ΛH and ζ2 ≥ −(4n − c2

1). Applying Lemma 2.5 to H and Ln, we obtain

e(MG
H(c1, n);x, y) =

∑
ζ∈ΛH and ζ2≥−(4n−c2

1)

(xy)�ζ− ζ2+ζKX
2 −χ(OX) 1 − (xy)ζKX

1 − (xy)
·

(2.7) ·
∑

s+t=�ζ

e(Hilbs(X);x, y)e(Hilbt(X);x, y).

Lemma 2.8. Let X be a rational ruled surface with effective −KX . Let c1 be a
divisor on X such that both (f · c1) and (H · c1) are odd. Then∑

n

e(MG
H(c1, n);x, y)qn− c21

4 =
[
∑

n e(Hilbn(X);x, y)(xyq)n]2

(xy)χ(OX)[1 − (xy)]
·

(2.9) ·
∑

ζ∈ΛH

(xy)−
ζ2+ζKX

2 [1 − (xy)ζKX ]q−
ζ2
4 .

Proof. By definition, �ζ = (4n − c2
1 + ζ2)/4 ≥ 0. So n = �ζ + (c2

1 − ζ2)/4. By
(2.7), ∑

n

e(MG
H(c1, n);x, y)qn− c21

4

=
∑

n

∑
ζ∈ΛH and ζ2≥−(4n−c2

1)

(xy)�ζ− ζ2+ζKX
2 −χ(OX) 1 − (xy)ζKX

1 − (xy)
·

·
∑

s+t=�ζ

e(Hilbs(X);x, y)e(Hilbt(X);x, y)qn− c21
4

=
∑

ζ∈ΛH

∑
�≥0

(xy)�− ζ2+ζKX
2 −χ(OX) 1 − (xy)ζKX

1 − (xy)
·

·
∑

s+t=�

e(Hilbs(X);x, y)e(Hilbt(X);x, y)q�− ζ2
4

=
∑

ζ∈ΛH

(xy)−
ζ2+ζKX

2 −χ(OX) 1 − (xy)ζKX

1 − (xy)
q−

ζ2
4 ·

·
∑
�≥0

∑
s+t=�

e(Hilbs(X);x, y)e(Hilbt(X);x, y)(xyq)�.

Here going from the first equality to the second equality, we have changed n to
� + (c2

1 − ζ2)/4 with � ≥ 0. Notice that∑
�≥0

∑
s+t=�

e(Hilbs(X);x, y)e(Hilbt(X);x, y)(xyq)�
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is equal to [
∑

n e(Hilbn(X);x, y)(xyq)n]2. Therefore, we obtain∑
n

e(MG
H(c1, n);x, y)qn− c21

4

=
∑

ζ∈ΛH

(xy)−
ζ2+ζKX

2 −χ(OX) 1 − (xy)ζKX

1 − (xy)
q−

ζ2
4 ·

[∑
n

e(Hilbn(X);x, y)(xyq)n

]2

=
[
∑

n e(Hilbn(X);x, y)(xyq)n]2

(xy)χ(OX)[1 − (xy)]
·

∑
ζ∈ΛH

(xy)−
ζ2+ζKX

2 [1 − (xy)ζKX ]q−
ζ2
4 .

�

Next we study the virtual Hodge polynomials of the Gieseker moduli spaces
over blownup surfaces. As before, let X be a rational ruled surface with effective
−KX . Let f be a general fiber of the ruling. Fix a divisor c1 and an ample divisor
H on X such that both (f · c1) and (H · c1) are odd. Let φ : X̃ → X be the
blowing-up of X at a point x0 ∈ X, and E be the exceptional divisor. We assume
that −K

X̃
is effective. Let c̃1 = φ∗c1 − aE with a = 0 or 1. It is well-known

[F-M, Bru, Qi1] that for r � 0, all the divisors Hr = r ·φ∗H−E on X̃ are ample
and lie in the same open chamber of type (c̃1, n). Thus all the moduli spaces
MG

Hr
(c̃1, n) (resp. MHr (c̃1, n)) with r � 0 are identical, and shall be denoted

by MG
H∞

(c̃1, n) (resp. MH∞(c̃1, n)). Since (Hr · c̃1) = r(H · c1) − a and (H · c1)
is odd, we can always choose r � 0 such that (Hr · c̃1) is also odd.

Lemma 2.10. Let φ : X̃ → X be the blowing-up of a rational ruled surface X
at one point such that −KX and −K

X̃
are effective. Let c1 be a divisor on X

such that both (f · c1) and (H · c1) are odd, and c̃1 = φ∗c1 − aE with a = 0 or 1.
Then ∑

n

e(MG
H∞(c̃1, n);x, y)qn− c̃21

4 =
[
∑

n e(Hilbn(X̃);x, y)(xyq)n]2

(xy)χ(O
X̃

)[1 − (xy)]
·

(2.11) ·
∑
t∈Z

(xy)
(2t+a)2−(2t+a)

2 q
(2t+a)2

4 ·
∑

ζ∈ΛH

(xy)−
ζ2+ζKX

2 [1 − (xy)ζKX ]q−
ζ2
4 .

Proof. Note that the ruling of X induces a ruling of X̃ and that φ∗f is the
divisor class of a general fiber for the ruling of X̃. Fix an integer n, and choose
r � 0 such that (Hr · c̃1) is odd. Applying (2.7) to X̃ and Hr, we obtain

e(MG
Hr

(c̃1, n);x, y) =
∑

ζ̃∈ΛHr and ζ̃2≥−(4n−c̃2
1)

(xy)�ζ̃−
ζ̃2+ζ̃K

X̃
2 −χ(O

X̃
) 1 − (xy)ζ̃K

X̃

1 − (xy)
·
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(2.12) ·
∑

s+t=�ζ̃

e(Hilbs(X̃);x, y)e(Hilbt(X̃);x, y)

where by (2.6), ΛHr = {ζ̃ ∈ Pic(X̃)| ζ̃Hr < 0 < ζ̃ · φ∗f and ζ̃ ≡ c̃1 (mod 2)}.
Since (H · c1) and (Hr · c̃1) are odd, φ∗H and Hr are not separated by any
wall of type (c̃1, n). Thus if ζ̃ defines a nonempty wall of type (c̃1, n), then
ζ̃Hr < 0 < ζ̃ · φ∗f if and only if ζ̃ · φ∗H < 0 < ζ̃ · φ∗f . In view of this
observation, we put

ΛH∞ = {ζ̃ ∈ Pic(X̃)| ζ̃ · φ∗H < 0 < ζ̃ · φ∗f and ζ̃ ≡ c̃1 (mod 2)}.
Then by (2.12) and the convention for MG

H∞
(c̃1, n), we have

e(MG
H∞(c̃1, n);x, y) = e(MG

Hr
(c̃1, n);x, y)

=
∑

ζ̃∈ΛH∞ and ζ̃2≥−(4n−c̃2
1)

(xy)�ζ̃−
ζ̃2+ζ̃K

X̃
2 −χ(O

X̃
) 1 − (xy)ζ̃K

X̃

1 − (xy)

·
∑

s+t=�ζ̃

e(Hilbs(X̃);x, y)e(Hilbt(X̃);x, y).

As in the proof of Lemma 2.8, we conclude that∑
n

e(MG
H∞(c̃1, n);x, y)qn− c̃21

4 =
[
∑

n e(Hilbn(X̃);x, y)(xyq)n]2

(xy)χ(O
X̃

)[1 − (xy)]
·

(2.13) ·
∑

ζ̃∈ΛH∞

(xy)−
ζ̃2+ζ̃K

X̃
2 [1 − (xy)ζ̃K

X̃ ]q−
ζ̃2
4 .

Put ζ̃ = φ∗ζ + sE. Then ζ̃ · φ∗H < 0 < ζ̃ · φ∗f if and only if ζH < 0 < ζf .
Moreover, ζ̃ ≡ c̃1 (mod 2) if and only if ζ ≡ c1 (mod 2) and s ≡ a (mod 2). So
ζ̃ = φ∗ζ + sE ∈ ΛH∞ if and only if ζ ∈ ΛH and s = (2t − a) for some t ∈ Z.
Thus,

(2.14)
∑

ζ̃∈ΛH∞

(xy)−
ζ̃2+ζ̃K

X̃
2 [1 − (xy)ζ̃K

X̃ ]q−
ζ̃2
4

=
∑

ζ∈ΛH

∑
t∈Z

(xy)−
ζ2−(2t−a)2+ζKX−(2t−a)

2 [1 − (xy)ζKX−(2t−a)]q−
ζ2−(2t−a)2

4

=
∑

ζ∈ΛH

(xy)−
ζ2+ζKX

2 q−
ζ2
4 ·

∑
t∈Z

[
(xy)

(2t−a)2+(2t−a)
2 −(xy)ζKX+ (2t−a)2−(2t−a)

2

]
q

(2t−a)2

4

=
∑

ζ∈ΛH

(xy)−
ζ2+ζKX

2 q−
ζ2
4 ·

∑
t∈Z

[
(xy)

(2t+a)2−(2t+a)
2 −(xy)ζKX+ (2t+a)2−(2t+a)

2

]
q

(2t+a)2

4

=
∑

ζ∈ΛH

(xy)−
ζ2+ζKX

2 [1 − (xy)ζKX ]q−
ζ2
4 ·

∑
t∈Z

(xy)
(2t+a)2−(2t+a)

2 q
(2t+a)2

4 .
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Here going from the second equality to the third equality, we have changed t
to −t in the first term in the brackets and t to t + a in the second term in the
brackets. Now the formula (2.11) follows from (2.13) and (2.14). �

Theorem 2.15. The universal function ˜̃
Za(x, y, q) is equal to

∑
n∈Z

(xy)
(2n+a)2−(2n+a)

2 q
(2n+a)2

4

[q
1
24

∏
n≥1(1 − (xy)2nqn)]2

.

Proof. First of all, we notice from [G-S] that for any algebraic surface X,

(2.16)
∑

n

e(Hilbn(X);x, y)qn =
∏
n≥1

2∏
s,t=0

(1 − xs+n−1yt+n−1qn)(−1)s+t+1hs,t(X)

where hs,t(X) stands for the Hodge numbers of X. Next, let X = F1 be the
blownup of P2 at one point, and let σ be the exceptional divisor in X. Then
X is a ruled surface with effective −KX . Let f be a fiber of the ruling. Let
φ : X̃ → X be the blowing-up of X at one point. Then −K

X̃
is also effective.

Let H = σ + 2f and c1 = σ. Then (H · c1) = 1 = (f · c1). So (H · c1) and
(f · c1) are odd. Therefore the conditions in Lemma 2.8 and Lemma 2.10 are
satisfied. Note that χ(O

X̃
) = χ(OX), hs,t(X̃) = hs,t(X) when (s, t) �= (1, 1),

and h1,1(X̃) = 1 + h1,1(X). By (2.16),

(2.17)
∑

n e(Hilbn(X̃);x, y)(xyq)n∑
n e(Hilbn(X);x, y)(xyq)n

=
1∏

n≥1(1 − (xy)2nqn)
.

Combining (2.9), (2.11), (2.17) with (1.1), we see that

˜̃
Za(x, y, q)

=
1

q
1
12

·
∑

n e(MG
H∞

(c̃1, n);x, y)qn− c̃21
4∑

n e(MG
H(c1, n);x, y)qn− c21

4

=
1

q
1
12

· [
∑

n e(Hilbn(X̃);x, y)(xyq)n]2

[
∑

n e(Hilbn(X);x, y)(xyq)n]2
·
∑
t∈Z

(xy)
(2t+a)2−(2t+a)

2 q
(2t+a)2

4

=
∑

n∈Z
(xy)

(2n+a)2−(2n+a)
2 q

(2n+a)2

4

[q
1
24

∏
n≥1(1 − (xy)2nqn)]2

.

�
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3. The universal function Z̃a(x, y, q)

In this section, we prove a closed formula for the universal function Z̃a(x, y, q).
Our first goal is to compute the virtual Hodge polynomial of the space U(m1, m2)
which parameterizes all surjective maps OP1(−m1) ⊕ OP1(−m2) → OP1 → 0.
Then using the results in [L-Q], we obtain a closed formula for Z̃a(x, y, q). We
end this section with a remark about this closed formula.

First of all, for two integers m1, m2 ≥ 0, let U(m1, m2) be the subset of

P(H0(P1,OP1(m1) ⊕OP1(m2))) ∼= Pm1+m2+1

parameterizing all pairs (f1, f2) of homogeneous polynomials such that deg(f1) =
m1,deg(f2) = m2, and f1 and f2 are coprime. Then U(m1, m2) parameterizes
all surjective maps OP1(−m1) ⊕ OP1(−m2) → OP1 → 0. The following result
gives the virtual Hodge polynomial of U(m1, m2).

Lemma 3.1. Let m1 and m2 be two integers with 0 ≤ m1 ≤ m2. Then,
(3.2)

e(U(m1, m2);x, y) =


(xy) + 1, if m1 = m2 = 0
(xy)m2+1, if m1 = 0 and m2 > 0
(xy)m1+m2−1[(xy)2 − 1], if m1 > 0.

Proof. We computed e(U(m1, m2); 1, 1) in the Lemma 4.13 of [L-Q]. We shall
adopt the same approach. First of all, we prove that (3.2) is true for m1 = 0.
Indeed, the subset U(0, 0) of P(H0(P1,OP1(0) ⊕ OP1(0))) ∼= P1 coincides with
P1. Since e(Pd;x, y) = 1 + (xy) + . . . + (xy)d, we have

e(U(0, 0);x, y) = e(P1; x, y) = (xy) + 1.

So (3.2) holds for m1 = m2 = 0. When m2 > 0, the subset U(0, m2) of

P(H0(P1,OP1(0) ⊕OP1(m2)))

is P(H0(P1,OP1(0) ⊕ OP1(m2))) − P({0} ⊕ H0(P1,OP1(m2))) ∼= Pm2+1 − Pm2 .
Thus,

e(U(0, m2);x, y) = e(Pm2+1;x, y) − e(Pm2 ; x, y) = (xy)m2+1.

Hence (3.2) also holds for m1 = 0 and m2 > 0.
Next let m1 > 0. The possible degree of the greatest common divisor of a

pair

(f1, f2) ∈ P(H0(P1,OP1(m1) ⊕OP1(m2))) − P({0} ⊕ H0(P1,OP1(m2)))

can be 0, . . . , m1. For d = 0, . . . , m1, let Yd be the subset of

P(H0(P1,OP1(m1) ⊕OP1(m2))) − P({0} ⊕ H0(P1,OP1(m2)))
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parameterizing all pairs (f1, f2) such that gcd(f1, f2) has degree d. Then we
obtain

(3.3)

Pm1+m2+1 − Pm2

∼= P(H0(P1,OP1(m1) ⊕OP1(m2))) − P({0} ⊕ H0(P1,OP1(m2)))

=
∐

d=0,... ,m1

Yd.

Let 1 ≤ d ≤ m1, and (f1, f2) ∈ Yd with gcd(f1, f2) = f . Then we can write
f1 = fg1 and f2 = fg2 with f ∈ P(H0(P1,OP1(d))) ∼= Pd and

(g1, g2) ∈


U(m1 − d, m2 − d), if 1 ≤ d < m1

U(0, m2 − m1), if d = m1 < m2

U(0, 0) − {a point}, if d = m1 = m2.

Thus Yd is the product of the space Pd with the space U(m1−d, m2−d) when 1 ≤
d < m1 or d = m1 < m2, or with the space U(0, 0)−{a point} ∼= P1 −{a point}
when d = m1 = m2. So for 1 ≤ d ≤ m1, we have

e(Yd;x, y) = e(Pd;x, y) ·


e(U(m1 − d, m2 − d);x, y), if 1 ≤ d < m1

e(U(0, m2 − m1);x, y), if d = m1 < m2

(xy), if d = m1 = m2.

Since e(U(0, m2 − m1);x, y) = (xy)m2−m1+1 when m1 < m2, we obtain

(3.4) e(Yd;x, y) =
d∑

i=0

(xy)i ·
{

e(U(m1 − d, m2 − d);x, y), if 1 ≤ d < m1

(xy)m2−m1+1, if d = m1.

Note that Y0 = U(m1, m2). From (3.3) and (3.4), we conclude that

m1+m2+1∑
i=m2+1

(xy)i = e(U(m1, m2);x, y) +
m1∑
i=0

(xy)i · (xy)m2−m1+1

+
∑

1≤d<m1

d∑
i=0

(xy)i · e(U(m1 − d, m2 − d);x, y).(3.5)

Now we see from (3.5) that e(U(1, m2);x, y) = (xy)m2 [(xy)2 − 1]. So (3.2)
holds for m1 = 1. For m1 > 1, we use (3.5) and induction on m1:

e(U(m1, m2);x, y) =
m1+m2+1∑
i=m2+1

(xy)i −
m1∑
i=0

(xy)i · (xy)m2−m1+1

−
∑

1≤d<m1

d∑
i=0

(xy)i · (xy)(m1−d)+(m2−d)−1[(xy)2 − 1].

= (xy)m1+m2−1[(xy)2 − 1]. �
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In section four of [L-Q], we proved the following formula:

(3.6) Z̃a(x, y, q) =
q

a
4 ·

∑
n≥0 Ba,n(x, y)qn

q
1
12 (1 − xyq)

where B0,0(x, y) = 1, and Ba,n(x, y) with n ≥ (1 − a) is given by

B0,n(x, y) =
∑

0≤d1,0≤d2j≤d2j−1−1,0≤d2j+1≤d2j(1≤j≤s−1),0≤d2s≤d2s−1−1∑2s
i=1 di=n(s−1∏

i=1

e(U(d2i−1 − d2i − 1, d2i−1 + d2i);x, y)(3.7)

e(U(d2i − d2i+1, d2i + d2i+1);x, y)
)

e(U(d2s−1 − d2s − 1, d2s−1 + d2s);x, y)e(U(d2s, d2s);x, y)

B1,n(x, y) =
∑

0≤d1,0≤d2i≤d2i−1,0≤d2i+1≤d2i−1(1≤i≤s)∑2s+1
i=1 di=n( s∏

i=1

e(U(d2i−1 − d2i, d2i−1 + d2i);x, y)(3.8)

e(U(d2i − d2i+1 − 1, d2i + d2i+1);x, y)
)

e(U(d2s+1, d2s+1);x, y).

Now we can prove a closed formula for Z̃a(x, y, q).

Theorem 3.9. The universal function Z̃a(x, y, q) is equal to

1
q

1
12 (1 − xyq)

[∑
s≥0

(xy)
(2s+a)2+(2s+a)

2 q
(2s+a)2

4

2s+a∏
j=1

1 − (xy)2j−2qj

1 − (xy)2jqj

+
∑

s≥(1−a)

(xy)
(2s+a)2+(2s+a)−2

2 q
(2s+a)2

4

2s+a−1∏
j=1

1 − (xy)2j−2qj

1 − (xy)2jqj

](3.10)

where we make the convention that
0∏

j=1

1−(xy)2j−2qj

1−(xy)2jqj = 1.

Proof. Since the proof for the case a = 1 is similar, we shall only prove the case
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a = 0. By (3.6), it suffices to show that

∑
n≥0

B0,n(x, y)qn =
∑
s≥0

(xy)2s2+sqs2
2s∏

j=1

1 − (xy)2j−2qj

1 − (xy)2jqj

+
∑
s≥1

(xy)2s2+s−1qs2
2s−1∏
j=1

1 − (xy)2j−2qj

1 − (xy)2jqj
.(3.11)

First of all, let {d1, d2, . . . , d2s} be an indexing sequence in the summation
(3.7). So 0 ≤ d1, 0 ≤ d2j ≤ d2j−1 − 1, 0 ≤ d2j+1 ≤ d2j(1 ≤ j ≤ s − 1), 0 ≤ d2s ≤

d2s−1 − 1, and
2s∑

i=1

di = n. We make the following chang of indices:

(3.12)



d′1 = d1 − d2 − 1,

d′2 = d2 − d3,

...
d′2s−3 = d2s−3 − d2s−2 − 1,

d′2s−2 = d2s−2 − d2s−1,

d′2s−1 = d2s−1 − d2s − 1,

d′2s = d2s.

Thus, d′i ≥ 0 for all the i with 1 ≤ i ≤ 2s. Moreover, we have

(3.13)



d1 = d′1 + . . . + d′2s + s,

d2 = d′2 + . . . + d′2s + (s − 1),
d3 = d′3 + . . . + d′2s + (s − 1),

...
d2s−2 = d′2s−2 + d′2s−1 + d′2s + 1,

d2s−1 = d′2s−1 + d′2s + 1,

d2s = d′2s.

So the condition
2s∑

i=1

di = n becomes
2s∑

i=1

id′i + s2 = n .

Next, let t = (xy), and let f : {0, 1, 2, . . . } → {0, 1} be defined by f(d′) = 0 if
d′ = 0, and f(d′) = 1 if d′ > 0. Then for 0 ≤ d′ ≤ d′′, (3.2) can be rewritten as:

(3.14) e(U(d′, d′′);x, y) =

{
t + 1, if d′′ = 0.

td
′+d′′+1(1 − 1

t2
)f(d′), if d′′ > 0.



BLOWUP FORMULAE 451

Thus by (3.12), (3.13) and (3.14), the typical term in (3.7) is

( s−1∏
i=1

e(U(d2i−1 −d2i − 1, d2i−1 +d2i);x, y)e(U(d2i −d2i+1, d2i +d2i+1);x, y)
)

e(U(d2s−1 − d2s − 1, d2s−1 + d2s);x, y)e(U(d2s, d2s);x, y)

=

{
t2d′

1+...+2d′
2s+2s(1 − 1

t2 )f(d′
1) . . . t2d′

2s+1(1 − 1
t2 )f(d′

2s),if d′2s > 0,

t2d′
1+...+2d′

2s+2s(1 − 1
t2 )f(d′

1) . . . t2d′
2s−1+2(1 − 1

t2 )f(d′
2s−1)(1 + t), if d′2s = 0.

It follows from (3.7) that
∑

n≥0 B0,n(x, y)qn is equal to

1 +
∑
n≥1

∑
s2+

2s∑
i=1

id′
i=n,

d′
i≥0(1≤i≤2s),

d′
2s �=0

t2d′
1+...+2d′

2s+2s(1 − 1
t2

)f(d′
1) . . . t2d′

2s+1(1 − 1
t2

)f(d′
2s)qn

+
∑
n≥1

∑
s2+

2s∑
i=1

id′
i=n,

d′
i≥0(1≤i≤2s),

d′
2s=0

t2d′
1+...+2d′

2s+2s(1− 1
t2

)f(d′
1) . . . t2d′

2s−1+2(1− 1
t2

)f(d′
2s−1)(1+t)qn

= 1 +
∑
s≥1

∑
d′

i≥0(1≤i≤2s),d′
2s �=0

t2
∑2s

i=1 id′
i+

∑2s
i=1 i(1 − 1

t2
)
∑2s

i=1 f(d′
i)q

∑2s
i=1 id′

i+s2

+
∑
s≥1

∑
d′

i≥0(1≤i≤2s),d′
2s=0

t2
∑2s

i=1 id′
i+

∑2s
i=2 i(1 − 1

t2
)
∑2s

i=1 f(d′
i)q

∑2s
i=1 id′

i+s2
(1 + t)

= 1 +
∑
s≥1

∑
d′

i≥0(1≤i≤2s),d′
2s �=0

t2s2+sqs2
(t2q)

∑2s
i=1 id′

i(1 − 1
t2

)
∑2s

i=1 f(d′
i)

+
(∑

s≥1

∑
d′

i≥0(1≤i≤2s),d′
2s=0

t2s2+sqs2
(t2q)

∑2s
i=1 id′

i(1 − 1
t2

)
∑2s

i=1 f(d′
i)

+
∑
s≥1

∑
d′

i≥0(1≤i≤2s−1)

t2s2+s−1qs2
(t2q)

∑2s−1
i=1 id′

i(1 − 1
t2

)
∑2s−1

i=1 f(d′
i)

)

= 1 +
∑
s≥1

∑
d′

i≥0(1≤i≤2s)

t2s2+sqs2
(t2q)

∑2s
i=1 id′

i(1 − 1
t2

)
∑2s

i=1 f(d′
i)

+
∑
s≥1

∑
d′

i≥0(1≤i≤2s−1)

t2s2+s−1qs2
(t2q)

∑2s−1
i=1 id′

i(1 − 1
t2

)
∑2s−1

i=1 f(d′
i).
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Let J be the set consisting of all the j with d′j > 0. Then
∑

n≥0 B0,n(x, y)qn

equals

1 +
∑
s≥1

t2s2+sqs2 ∑
J⊂{1,... ,2s}

(1 − 1
t2

)|J|
∑

d′
j>0(j∈J)

(t2q)
∑

j∈J jd′
j

+
∑
s≥1

t2s2+s−1qs2 ∑
J⊂{1,... ,2s−1}

(1 − 1
t2

)|J|
∑

d′
j>0(j∈J)

(t2q)
∑

j∈J jd′
j

= 1 +
∑
s≥1

t2s2+sqs2 ∑
J⊂{1,... ,2s}

(1 − 1
t2

)|J|
∏
j∈J

(
1

1 − (t2q)j
− 1)

+
∑
s≥1

t2s2+s−1qs2 ∑
J⊂{1,... ,2s−1}

(1 − 1
t2

)|J|
∏
j∈J

(
1

1 − (t2q)j
− 1)

= 1 +
∑
s≥1

t2s2+sqs2
2s∏

j=1

(1 + (1 − 1
t2

)
(t2q)j

1 − (t2q)j
)

+
∑
s≥1

t2s2+s−1qs2
2s−1∏
j=1

(1 + (1 − 1
t2

)
(t2q)j

1 − (t2q)j
)

=
∑
s≥0

(xy)2s2+sqs2
2s∏

j=1

1 − (xy)2j−2qj

1 − (xy)2jqj

+
∑
s≥1

(xy)2s2+s−1qs2
2s−1∏
j=1

1 − (xy)2j−2qj

1 − (xy)2jqj
.

�

Remark 3.15. In view of Yoshioka’s results over finite fields (the Remark 4.5 in
[Yos]), we think that the following is a better closed formula for Z̃a(x, y, q):

(3.16)
∑

n∈Z
(xy)

(2n+a)2−(2n+a)
2 q

(2n+a)2

4

q
1
12 (1 − xyq)

·
∏
d≥1

1 − (xy)2d−1qd

1 − (xy)2dqd
.

For instance, we can verify that the lower degree terms in (3.10) and (3.16)
coincide by using MAPLE. However, we are unable to show that (3.10) and
(3.16) are equal.
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