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LATTICES WITHOUT SHORT CHARACTERISTIC VECTORS

Mark Gaulter

Abstract. All the lattices here under discussion here are understood to be inte-
gral unimodular Z -lattices in R

n. A characteristic vector of a lattice L is a vector
w ∈ L such that v · w ≡ |v|2 (mod 2) for every v ∈ L. Elkies has considered the
minimal (squared) norm of the characteristic vectors in a unimodular lattice. He
showed that any unimodular Z -lattice in R

n has characteristic vectors of norm
≤ n; he also proved that of all such lattices, only the standard lattice Z

n has no
characteristic vectors of norm < n (Math Research Letters 2, 321-326). He then
asked “For any k > 0, is there Nk such that every integral unimodular lattice
all of whose characteristic vectors have norm ≥ n − 8k is of the form L0 ⊥ Z

r

for some lattice L0 of rank at most Nk?” (Math Research Letters 2, 643-651).
He solved this question in the case k = 1, showing that N1 = 23 suffices; here I
determine values for N2 and N3.

1. Introduction

A Z-lattice is a free module of finite rank over Z. Given a Z-lattice L, let
B : L × L → Z be a symmetric bilinear form and q : L → Z given by
q(x) = B(x, x) the corresponding quadratic form. Throughout this paper we
will assume that q is positive definite. This enables us to embed L in Rn, with
B(·, ·) the standard inner product and q(·) the corresponding (squared) norm.
A characteristic vector of L is an element w such that B(v, w) ≡ q(v) (mod 2)
for every v ∈ L. Characteristic vectors are known to exist in any unimodular
Z-lattice L, and in this case they constitute a coset of 2L in L. If L has rank
n, all the characteristic elements have norm congruent to n (mod 8) (see [B]; or
see Chapter V of [S]).

Noam Elkies has considered the minimal norm of the characteristic vectors in
a unimodular lattice. In [E1], Elkies shows that any positive definite unimodular
Z-lattice of rank n has characteristic vectors of norm ≤ n; he also proves that
of all such lattices, only the standard lattice Zn has no characteristic vectors
of norm strictly less than n. Then in [E2], he begins a programme of showing
that a positive definite unimodular lattice whose minimal characteristic vectors
have norm close to n are in some sense close to Zn. More precisely, he shows
that every such lattice whose characteristic vectors all have norm ≥ n − 8 is of
the form L0 ⊥ Zr for some L0 of rank ≤ 23. He then asks: “For any k > 0,
is there Nk such that every integral [positive definite] unimodular lattice all of
whose characteristic vectors have norm ≥ n − 8k is of the form L0 ⊥ Zr for
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some lattice L0 of rank at most Nk?” Elkies goes on to comment: “Even the
case k = 2 appears difficult.”

In this paper, we first obtain upper bounds on the number of characteristic
vectors of minimal norm s and on the number of characteristic vectors of norm
s + 8; then we apply a theorem of Hecke to settle the cases k = 2 and k = 3 of
Elkies’ problem.

2. Notation

We will largely follow the notation of [O’M]. Also, for a given lattice L, we
define:

χ = χL := {v ∈ L : B(x, v) ≡ q(x) (mod 2),∀x ∈ L}
χt = χt(L) := {v ∈ χL : q(v) = t}

s = s(L) := min
v∈χL

{q(v)}.
Thus χs denotes the set of shortest characteristic vectors of the lattice L under
discussion. Finally, for any set A, define |A| to be the cardinality of A.

3. A bound on the number of shortest characteristic vectors

Throughout this section, L denotes a positive definite unimodular Z-lattice
of rank n. We will find bounds on |χs| and |χs+8|. The characteristic elements
of L constitute a coset of 2L in L, so if v1, v2 ∈ χL then v1 + v2 ∈ 2L. If v1, v2

have the same norm, we can say more:

Lemma 3.1. Let v1, v2 be characteristic elements of L with q(v1) = q(v2) = t.
Then

q

(
v1 + v2

2

)
≤ t

with equality if and only if v1 = v2.

Proof. This is because a ball in Euclidean space is strictly convex.

Lemma 3.2. Fix w ∈ χs. Define the map φw : χs → L/2L by

φw(v) :=
v − w

2
+ 2L.

Then φw is injective.

Proof. Suppose φw(v1) = φw(v2). Then v1−v2
2 ∈ 2L, from which we see

v1 + v2

2
= v2 +

v1 − v2

2
∈ χL.

Therefore

q

(
v1 + v2

2

)
≥ s.

But v1, v2 ∈ χs, so by Lemma 3.1 we have q(v1+v2
2 ) ≤ s. Thus we have equality,

and by applying Lemma 3.1 again we see v1 = v2, as required.
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Lemma 3.2 gives us an injective function from χs into a group of order 2n. This
proves the following:

Corollary 3.3. The number of shortest characteristic vectors of a positive def-
inite unimodular Z-lattice of dimension n is at most 2n.

This result is the best possible, as the following example shows. Let
{e1, e2, · · · , en} be an orthonormal basis for Zn. Then the characteristic vec-
tors are those of the form

∑n
j=1 λjej with all the λj odd. In particular, the

shortest characteristic vectors are the vectors of the form
∑n

j=1 λjej with each
λj ∈ {±1}; there are 2n such vectors.

Now we shall find an upper bound on the number of characteristic vectors
of norm s + 8. This bound must be at least n2n, for the lattice Zn has n2n

such vectors. (These are the vectors
∑n

j=1 λjej with one λj = ±3 and all other
λj ∈ {±1}.)
Lemma 3.4. Suppose w ∈ χs+8. Define

Cw := {v ∈ χs+8 : w − v ∈ 4L}.
If n �= 15 then |Cw| ≤ n; if n = 15 then |Cw| ≤ 16.

Proof. It is enough to show that |Cw| ≤ n + 1, and then to show that equality
can hold only when n = 15.

(a) Proof of the inequality |Cw| ≤ n + 1.
Write

w = x1 + 2l1

w = x2 + 2l2

...
w = xm+1 + 2lm+1

(1)

in as many different ways as possible with xi ∈ χ and B(xi, li) = 0 for each i.
The list is finite because q is positive definite.

Claim : |Cw| = m + 1. Given v ∈ Cw, let x = v+w
2 and l = w−v

4 . (So w = x + 2l
and v = x − 2l.) Then

x = w +
v − w

2
∈ w + 2L = χ.

But the equality q(v) = q(w) then yields q(x − 2l) = q(x + 2l), from which
B(x, l) = 0. This gives an injective map from Cw to rows of the list (1). Thus
|Cw| ≤ m + 1.

On the other hand, if w = xi+2li, then we assert that xi−2li ∈ Cw; this vector
is characteristic and in the same coset of L/4L as w, and q(w) = q(xi − 2li). If
xi − 2li = xj − 2lj then w − 4li = w − 4lj and so each expression for w yields a
different element of Cw. Thus |Cw| = m + 1 as claimed.
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Having established this claim, to prove part (a) we need only show that m ≤ n.
One of our expressions for w in (1) will be w + 0. So without loss of generality,
suppose lm+1 = 0. The proof will proceed by showing l1, · · · , lm are linearly
independent.

For 1 ≤ i ≤ m we have q(xi) + 4q(li) = s + 8. Since xi is characteristic,
it follows that q(li) = 2 and q(xi) = s. Suppose 1 ≤ i < j ≤ m. Because
xi − 2lj ∈ χ we know q(xi − 2lj) ≥ s. Hence, because q(xi) = s, we have

B(xi, lj) ≤ q(lj) = 2.

We also know li �= lj , since the expressions in (1) are different. So q(li − lj) > 0
and therefore B(li, lj) ≤ 1. But

B(xi, lj) + 2B(li, lj) = B(w, lj) = B(xj + 2lj , lj) = 4.

Thus B(xi, lj) = 2 and B(li, lj) = 1 whenever 1 ≤ i < j ≤ m.
We are now ready to prove that l1, l2, · · · , lm are linearly independent. For

suppose
m∑

i=1

µili = 0

with µ1 · · ·µm ∈ Q. Then for each k ≤ m we have B (
∑m

i=1 µili, lk) = 0, and
hence

Am




µ1

µ2

...
µm


 = 0

where Am is the m × m matrix


2 1 . . . 1

1 2
. . .

...
...

. . . . . . 1
1 . . . 1 2


 .

But detAm = m + 1, and hence Am is invertible over Q. Therefore µ1 = µ2 =
· · · = µm = 0, which proves the claim.

Therefore m ≤ dim QL = n and so |Cw| ≤ n + 1 as required.

(b) Suppose |Cw| = n + 1; we will show that n = 15.
As in the proof of part (a), write w = xi + 2li for each 1 ≤ i ≤ n, with the xi

distinct elements of χs, and B(xi, li) = 0 for each i. Then the set {l1, l2, · · · , ln}
is a basis for QL, and q(li) = 2 for each i.
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Write x1 =
∑n

i=1 νili with νi ∈ Q. Recall that B(x1, l1) = 0 and B(x1, li) = 2
for 2 ≤ i ≤ n. Thus

An




ν1

ν2

...
νn


 =




0
2
...
2


 .

Solving this for ν1, · · · , νn yields ν1 = −2(n−1
n+1 ) and ν2 = · · · = νn = 4

n+1 and
hence

x1 =
2

n + 1
[ − (n − 1)l1 + 2(l2 + · · · + ln)

]
from which we find

q(x1) = 8
(

n − 1
n + 1

)
∈ Z.

Since (n − 1, n + 1) ≤ 2, it follows that (n + 1)|16. So n ∈ {1, 3, 7, 15}. But x1

was characteristic, so q(x1) ≡ n (mod 8). This happens only for n = 15.

Corollary 3.5. Let L be a positive definite unimodular Z-lattice of rank n. If
n �= 15 then L has at most n2n characteristic elements of length s + 8. If L has
rank 15 then there are at most 219 such elements.

Proof. Regardless of the rank of L, the elements of χ form a coset of L/2L.
Therefore χ consists of precisely 2n cosets of L/4L. Pick an element wk of norm
s + 8 from each coset of L/4L that contains such an element. Then

χs+8 =
⋃
k

Cwk
.

If n �= 15, Lemma 3.4 tells us there are no more than n elements in each Cwk
.

Thus there can be no more than n2n elements of χs+8.
If n = 15, Lemma 3.4 tells us there are no more than 16 elements of χs+8 in

each Cwk
. Thus there can be no more than 16 · 215 = 219 elements of χs+8.

Remark. In fact if n = 15, calculations involving theta series show that there
are at most 15 × 215 characteristic elements of length s + 8.

4. The main result

In the first part this section, we largely follow the notation of [E2]. Let H be
the complex upper half plane: the set of complex numbers with strictly positive
imaginary part. Define the theta series of the lattice L to be

θL(t) :=
∑
v∈L

eπi q(v) t

for any t ∈ H. Then

θL(t) =
∞∑

k=0

Nkeπikt,
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where Nk is the number of times L represents k. Now let w be any characteristic
vector of L and define

θ′L(t) :=
∑

v∈L+ w
2

eπi q(v) t =
∞∑

k=0

N ′
keπikt/4,

where N ′
k is the number of characteristic vectors of norm k. In [E1], Elkies

relates these series by the identity

θL

(−1
t

+ 1
)

=
(

t

i

)n/2

θ′L(t).(2)

The n/2 power refers to the nth power of the principal square root.
Hecke has proved that if L is a unimodular Z-lattice, then θL is a modular

form of weight n
2 and can be expressed as a weighted-homogeneous polynomial

PL(θZ, θE8) in the modular forms θZ and θE8 of weight 1
2 and 4 repectively (see

Theorem 7, Chapter 7 of [CS] and the remark that follows it). Here, θZ and θE8

are the theta series of the lattices Z and E8. Specifically

θZ = 1 + 2(eπit + e4πit + e9πit + · · · )
and

θE8 = 1 + 240
∞∑

k=0

k3e2πikt

1 − e2πikt
= 1 + 240e2πit + 2160e4πit + · · · .

We can express

PL(X, Y ) =
l∑

k=0

λkXn−8kY k

with λi ∈ R, l ≤ [n
8 ] and λl �= 0 and so we may write

θL(t) =
l∑

k=0

λkθn−8k
Z

(t)θk
E8

(t)(3)

with λi ∈ R, l ≤ [n
8 ] and λl �= 0. Combining this with equation (2), we have

θ′L(t) =
(

i

t

)n/2

θL

(
−1

t
+ 1

)

=
l∑

k=0

λk

[(
i

t

)(n−8k)/2

θn−8k
Z

(
−1

t
+ 1

)] [(
i

t

)4k

θk
E8

(
−1

t
+ 1

)]

=
l∑

k=0

λkθ′
Z

n−8k(t)θ′E8

k(t)

= PL(θ′
Z
, θ′E8

).



LATTICES WITHOUT SHORT CHARACTERISTIC VECTORS 359

But E8 is an even lattice, hence 0 is one of its characteristic vectors. Thus
θE8 = θ′E8

. So we have

θ′L = PL(θ′
Z
, θE8).(4)

Because the characteristic vectors of Z (viewed as a lattice of rank one) are the
odd integers, we have

θ′
Z

= 2(eπit/4 + e9πit/4 + · · · ).

Expanding the polynomial in equation (4) now gives

θ′L(t) = λl2n−8le(n−8l)πit/4 + (28λl−1 + (n + 232l)λl)2n−8le(n−8l+8)πit/4 + · · · ,

where λl and λl−1 are as in equation (3). Since θ′L encodes the number of
characteristic vectors of each norm, we can deduce that if θL is expressed as in
equation (3) then




s = n − 8l

|χs| = λl2n−8l

|χs+8| = (28λl−1 + (n + 232l)λl)2n−8l.

(5)

Theorem 4.1. Let L be a positive definite unimodular Z-lattice. Then its theta
series θL(t) is a modular form of weight n

2 and can be expressed as a weighted-
homogeneous polynomial PL(θZ, θE8) in the modular forms θZ and θE8 of weight
1
2 and 4 respectively. Here θZ and θE8 are the theta series of the lattices Z and
E8. Further, if we write

PL(X, Y ) =
l∑

k=0

λkXn−8kY k(6)

then λl ≤ 28l.

Proof. In light of Hecke’s theorem, the only new information here is the bound
on λl. Express PL(X, Y ) as in equation (6). Then there are λl2n−8l shortest
characteristic vectors. But Corollary 3.3 states that there are at most 2n such
vectors. Thus λl ≤ 28l.

Lemma 4.2. Let L be an n-dimensional positive definite unimodular Z-lattice
that does not represent 1. Suppose further that the shortest characteristic vec-
tors of L have norm n − 16. Then∣∣χs

∣∣ = 2n−24(2n2 − 46n + N2)

(Recall that N2 is the number of times L represents 2.)
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Proof. The shortest characteristic vectors of L have norm n − 16; thus

θL(t) = λ0θ
n
Z
(t) + λ1θ

n−8
Z

(t)θE8(t) + λ2θ
n−16
Z

(t)θ2
E8

(t)
= λ0θZn(t) + λ1θZn−8⊥E8(t) + λ2θZn−16⊥E8⊥E8(t).

We know how many times each of the numbers 0, 1 and 2 are represented by
the lattices Zn, Zn−8 ⊥ E8 and Zn−16 ⊥ E8 ⊥ E8.
So we have that

θL(t) = 1 + 0eπit + N2e
2πit + · · ·

= λ0

(
1 + 2

(
n

1

)
eπit + 22

(
n

2

)
e2πit + · · ·

)

+ λ1

(
1 + 2

(
n − 8

1

)
eπit +

(
22

(
n − 8

2

)
+ 240

)
e2πit + · · ·

)

+ λ2

(
1 + 2

(
n − 16

1

)
eπit +

(
22

(
n − 16

2

)
+ 480

)
e2πit + · · ·

)
.

This yields the simultaneous equations

λ0 + λ1 + λ2 = 1
2nλ0 + 2(n − 8)λ1 + 2(n − 16)λ2 = 0

2n(n − 1)λ0 + (2(n − 8)(n − 9) + 240)λ1 + (2(n − 16)(n − 17) + 480)λ2 = N2.

Upon solving these equations, we find

λ2 =
2n2 − 46n + N2

256
.

The observations (5) now tell us

|χs| = 2n−24(2n2 − 46n + N2)

as claimed.

Theorem 4.3. Let L be a positive definite unimodular Z-lattice of rank n.
Suppose further that the shortest characteristic vectors of L have norm n − 16.
Then L = L0 ⊥ Zr for some sublattice L0 of rank ≤ 2907.

Proof. We may assume L does not represent 1 and prove that n ≤ 2907. By
Corollary 3.3, we know there are at most 2n shortest characteristic vectors. But
Lemma 4.2 tells us L has exactly 2n−24(2n2 − 46n + N2) shortest characteristic
vectors. So

2n−24(2n2 − 46n + N2) ≤ 2n.

Hence

2n2 − 46n + N2 ≤ 224.(7)

But N2 ≥ 0, hence 2n2 − 46n ≤ 224 and so the integer n cannot exceed 2907.



LATTICES WITHOUT SHORT CHARACTERISTIC VECTORS 361

Lemma 4.4. Let L be an n-dimensional positive definite unimodular Z-lattice
that does not represent 1, and assume that the shortest characteristic vectors of
L have norm n − 24. Then

|χn−16| = (2n2 − 46n + N2)2n−24 + (n − 72)|χn−24|.
Proof. Since the shortest characteristic vectors of L have norm n− 24, we may
write

θL(t) = λ0θ
n
Z
(t) + λ1θ

n−8
Z

(t)θE8(t) + λ2θ
n−16
Z

(t)θ2
E8

(t) + λ3θ
n−24
Z

(t)θ3
E8

(t).

Forming three simultaneous equations exactly as in the proof of Lemma 3.1,
we discover

λ2 =
3N3 + 160N2 − 5568n − 6N2n + 308n2 − 4n3

212

λ3 =
−3N3 − 144N2 + 4832n + 6N2n − 276n2 + 4n3

3 × 212
.

Therefore

λ2 = −3λ3 +
2n2 − 46n + N2

28

and from the observations (5), we can express the number of characteristic vec-
tors of length n − 16 in terms of the number of shortest characteristic vectors:

|χn−16| = (28λ2 + (n + 696)λ3)2n−24

= (2n2 − 46n + N2)2n−24 + (n − 72)(λ32n−24)

= (2n2 − 46n + N2)2n−24 + (n − 72)|χn−24|
as claimed.

Theorem 4.5. Let L be a positive definite unimodular Z-lattice of rank n.
Suppose further that the shortest characteristic vectors of L have norm n − 24.
Then L = L0 ⊥ Zr for some sublattice L0 of rank ≤ 8 388 630.

Proof. We may assume L does not represent 1 and prove that the rank of L is
at most 8 388 630.

The hypotheses imply n �= 15. So Corollary 3.5 (b) tells us there can be no
more than n2n second shortest characteristic vectors. So by Lemma 4.4 ,

(2n2 − 46n + N2)2n−24 + (n − 72)|χn−24| ≤ n2n.

We may assume that n ≥ 72 and we know that the number of shortest charac-
teristic vectors is positive. So

(2n2 − 46n + N2)2n−24 < n2n.

Rearranging,

2n2 − (46 + 224)n + N2 < 0.(8)
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Next notice that N2 ≥ 0. So inequality (8) implies n can be no larger than
8 388 630.

5. Remarks

I do not claim to have found the best possible bounds for N2 or N3. However,
if Nk exists, we can see Nk ≥ 23k as follows. Consider the lattice

Lk :=⊥k
i=1 O23

whose components are all copies of the 23-dimensional shorter Leech lattice O23

(see, for example, [CS], 179). In [E2], Elkies notes that O23 has shortest char-
acteristic vectors of norm 15. From this it follows that Lk is a 23k-dimensional
lattice with shortest characteristic vectors of norm 23k − 8k.

It appears that my method of bounding the number of short characteristic
vectors does not yield Nk for k ≥ 4. So Elkies’ question remains open for k ≥ 4.

Finally, by Construction A of ([CS], 137), we notice that if k ≤ 3, there is
an nk such that every binary self-dual code whose shadow has minimal norm
≥ (n−8k)

2 is of the form C0 ⊕ zr for some code C0 of length at most nk.
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