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LATTICES WITHOUT SHORT CHARACTERISTIC VECTORS

MARK GAULTER

ABSTRACT. All the lattices here under discussion here are understood to be inte-
gral unimodular z-lattices in R™. A characteristic vector of a lattice L is a vector
w € L such that v-w = |[v|? (mod 2) for every v € L. Elkies has considered the
minimal (squared) norm of the characteristic vectors in a unimodular lattice. He
showed that any unimodular Z-lattice in R™ has characteristic vectors of norm
< n; he also proved that of all such lattices, only the standard lattice z™ has no
characteristic vectors of norm < n (Math Research Letters 2, 321-326). He then
asked “For any k > 0, is there N} such that every integral unimodular lattice
all of whose characteristic vectors have norm > n — 8k is of the form Lo 1 z"
for some lattice Lo of rank at most Ny?” (Math Research Letters 2, 643-651).
He solved this question in the case k = 1, showing that N7 = 23 suffices; here I
determine values for N2 and N3.

1. Introduction

A Z-lattice is a free module of finite rank over Z. Given a Z-lattice L, let
B : L xL — Z be a symmetric bilinear form and ¢ : L — Z given by
q(x) = B(x,z) the corresponding quadratic form. Throughout this paper we
will assume that ¢ is positive definite. This enables us to embed L in R", with
B(+,-) the standard inner product and ¢(-) the corresponding (squared) norm.
A characteristic vector of L is an element w such that B(v,w) = ¢(v) (mod 2)
for every v € L. Characteristic vectors are known to exist in any unimodular
Z-lattice L, and in this case they constitute a coset of 2L in L. If L has rank
n, all the characteristic elements have norm congruent to n (mod 8) (see [B]; or
see Chapter V of [9]).

Noam Elkies has considered the minimal norm of the characteristic vectors in
a unimodular lattice. In [E1], Elkies shows that any positive definite unimodular
Z-lattice of rank n has characteristic vectors of norm < n; he also proves that
of all such lattices, only the standard lattice Z™ has no characteristic vectors
of norm strictly less than n. Then in [E2], he begins a programme of showing
that a positive definite unimodular lattice whose minimal characteristic vectors
have norm close to n are in some sense close to Z™. More precisely, he shows
that every such lattice whose characteristic vectors all have norm > n — 8 is of
the form Lo 1L Z" for some Lg of rank < 23. He then asks: “For any k& > 0,
is there N} such that every integral [positive definite] unimodular lattice all of
whose characteristic vectors have norm > n — 8k is of the form Ly 1L Z" for
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some lattice Ly of rank at most N}.?” Elkies goes on to comment: “Even the
case k = 2 appears difficult.”

In this paper, we first obtain upper bounds on the number of characteristic
vectors of minimal norm s and on the number of characteristic vectors of norm
s + 8; then we apply a theorem of Hecke to settle the cases k = 2 and k = 3 of
Elkies’ problem.

2. Notation

We will largely follow the notation of [O’M]. Also, for a given lattice L, we

define:
X=xr:={veL: B(z,v)=q(z) (mod 2),Vz € L}

xe = xi(L) :={vexw: qv) =t}
s =s(L) := min{q(v)}.

VEXL
Thus xs denotes the set of shortest characteristic vectors of the lattice L under
discussion. Finally, for any set A, define |A| to be the cardinality of A.

3. A bound on the number of shortest characteristic vectors

Throughout this section, L denotes a positive definite unimodular Z-lattice
of rank n. We will find bounds on |xs| and |xs4+s|- The characteristic elements
of L constitute a coset of 2L in L, so if v1,v9 € xr then vy + vy € 2L. If vq,v9
have the same norm, we can say more:

Lemma 3.1. Let vy, ve be characteristic elements of L with g(vi) = q(va) = t.

Then
V1 + U2
— 2 )<t
(252 <

with equality if and only if v; = wvs.
Proof. This is because a ball in Euclidean space is strictly convex. O

Lemma 3.2. Fix w € x;. Define the map ¢,, : xs — L/2L by

oo (0) = 2 : Y yorL.

Then ¢,, is injective.
Proof. Suppose ¢, (v1) = ¢y (v2). Then #1522 € 2L, from which we see

V1 + U2 V1 — Vo
=V S .
5 2 + 5 XL

V1 + U2
>

But v1,v2 € x5, so by Lemma 3.1 we have q(%) <'s. Thus we have equality,

and by applying Lemma 3.1 again we see v; = vs, as required. O

Therefore
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Lemma 3.2 gives us an injective function from x; into a group of order 2". This
proves the following:

Corollary 3.3. The number of shortest characteristic vectors of a positive def-
inite unimodular Z-lattice of dimension n is at most 2".

This result is the best possible, as the following example shows. Let
{e1,ea, -+ ,e,} be an orthonormal basis for Z". Then the characteristic vec-
tors are those of the form Z?Zl Aje; with all the A\; odd. In particular, the

shortest characteristic vectors are the vectors of the form Z?:l Aje; with each
Aj € {£1}; there are 2" such vectors.

Now we shall find an upper bound on the number of characteristic vectors
of norm s + 8. This bound must be at least n2™, for the lattice Z™ has n2"
such vectors. (These are the vectors 2?21 Aje; with one A\; = £3 and all other

Aj € {£1}.)
Lemma 3.4. Suppose w € xs+5. Define
Cw:={v € xs48:w—v €4L}.
If n # 15 then |C,| < n; if n = 15 then |C,| < 16.
Proof. 1Tt is enough to show that |C,,| < n + 1, and then to show that equality

can hold only when n = 15.

(a) Proof of the inequality |Cy| < n + 1.
Write

w:$1+2l1

w = T9 + 2l

(1)

W= Tyng1 + 2lmy1
in as many different ways as possible with z; € x and B(x;,[l;) = 0 for each i.
The list is finite because ¢ is positive definite.

Claim: |Cy| =m+ 1. Given v € Cy, let & = 5% and I = “32. (Sow =z + 21
and v =z — 2[.) Then

v —w

rT=w+ cew+2L=x.

But the equality ¢(v) = ¢q(w) then yields g(x — 21) = q(z + 2l), from which
B(z,l) = 0. This gives an injective map from C,, to rows of the list (1). Thus
|Cw| <m+1.

On the other hand, if w = x;+2[;, then we assert that x; —2I; € C,,; this vector
is characteristic and in the same coset of L/4L as w, and q(w) = q(z; — 21;). If
x; — 2l; = v — 2l; then w — 4l; = w — 4l; and so each expression for w yields a
different element of C,,. Thus |C,,| = m + 1 as claimed.
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Having established this claim, to prove part (a) we need only show that m < n.
One of our expressions for w in (1) will be w 4 0. So without loss of generality,
suppose l,+1 = 0. The proof will proceed by showing I, - ,l,, are linearly
independent.

For 1 < i < m we have ¢(z;) + 4¢q(l;) = s + 8. Since z; is characteristic,
it follows that ¢(l;) = 2 and g(z;) = s. Suppose 1 < i < j < m. Because
x; — 2l; € x we know ¢(z; — 2l;) > s. Hence, because ¢(z;) = s, we have

B(xi,lj) S q(lj) = 2.

We also know [; # [;, since the expressions in (1) are different. So ¢(I; — ;) > 0
and therefore B(l;,1;) < 1. But

B(Sﬂi,lj) + 2B(ll,l]) = B(w,l]) == B(ZL‘] + 2lj,lj) =4.
Thus B(z;,l;) = 2 and B(l;,l;) =1 whenever 1 <i < j <m.

We are now ready to prove that ly,ls,--- ,[,, are linearly independent. For
suppose

i pil; =0
i1

with f11 -+ ftr, € Q. Then for each k& < m we have B (3., pili, 1) = 0, and
hence

M1
A | =0
fim
where A,,, is the m x m matrix
2 1 1
1 2
o
1 1 2

But det A,,, = m + 1, and hence A,, is invertible over Q. Therefore u; = s =
-+ = by = 0, which proves the claim.
Therefore m < dimQL = n and so |Cy,| < n+ 1 as required.

(b) Suppose |Cy| = n + 1; we will show that n = 15.

As in the proof of part (a), write w = z; + 2[; for each 1 < i < n, with the x;
distinct elements of xs, and B(x;,1;) = 0 for each i. Then the set {l1,ls,--- ,l,}
is a basis for QL, and ¢(I;) = 2 for each i.
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Write z1 = >, v;l; with v; € Q. Recall that B(z1,{1) = 0 and B(x1,1;) = 2
for 2 < i <n. Thus

141 0
%) 2
An . -

Up, 2
Solving this for vy,--- v, yields v; = —2(2—:) and Vg = -+ =1, = %4—1 and
hence 5

T = n+1[—(n—1)11+2(12+---+ln)}
from which we find
n—1
=38 e 7.
ata) <n + 1)

Since (n —1,n 4+ 1) < 2, it follows that (n + 1)|16. So n € {1,3,7,15}. But 2
was characteristic, so g(x1) = n (mod 8). This happens only for n = 15. O

Corollary 3.5. Let L be a positive definite unimodular Z-lattice of rank n. If
n # 15 then L has at most n2" characteristic elements of length s + 8. If L has
rank 15 then there are at most 2'° such elements.

Proof. Regardless of the rank of L, the elements of x form a coset of L/2L.
Therefore x consists of precisely 2" cosets of L/4L. Pick an element wy, of norm
s + 8 from each coset of L/4L that contains such an element. Then

Xs+8 = U C’wk .
k

If n # 15, Lemma 3.4 tells us there are no more than n elements in each C,, .
Thus there can be no more than n2™ elements of y,is.

If n = 15, Lemma 3.4 tells us there are no more than 16 elements of xs1g in
each C, . Thus there can be no more than 16 - 215 = 219 elements of x,15. [

Remark. In fact if n = 15, calculations involving theta series show that there
are at most 15 x 25 characteristic elements of length s + 8.

4. The main result

In the first part this section, we largely follow the notation of [E2]. Let H be
the complex upper half plane: the set of complex numbers with strictly positive
imaginary part. Define the theta series of the lattice L to be

OL(t) =) em i)t
veEL

for any t € H. Then

QL (t) _ Z Nkem'kt’
k=0
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where Nj is the number of times L represents k. Now let w be any characteristic
vector of L and define

oo
QlL(t) — Z em‘q(v)t _ Zngem'kt/ll,
veEL+Y k=0

where N; is the number of characteristic vectors of norm k. In [El], Elkies
relates these series by the identity

(2) 0, (%1 + 1) — G)W 7, (1).

The n/2 power refers to the nth power of the principal square root.

Hecke has proved that if L is a unimodular Z-lattice, then 07 is a modular
form of weight 4§ and can be expressed as a weighted-homogeneous polynomial
Pr(0z,0E,) in the modular forms 67 and 0, of weight % and 4 repectively (see
Theorem 7, Chapter 7 of [CS] and the remark that follows it). Here, 67 and 0,
are the theta series of the lattices Z and Fg. Specifically

GZ:1—|—2(6ﬂit—|—€4ﬂ-it—|—€9ﬂ-it+"')

and
e k3e2ﬂ'ikt ) )
O, =1+240) T =1t 24027 + 2160 + . . .
k=0 €
We can express

l
PL(X,Y) =) NX"okyh
k=0
with A; € R, [ < [§] and A\; # 0 and so we may write

l
(3) 0L(t) =D Mebz ()05, (1)
k=0

with A; € R, [ <[§] and A\; # 0. Combining this with equation (2), we have

.\ n/2
1
0, (t) = <%> o1 (7 + 1)
-\ (n—8k)/2
1 - 1
S [(%) i (-5 1)
k=0

(0 ()
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But FEjs is an even lattice, hence 0 is one of its characteristic vectors. Thus
0ps = 0%,. So we have

(4) 07, = P(07,05,).

Because the characteristic vectors of Z (viewed as a lattice of rank one) are the
odd integers, we have

HIZ — 2(€7Tit/4 + 6971'it/4 4. )
Expanding the polynomial in equation (4) now gives
0/L(t) — )\l2n—816(n—8l)ﬂ'it/4 + (28)\l—1 _|_ (n —I_ 2321))\l)2n—8le(n—8l+8)ﬂit/4 + e

where \; and \;_; are as in equation (3). Since 67 encodes the number of
characteristic vectors of each norm, we can deduce that if 8, is expressed as in
equation (3) then

s=n—28l
(5) xs| = N2n®
Ixsas| = (28N_1 + (n +2320))\;)2n 8L

Theorem 4.1. Let L be a positive definite unimodular Z-lattice. Then its theta
series 0r,(t) is a modular form of weight § and can be expressed as a weighted-
homogeneous polynomial Pr,(0z, 0g,) in the modular forms 67 and 0g, of weight
1 and 4 respectively. Here 7 and g, are the theta series of the lattices Z and

2
FEs. Further, if we write

l
(6) PL(X,Y) =) NX"8kyh
k=0

then \; < 28%.

Proof. In light of Hecke’s theorem, the only new information here is the bound
on \;. Express Pr(X,Y) as in equation (6). Then there are \;2"~ 8 shortest
characteristic vectors. But Corollary 3.3 states that there are at most 2" such
vectors. Thus \; < 280, O

Lemma 4.2. Let L be an n-dimensional positive definite unimodular Z-lattice
that does not represent 1. Suppose further that the shortest characteristic vec-
tors of L have norm n — 16. Then

x| =277 (2n® — 46n + N>)

(Recall that Ny is the number of times L represents 2.)



360 MARK GAULTER

Proof. The shortest characteristic vectors of L have norm n — 16; thus
0L(t) = b7 (1) + M105 2 (1)0g, (t) + X205 '0()0%, (1)
= Aobzn (t) + AMbzn—s1 g (1) + Aobzn—161 o1 By (1)

We know how many times each of the numbers 0, 1 and 2 are represented by
the lattices Z™, Z" 8 1| Eg and Z" 16 | Eg | Eg.
So we have that

Or(t) = 1+ 0™ 4 Npe?™ 4 ...

:>\0 <1+2< > W2t+22(;l‘> 27‘th . )
+ Ao <1+2<n_116>e’”'t+<22(n_216)+480> 62”“+--->.

This yields the simultaneous equations
A+ +A=1
2nAo +2(n —8)A\1 +2(n —16)A2 =0
2n(n —1)XAo + (2(n — 8)(n — 9) + 240) A1 + (2(n — 16)(n — 17) + 480) Ay = N>

Upon solving these equations, we find

2n? — 46n + Na

Ao =
2 256

The observations (5) now tell us
Ixs| = 2"24(2n? — 46n + No)
as claimed. O

Theorem 4.3. Let L be a positive definite unimodular Z-lattice of rank n.
Suppose further that the shortest characteristic vectors of L have norm n — 16.
Then L = Ly L Z" for some sublattice L of rank < 2907.

Proof. We may assume L does not represent 1 and prove that n < 2907. By
Corollary 3.3, we know there are at most 2" shortest characteristic vectors. But
Lemma 4.2 tells us L has exactly 2"~ 24(2n? — 46n + N,) shortest characteristic
vectors. So

2" (2n? — 46n + No) < 2",

Hence
(7) 2n? — 46n + Ny < 224,

But Ny > 0, hence 2n? — 46n < 2%* and so the integer n cannot exceed 2907.
O
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Lemma 4.4. Let L be an n-dimensional positive definite unimodular Z-lattice
that does not represent 1, and assume that the shortest characteristic vectors of
L have norm n — 24. Then

’Xn_16’ = (2”2 — 46n + N2)2n_24 + (n — 72)|Xn_24‘

Proof. Since the shortest characteristic vectors of L have norm n — 24, we may
write

OL(t) = NoO% () + M0y 3(t)0p, (t) + Aoy 10 (1)0%, () + N30y 2" (£)0%, (¢).

Forming three simultaneous equations exactly as in the proof of Lemma 3.1,
we discover

_ 3N3+ 160N, — 5568n — 6 Nan + 308n? — 4n?

A2 912
—3N;3 — 144N, + 4832n + 6 Nyn — 27602 + 4n®
A3 = )
3 x 212
Therefore )
2n? — 46n + N.
Ao = —3)g + 28n+ 2

and from the observations (5), we can express the number of characteristic vec-
tors of length n — 16 in terms of the number of shortest characteristic vectors:

IXn_16] = (2°X2 + (n + 696)\3)2" 2
= (202 — 460 + N2)2" "2 4 (n — 72)(A\32"72%)
= (2n? — 46n + N2)2" 2% 1 (n — 72)|xn_24]
as claimed. O

Theorem 4.5. Let L be a positive definite unimodular Z-lattice of rank n.
Suppose further that the shortest characteristic vectors of L have norm n — 24.
Then L = Ly L Z" for some sublattice Ly of rank < 8 388 630.

Proof. We may assume L does not represent 1 and prove that the rank of L is
at most 8 388 630.

The hypotheses imply n # 15. So Corollary 3.5 (b) tells us there can be no
more than n2" second shortest characteristic vectors. So by Lemma 4.4 |

(2n% — 46n + N2)2" 24 4 (n — 72)|xn_24| < n2".

We may assume that n > 72 and we know that the number of shortest charac-
teristic vectors is positive. So

(2n? — 460 + Ny)2" 2% < n2™,
Rearranging,

(8) 2n? — (46 + 2°*)n + N, < 0.



362 MARK GAULTER

Next notice that No > 0. So inequality (8) implies n can be no larger than
8 388 630. Il

5. Remarks

I do not claim to have found the best possible bounds for A5 or N3. However,
if NV}, exists, we can see N}, > 23k as follows. Consider the lattice

Ly :=1% | Oy

whose components are all copies of the 23-dimensional shorter Leech lattice Osg
(see, for example, [CS], 179). In [E2], Elkies notes that Oa3 has shortest char-
acteristic vectors of norm 15. From this it follows that L; is a 23k-dimensional
lattice with shortest characteristic vectors of norm 23k — 8k.

It appears that my method of bounding the number of short characteristic
vectors does not yield N}, for k > 4. So Elkies’ question remains open for k& > 4.

Finally, by Construction A of ([CS], 137), we notice that if & < 3, there is
an ny such that every binary self-dual code whose shadow has minimal norm

> ("_—QSK) is of the form Cy & 2" for some code Cy of length at most ng.
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