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FROBENIUS MANIFOLDS FROM

YANG-MILLS INSTANTONS

Jan Segert

Abstract. We present an elementary self-contained account of semisimple Frobe-
nius manifolds in three dimensions, and exhibit a new family of explicit examples.
These examples are constructed from Yang-Mills instantons with a certain sym-
metry.

1. Introduction

The concept of a Frobenius manifold was introduced and extensively devel-
oped by Dubrovin, whose lecture notes [D1] constitute the primary reference for
Frobenius manifolds and many of the applications. The lecture notes of Hitchin
[Hi1] and of Manin [Mn1] are also very good references, as are the recent pa-
pers of Manin [Mn3] and of Dubrovin [D2]. Frobenius manifolds have appeared
in a remarkably wide range of settings, including quantum cohomology [RuT],
mirror symmetry and variation of Hodge structure [G], unfoldings of singulari-
ties [Au,Sa], and the WDVV equation of topological quantum field theory [D1].
Since Frobenius manifolds are relevant in the description of some deep geomet-
rical phenomena, it is not surprising that explicit solutions of the Frobenius
manifold equations are rather difficult to construct.

In this paper we present new Frobenius manifolds of dimension three. The pa-
per is self-contained, no previous knowledge of Frobenius manifolds is assumed.
In Section 2 we define semisimple Frobenius manifolds in the framework of canon-
ical coordinates. In Section 3 we exhibit explicit formulae for the new Frobenius
manifolds. In Section 4 and the Appendix we use elementary Riemannian geom-
etry to prove some of the fundamental results for Frobenius manifolds [D1] for
the special case of dimension three. The cross-product effects numerous simplifi-
cations that are specific to dimension three. Using these results, Proposition 2.2
in particular, it is easy to verify that the explicit formulae presented in Section
3 are indeed Frobenius manifolds.

The geometry used to construct the new Frobenius manifolds will be dis-
cussed in detail in another publication. Here we give only a brief outline. The
theory of isomonodromic deformations offers an approach to the construction of
semisimple Frobenius manifolds [D1,Hi,Mn1,Sa]. Isomonodromic deformations
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of a meromorphic connection on CP 1 are well-understood [Ml], but explicit ex-
amples are difficult to construct. This difficulty is reflected in the correspondence
between solutions of the Painlevé VI differential equation and a class of isomon-
odromic deformation [F,JM]; Painlevé equations are notoriously difficult to solve
explicitly. Hitchin [Hi3,Hi2] constructed some solutions of Painlevé VI by relat-
ing certain isomonodromic deformations to equivariant twistor geometry. The
prototype is the irreducible linear SL2(C) action on CP 3, which gives rise to a
natural flat meromorphic connection on CP 3. The restriction to an embedded
line CP 1 is isomonodromic under deformation of the line. The corresponding
Frobenius manifold is the n = 0 instance of Theorem 3.1.

New isomonodromic transformations can in principle be constructed by ap-
plying “Schlesinger transformations”, which are meromorphic gauge transforma-
tions on CP 1 [JM]. We refer to the recent paper of Manin [Mn2] for a discus-
sion of the corresponding transformations of Painlevé VI solutions. Equivariant
twistor geometry provides a method for constructing some Schlesinger trans-
formations explicitly. The prototype CP 3 with the irreducible SL2(C) action
is the equivariant twistor space of the Riemannian manifold S4 with a certain
isometric SU2 action. The Atiyah-Ward correspondence [At] relates anti-self-
dual Yang-Mills instantons on S4 to certain holomorphic bundles on the twistor
space CP 3. An equivariant version relates instantons with SU2 symmetry to
holomorphic bundles with SL2(C) symmetry. These equivariant objects were
constructively classified in [BS] by an equivariant version of the ADHM method
[ADHM]. Isomonodromic deformations can be generated from the equivariant
ADHM monads, and all are related by Schlesinger transformations. The Frobe-
nius manifolds of Theorem 3.1 are constructed from the equivariant ADHM
data.

I would like to thank G. Bor and N.J. Hitchin for helping me in understanding
some of these topics.

2. Semisimple Frobenius manifolds

We define semisimple (or massive) Frobenius manifolds in the framework of
local canonical coordinates [D1,Hi1,Mn1], and state some basic results for three-
dimensional Frobenius manifolds. All coordinates are complex, all functions
are holomorphic, and all derivatives are with respect to a complex variable.
We follow the notational conventions of [CDD; Sec. VI.A.4] for the exterior
derivative d, Lie derivative LV , and interior product iV . Riemannian metrics
are complex bilinear, not hermitian.

We first introduce the Euler vector field and the identity vector field. The
complex Lie group SL2(C) acts on the Riemann sphere C ∪ {∞} by fractional
linear transformations. The two-dimensional Borel subgroup B ⊂ SL2(C) con-
sisting of the upper-triangular matrices is the stabilizer of ∞. B acts by dilations
and translations, x �→ a x + b, on the coordinates of a point x ∈ C. Using the
notation ∂ = ∂

∂x , the dilations are generated by the “Euler vector field” E = x ∂
and the translations by the “identity vector field” I = ∂, with [I, E] = I. More
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generally, for the action of B on the coordinates (x1, x2, . . . , xn) ∈ C
n of an n-

tuple of points in C, the Euler vector field generating the dilations is the radial
vector field

(2.1) E = x1 ∂1 + x2 ∂2 + · · · + xn ∂n,

and the identity vector field generating the translations is

(2.2) I = ∂1 + ∂2 + · · · + ∂n,

where [I, E] = I as before. Note that the Euler vector field is characterized by
the property LE xi = xi, and the identity vector field by the property LI xi = 1.
A function f on C

n, or on an open subset U ⊂ C
n, will be called “B-invariant”

if LE f = 0 and LI f = 0. We will say that a function f is of “homogeneity m”
if LE f = m f for a constant m.

A Riemannian metric g is “flat” if the curvature of the associated Levi-Civita
connection ∇ is zero. A Riemannian metric on U ⊂ C

n is “diagonal” if it is of
the form

(2.3) g = g11 dx1 ⊗ dx1 + g22 dx2 ⊗ dx2 + · · · + gnn dxn ⊗ dxn.

Definition 2.1. A “semisimple Frobenius manifold” structure of homogeneity
m on open subset U ⊂ C

n with “canonical coordinates” (x1, x2, . . . , xn) consists
of a diagonal metric g satisfying the three conditions:

(M1) g is flat.
(M2) The components gii are functions of homogeneity m.
(M3) The identity vector field I is covariantly constant with respect to the

Levi-Civita connection.

A Frobenius metric is “nontrivial” if the components gii are not all constant;
the standard Euclidean metric is an example of a trivial Frobenius metric. Now
apply definition 2.1 to an atlas of local coordinate charts on a manifold. A
complex manifold M with a complex metric g and vector fields E and I satisfying
[I, E] = I is a “semisimple Frobenius manifold” of homogeneity m if every point
of M has a neighborhood which admits local canonical coordinates (x1, x2, .., xn)
as above. It is convenient to relax this definition, requiring only that every point
on some dense open subset has such a neighborhood, and that g is nondegenerate
and nonsingular only on some dense open subset.

We now focus on the three-dimensional case. The cross-ratio

(2.4) t =
x3 − x1

x2 − x1

is a B-invariant function on C
3. In section 4, we will prove:
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Proposition 2.2. The metric g = g11 dx1 ⊗ dx1 + g22 dx2 ⊗ dx2 + g33 dx3 ⊗ dx3

is a homogeneity-0 Frobenius metric if and only if

(2.5) t d g11 = (1 − t) d g22 = t (t − 1) d g33 = 2 c
√

g11 g22 g33 dt

for some constant c. The Frobenius metric is nontrivial if and only if c is
nonzero.

It is evident that such a c is unique, and that the “trace”

(2.6) k = −c2

2
(g11 + g22 + g33)

of a homogeneity-0 Frobenius metric g is a constant. The trace is unchanged
under the rescaling g �→ α g by a constant α.

The two-dimensional Lie group B is a symmetry group of a three-dimensional
Frobenius metrics. For a nontrivial homogeneity-0 Frobenius metric, iY applied
to eq.(2.6) yields

tLY g11 = (1 − t)LY g22 = t (t − 1)LY g33 = 2 c
√

g11 g22 g33 LY t

for any vector field Y . The B-invariance of t, LE t = LI t = 0, then implies
the B-invariance of gii, LE gii = LI gii = 0. More generally for homogeneity m,
condition (M2) states LE gii = m gii, and the results of section 4 give LI gii = 0.
In the language of Riemannian geometry, I is a Killing vector, LI g = 0, and E
is a weight-(m + 2) conformal Killing vector, LE g = (m + 2) g.

3. Frobenius manifolds constructed from instantons

We start by constructing an atlas of canonical coordinate charts, and the
corresponding Euler and identity vector fields, on a certain hypersurface M ⊂
C

4. Let (z1, z2, z3, r) be the linear coordinates on C
4, let M be the hypersurface

defined by the vanishing of

Q = (z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2 − 2 r2,

and let j : M → C
4 denote the inclusion map. Every point in an open

dense subset of M has a neighborhood on which the restrictions (x1, x2, x3) =
(j∗q1, j

∗q2, j
∗q3) of the three functions

q1 = 2 r (2 z1 − z2 − z3) − 3 z1
2 − 6 z2 z3,

q2 = 2 r (2 z2 − z3 − z1) − 3 z2
2 − 6 z3 z1,

q3 = 2 r (2 z3 − z1 − z2) − 3 z3
2 − 6 z1 z2,

define local coordinates; the points which fail to have this property are character-
ized by the vanishing of the Jacobian determinant. Of course these coordinates
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are only valid locally because the functions xi : M → C are not one-to-one. The
group of dilations on C

4 is generated by the radial vector field 2 Ẽ, where

Ẽ =
1
2

(
z1

∂

∂z1
+ z2

∂

∂z2
+ z3

∂

∂z3
+ r

∂

∂r

)
.

Now Ẽ is tangent to M since LẼ Q = Q, so the restriction of Ẽ projects to a
vector field E on M . The vector field E is the Euler vector field relative to the
local coordinates since LẼ qi = qi. The vector field

Ĩ =
−1

6 (z1 + z2 + z3)

(
∂

∂z1
+

∂

∂z2
+

∂

∂z3

)

is tangent to M since LĨ Q = 0, so the restriction of Ĩ projects to a vector
field I on M . The vector field I is the identity vector field relative to the local
coordinates since LĨ qi = 1, which follows from the identity q1 + q2 + q3 =
−3 (z1 + z2 + z3)2. Let the symmetric group S3 act on C

4 by permuting the first
three coordinates (z1, z2, z3). The polynomial Q is S3-invariant, so the action
maps the hypersurface M to itself. The S3 action permutes the three functions
qi, leaving the vector fields Ẽ and Ĩ invariant.

Our main result is the existence of a family of Frobenius metrics on M , the
coefficients of which are rational functions on C

4:

Theorem 3.1. For each nonnegative integer n, there exist triplets (b1, b2, b3)
and (u1, u2, u3) of explicitly computable homogeneous polynomials of degree l ≤
2(n2 + n + 2) on C

4 such that

(3.1) g = j∗
(

u1

b1
dq1 ⊗ dq1 +

u2

b2
dq2 ⊗ dq2 +

u3

b3
dq3 ⊗ dq3

)

is the metric of homogeneity-0 Frobenius manifold on the hypersurface M ⊂ C
4.

The Frobenius metric g is nontrivial, and has trace k = 1
2 (n+ 1

2 )2. The symmet-
ric group S3 acts by permutation on each of the triplets (b1, b2, b3), (u1, u2, u3),
and (q1, q2, q3), so the Frobenius structure on M is S3-invariant.

The constructive geometric proof of theorem 3.1 for all nonnegative integers n,
using the classification by Bor and the author [BS] of Yang-Mills instantons
with a certain SU2-symmetry, will be described elsewhere. In the present paper,
we exhibit the polynomials bi and ui for n ≤ 2, and compute the canonical
coordinate expressions of the Frobenius metrics. Applying Proposition 2.2 to
these expressions constitutes a computational proof of theorem 3.1 for n ≤ 2.
We do not continue beyond n = 2 because the size of the expressions grows very
quickly with n.

The local canonical coordinate expressions of the form eq.(2.3) are easily
evaluated for the Frobenius metrics eq.(3.1). We first observe that a B-invariant
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function on U ⊂ C
3 depends only on the cross-ratio t. However, a B-invariant

function on M is a possibly multi-valued function of t, because the cross ratio
t : M → C, although well-defined, is not one-to-one. If a path γ : C → M is
transverse to B-orbits, then it follows from Theorem 3.1 and B-invariance that

gii(x1, x2, x3) =
ui(γ(w))
bi(γ(w))

,

where w is a (possibly non-unique) solution of

x3 − x1

x2 − x1
=

q3(γ(w)) − q1(γ(w))
q2(γ(w)) − q1(γ(w))

.

Choosing the polynomial path

γ(w) =
(
w2 − 1 , −2 w + 2 , 2 w + 2 , w2 + 3

)
∈ M ⊂ C

4,

the gii become rational functions of degree at most 2 l in the variable w, where
w is a solution of

x3 − x1

x2 − x1
=

(w + 1) (w − 3)3

(w − 1) (w + 3)3
.

In terms of the cross-ratio t of the local coordinates (x1, x2, x3), w is a root of
the following quartic polynomial with coefficients depending on t:

(3.2) (w − 1) (w + 3)3 t − (w + 1) (w − 3)3 = 0.

We recall that the roots of a quartic polynomial can be expressed as explicit
(multivalued) algebraic function of the coefficients by a formula analogous to
the familiar quadratic formula, albeit much more complicated (see e.g. [Ro]).

We now exhibit the data of theorem 3.1 for the first few values of n. For
n = 0, the data is constructed from the ADHM monad of the trivial Yang-Mills
instanton. The trivial instanton has instanton number 0, and its symmetry
group contains the SU2 symmetry group of [BS]. The homogeneous polynomials
ui and bi on C

4 have degree l = 2:

(3.3)

b1 = 36 (z3 − z1) (z1 − z2) , u1 = (r − (z3 − z1) + (z1 − z2))
2
,

b2 = 36 (z1 − z2) (z2 − z3) , u2 = (r − (z1 − z2) + (z2 − z3))
2
,

b3 = 36 (z2 − z3) (z3 − z1) , u3 = (r − (z2 − z3) + (z3 − z1))
2
.

The S3 symmetry of the triplet (b1, b2, b3) and of the triplet (u1, u2, u3) is evident.
The canonical coordinate expression of the n = 0 metric is

(3.4)
g = − (w − 1) (w + 1)

4 (w − 3) (w + 3)
dx1 ⊗ dx1 −

(w − 1)
4 w (w + 3)

dx2 ⊗ dx2

+
(w + 1)

4 w (w − 3)
dx3 ⊗ dx3,
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where w is related to the cross-ratio t by eq.(3.2). The reader may easily check
that this metric satisfies the conditions of Proposition 2.2 with c = 1, and has
trace k = 1

8 .
For n = 1, the data is constructed from the ADHM monad of the “basic

instanton” [At], which is the unique SU2-symmetric instanton with instanton
number 1. The homogeneous polynomials ui and bi on C

4 have degree l = 6:

b1 = 216 r2 (z2 − z3)
2 (z3 − z1) (z1 − z2),

and u1 is an irreducible polynomial with 84 terms :

u1 = −3 r6 + 14 r5 z1 − 21 r4 z1
2 + 4 r3 z1

3 + 19 r2 z1
4 − 18 r z1

5 + 5 z1
6 − 7 r5 z2

+ 21 r4 z1 z2 − 6 r3 z1
2 z2 − 38 r2 z1

3 z2 + 45 r z1
4 z2 − 15 z1

5 z2 + 39 r4 z2
2

+ 108 r3 z1 z2
2 + 240 r2 z1

2 z2
2 + 66 r z1

3 z2
2 + 33 z1

4 z2
2 − 53 r3 z2

3

− 221 r2 z1 z2
3 − 144 r z1

2 z2
3 − 41 z1

3 z2
3 + 22 r2 z2

4 + 27 r z1 z2
4 − 33 z1

2 z2
4

+ 12 r z2
5 + 51 z1 z2

5 − 10 z2
6 − 7 r5 z3 + 21 r4 z1 z3 − 6 r3 z1

2 z3 − 38 r2 z1
3 z3

+ 45 r z1
4 z3 − 15 z1

5 z3 − 99 r4 z2 z3 − 204 r3 z1 z2 z3 − 366 r2 z1
2 z2 z3

− 312 r z1
3 z2 z3 + 9 z1

4 z2 z3 + 51 r3 z2
2 z3 + 183 r2 z1 z2

2 z3

+ 234 r z1
2 z2

2 z3 − 9 z1
3 z2

2 z3 + 133 r2 z2
3 z3 + 180 r z1 z2

3 z3 + 255 z1
2 z2

3 z3

− 87 r z2
4 z3 − 189 z1 z2

4 z3 + 9 z2
5 z3 + 39 r4 z3

2 + 108 r3 z1 z3
2 + 240 r2 z1

2 z3
2

+ 66 r z1
3 z3

2 + 33 z1
4 z3

2 + 51 r3 z2 z3
2 + 183 r2 z1 z2 z3

2 + 234 r z1
2 z2 z3

2

− 9 z1
3 z2 z3

2 − 291 r2 z2
2 z3

2 − 504 r z1 z2
2 z3

2 − 369 z1
2 z2

2 z3
2 + 84 r z2

3 z3
2

+ 123 z1 z2
3 z3

2 + 72 z2
4 z3

2 − 53 r3 z3
3 − 221 r2 z1 z3

3 − 144 r z1
2 z3

3 − 41 z1
3 z3

3

+ 133 r2 z2 z3
3 + 180 r z1 z2 z3

3 + 255 z1
2 z2 z3

3 + 84 r z2
2 z3

3 + 123 z1 z2
2 z3

3

− 137 z2
3 z3

3 + 22 r2 z3
4 + 27 r z1 z3

4 − 33 z1
2 z3

4 − 87 r z2 z3
4 − 189 z1 z2 z3

4

+ 72 z2
2 z3

4 + 12 r z3
5 + 51 z1 z3

5 + 9 z2 z3
5 − 10 z3

6.

The canonical coordinate expression of the n = 1 metric is

g = − 9 (w − 1)3 (w + 1)3

4 (w − 3) (w + 3) (w2 + 3)2
dx1 ⊗ dx1 −

9 (w − 1)3

w (w + 3) (w2 + 3)2
dx2 ⊗ dx2

+
9 (w + 1)3

w (w − 3) (w2 + 3)2
dx3 ⊗ dx3.

This metric satisfies the conditions of Proposition 2.2 with c = 1, and has trace
k = 9

8 .
For n = 2, the data is constructed from the ADHM monad of the unique SU2-

symmetric instanton [BS] with instanton number 3. The homogeneous polyno-
mials ui and bi on C

4 have degree l = 10:

b1 = 36 (z2 − z3)
2 (z3 − z1) (z1 − z2) (52 r3 + 2 z1

3 − 3 z1
2 z2 − 3 z1 z2

2

+ 2 z2
3 − 3 z1

2 z3 + 12 z1 z2 z3 − 3 z2
2 z3 − 3 z1 z3

2 − 3 z2 z3
2 + 2 z3

3)2,
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and u1 is an irreducible polynomial with 283 terms, of which we only exhibit the
first few:

u1 = 25 (174 r10 − 764 r9 z1 + 1122 r8 z1
2 − 244 r7 z1

3 − 998 r6 z1
4 + 1008 r5 z1

5

− 274 r4 z1
6 − 20 r3 z1

7 − 24 r2 z1
8 + 20 r z1

9 + 382 r9 z2 − 1122 r8 z1 z2

+ 366 r7 z1
2 z2 + 1996 r6 z1

3 z2 − 2520 r5 z1
4 z2 + 822 r4 z1

5 z2 + · · · · · · ).

The canonical coordinate expression of the n = 2 metric is

g = − 25 (w − 1)5 (w + 1)5
(
w2 + 5

)2

4 (w − 3) (w + 3) (w2 + 1)2 (w2 − 2 w + 5)2 (w2 + 2w + 5)2
dx1 ⊗ dx1

− 25 (w − 1)5
(
3 w2 + 2w + 7

)2

w (w + 3) (w2 + 1)2 (w2 − 2 w + 5)2 (w2 + 2w + 5)2
dx2 ⊗ dx2

+
25 (w + 1)5

(
3 w2 − 2 w + 7

)2

w (w − 3) (w2 + 1)2 (w2 − 2 w + 5)2 (w2 + 2w + 5)2
dx3 ⊗ dx3.

This metric satisfies the conditions of Proposition 2.2 with c = 1, and has trace
k = 25

8 . For reasons of brevity, we do not continue beyond n = 2.
Corollary 4.3 below associates a pair of Frobenius metrics g± of homogeneity

m = ±
√

8 k to each Frobenius metric g of homogeneity 0 and trace k. The
metrics g± associated to the n = 0 metric of Theorem 3.1 can be expressed in
the form eq.(3.1). The homogeneous polynomials u+

i have degree 4,

u+
1 =

(
r2+4 r z1 − 5 z1

2 − 2 r z2 + 5 z1 z2 + z2
2 − 2 r z3 + 5 z1 z3 − 7 z2 z3+z3

2
)2

,

the polynomials u−
i have degree 0, u−

1 = 1, and the b±i are equal to the de-
gree 2 polynomials bi of eq.(3.4). The canonical coordinate expressions for the
homogeneity m = ±1 metrics are

g+ = − 4 (w + 1)
(w − 3) (w + 3)4

(x1 − x2) dx1⊗dx1−
(w + 1)4

4 w (w + 3)4
(x1 − x2) dx2⊗dx2

+
(w − 1)3 (w + 1)

4 w (w − 3) (w + 3)3
(x1 − x2) dx3 ⊗ dx3,

g− = − (w + 3)2

(w − 3) (w + 1)
(x1 − x2)

−1
dx1⊗dx1−

(w + 3)2

4 w
(x1 − x2)

−1
dx2⊗dx2

+
(w − 1) (w + 3)3

4 w (w − 3) (w + 1)
(x1 − x2)

−1
dx3 ⊗ dx3.

The canonical coordinate expressions for the Frobenius metrics of homogeneity
m = ±3,±5, . . . associated to n = 1, 2, . . . can also be computed explicitly, but
I do not know whether these metrics can be expressed in the form eq.(3.1).
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Applying the correspondence between semisimple three-dimensional Frobe-
nius manifolds and Painlevé transcendents [D1,Hi1,JM] to the Frobenius man-
ifolds of theorem 3.1, we obtain for each nonnegative integer n two distinct
solutions λ±(t) of the Painlevé VI equation

d2λ±
dt2

=
1
2

(
1

λ±
+

1
λ± − 1

+
1

λ± − t

) (
dλ±
dt

)2

−
(

1
t

+
1

t − 1
+

1
λ± − t

)
dλ±
dt

+
λ±(λ± − 1)(λ± − t)

t2(t − 1)2

(
α± + β

t

λ2
±

+ γ
t − 1

(λ± − 1)2
+ δ

t(t − 1)
(λ± − t)2

)
,

with

α± = 1
2

(
(n + 1

2 ) ∓ 1
)2

, β = − 1
2

(
n + 1

2

)2
, γ = 1

2

(
n + 1

2

)2
, δ = 1

2 − 1
2

(
n + 1

2

)2
.

The solution λ± is a rational function of degree l± ≤ 2(n2+n+2) in the variable
w, where w is related to t as in eq.(3.2) above. The explicit formulae for λ± are
exhibited in [Se] for n ≤ 4, building on Hitchin’s previous computation [Hi3] of
λ+ for n = 0.

4. Frobenius coframes in dimension three

An “orthonormal frame” for a Riemannian metric g is a triplet of vector fields
ei such that g(ei, ej) = δi,j . The dual “orthonormal coframe” is the triplet of
one-forms θj such that 〈θi, ej〉 = δi,j . The metric can be reconstructed from an
orthonormal coframe by g = θ1 ⊗ θ1 + θ2 ⊗ θ2 + θ3 ⊗ θ3. We will follow the
notational conventions of [CDD; Sec. VI.B].

A linear connection ∇ on the tangent bundle which preserves the metric is
an “orthogonal” connection. Relative to an orthonormal frame, an orthogonal
connection ∇ is expressed in terms of the triplet of connection one-forms Ωk as
follows: If X = X1 e1 + X2 e2 + X3 e3, then ∇X = (∇X)1 ⊗ e1 + (∇X)2 ⊗ e2 +
(∇X)3 ⊗ e3, where

(4.1)

(∇X)1 = dX1 − Ω2 X3 + Ω3 X2

(∇X)2 = dX2 − Ω3 X1 + Ω1 X3

(∇X)3 = dX3 − Ω1 X2 + Ω2 X1.

using the three-vector notation

*X =


 X1

X2

X3


 , *Ω =


 Ω1

Ω2

Ω3


 , *θ =


 θ1

θ2

θ3


 ,

and the cross-product ×, eq.(4.1) becomes

*∇ *X = d *X − *Ω × *X.



336 JAN SEGERT

The Levi-Civita connection of g is the unique orthogonal connection with zero
torsion. If *θ is an orthonormal coframe for g, then the connection form *Ω
corresponding to the Levi-Civita connection is the unique solution of the Cartan
torsion equation

d *θ − *Ω × *θ = 0.

We will say that *Ω is the “Levi-Civita connection form” of the orthonormal
coframe *θ if the Cartan torsion equation holds. The curvature of the Levi-Civita
connection is encoded in the Cartan curvature two-forms

(4.2) *R = d *Ω − 1
2

*Ω × *Ω,

and the metric is flat if and only if *R = 0.
On U ⊂ C

3 with coordinates (x1, x2, x3), we say that a triplet of one-forms *θ

is a “canonical coframe” if there is a triplet *H of functions such that

*H =


 h1

h2

h3


 , *θ =


 θ1

θ2

θ3


 =


 h1 dx1

h2 dx2

h1 dx3


 , *e =


 e1

e2

e3


 =


 h−1

1 ∂1

h−1
2 ∂2

h−1
3 ∂3


 ,

where *e is the orthonormal frame dual to *θ. A canonical coframe can be recon-
structed from its “canonical coefficients” *H = iI *θ. Obviously a metric g admits
an orthonormal canonical coframe if and only if g is diagonal as in eq.(2.3). We
define a homogeneity-m “Frobenius coframe” to be a canonical coframe *θ such
that

g = θ1 ⊗ θ1 + θ2 ⊗ θ2 + θ3 ⊗ θ3 = h2
1 dx1 ⊗ dx1 + h2

2 dx2 ⊗ dx2 + h2
3 dx3 ⊗ dx3

is a homogeneity-m Frobenius metric.
We say that a connection form *Ω is “Egoroff” if there is a triplet *F of functions

such that

(4.3) *F =


 f1

f2

f3


 , *Ω =


 Ω1

Ω2

Ω3


 =


 f1 (x2 − x3)−1 (dx2 − dx3)

f2 (x3 − x1)−1 (dx3 − dx1)
f3 (x1 − x2)−1 (dx1 − dx2)


 .

An Egoroff connection form can be reconstructed from the “Egoroff coefficients”
*F = iE *Ω. This is a nonstandard definition, but in Lemma A.3 we’ll show
that the Levi-Civita connection form *Ω of an orthonormal canonical coframe is
Egoroff if and only if the metric g is Egoroff in the standard sense.

The following proposition, which is proved in the Appendix, simultaneously
characterizes three-dimensional Frobenius coframes and their Levi-Civita con-
nection forms:
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Proposition 4.1. Let *θ be a canonical coframe. Then *θ is a homogeneity-m
Frobenius coframe with Levi-Civita connection form *Ω if and only if the following
four conditions hold :

(C1) *Ω is an Egoroff connection form.
(C2) d *F − *Ω × *F = 0, where *F = iE *Ω.
(C3) d *H − *Ω × *H = 0, where *H = iI *θ.
(C4) *F × *H = m

2
*H.

The remainder of this section is based on corollaries of Proposition 4.1.
The following differential equation for *F will be called the “structural equa-

tion”:

(4.4)

d f1 − f2 f3

(
dx3 − dx1

x3 − x1
− dx1 − dx2

x1 − x2

)
= 0,

d f2 − f3 f1

(
dx1 − dx2

x1 − x2
− dx2 − dx3

x2 − x3

)
= 0,

d f3 − f1 f2

(
dx2 − dx3

x2 − x3
− dx3 − dx1

x3 − x1

)
= 0.

If *θ is a Frobenius coframe with Levi-Civita connection form *Ω, then conditions
(C1) and (C2) of Proposition 4.1 are equivalent to the statement that the Egoroff
coefficients *F = iE *Ω solve the structural equation. The following corollary of
Proposition 4.1 is only slightly less obvious.

Corollary 4.2. A canonical coframe *θ is a nontrivial homogeneity-0 Frobenius
coframe if and only if some nonzero constant multiple c *H = iI(c *θ) of the canon-
ical coefficients is a solution of the structural equation.

Proof. Suppose *θ is a nontrivial homogeneity-0 Frobenius coframe, and *H = iI *θ.
Then the Levi-Civita connection form *Ω is nonzero, and *F = iE *Ω is a nonzero
solution of the structural equation by (C1) and (C2). Now (C4) implies c *H = *F
for some function c, but (C2) and (C3) imply d c = 0, so c is a constant.

Conversely, suppose c is a nonzero constant and that c *H is a solution of the
structural equation. Let *θ be the canonical coframe with canonical coefficients
*H, and let *Ω be the Egoroff connection form with Egoroff coefficients c *H. Since
*F = iE *Ω = c *H, this data satisfies conditions (C1)-(C4) of Proposition 4.1,
with m = 0. Therefore *θ is a homogeneity-0 Frobenius coframe (and *Ω is the
Levi-Civita connection form). �

It is now an easy matter to prove Proposition 2.2. A simple computation
shows that structural equation eq.(4.4) is equivalent to

(4.5) d f1 −
f2 f3

t
dt = 0, d f2 −

f3 f1

1 − t
dt = 0, d f3 −

f1 f2

t (t − 1)
dt = 0,
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where t is the cross-ratio eq.(2.4). Dubrovin [D1; eq.(3.113)] had obtained
eq.(4.5) from a Hamiltonian approach to Frobenius manifolds, see also [Hi1].
The same equation, or more precisely its reduction by the B-symmetry to an
ODE, appears in the work of Tod [T,Hi2] on Riemannian metrics with self-
dual curvature in (real) dimension four. Proposition 2.2 is proved by rewriting
eq.(4.5) as

t d f2
1 = 2 f1 f2 f3 dt, (1− t) d f2

2 = 2 f1 f3 f1 dt, t (t− 1) d f2
3 = 2 f1 f2 f3 dt = 0

and appealing to Corollary 4.2 to write c2 gii = f2
i . The trace eq.(2.6) is ex-

pressed in terms of *F by

k = −c2

2
(g11 + g22 + g33) = − 1

2 (f2
1 + f2

2 + f2
3 ) = − 1

2
*F · *F .

For any solution *F of the structural equation, it is also clear from the orthogo-
nality of the connection that the trace k = − 1

2
*F · *F is constant.

The trace is related to Dubrovin’s µ by k = 1
2 µ2, compare [D1; eq.(3.114)].

The three-dimensional Frobenius manifolds associated to the Coxeter groups
A3, B3, and H3 have trace k = 1

32 , 2
25 , and 1

18 respectively [D1; App. E]. These
values do not appear on the list k = 1

2 (n + 1
2 )2, n = 0, 1, 2, . . . of Theorem 3.1.

Our final topic is the basic classification theory of three-dimensional Frobenius
coframes. An equivalence class *[θ] of coframes under the equivalence relation of
constant rescaling will be called a “projective coframe”. It is evident from the
Cartan torsion equation that the Levi-Civita connection form *Ω of a coframe *θ

depends only on the projective coframe *[θ], as does *F = iE *Ω. This defines a
function S : *[θ] �→ *F mapping projective coframes to triplets of functions. It is
clear that S maps Frobenius projective coframes to solutions of the structural
equation.

Corollary 4.3.

(1) The map S restricts to a bijection from nontrivial homogeneity m =
0 Frobenius projective coframes to nonzero solutions of the structural
equation.

(2) For m �= 0, the map S restricts to a bijection from homogeneity-m Frobe-
nius projective coframes to solutions of the structural equation of trace
k = m2/8.

Proof. (1) This follows immediately from Corollary 4.2.
(2) We first show that for nonzero m, S maps homogeneity-m Frobenius

projective coframes to solutions of the structural equation of trace k = m2/8.
Suppose *θ is a homogeneity-m Frobenius coframe. By (C4), *H is pointwise an
eigenvector with eigenvalue λ = m

2 of the linear map M : *H �→ *F × *H. The
identity *F × (*F × *H) = (*F · *H) *F − (*F · *F ) *H gives the characteristic equation
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M (M2 − 2 k) = 0. Now the eigenvalue λ = m
2 is nonzero, so λ (λ2 − 2 k) = 0

implies k = m2/8.
We next establish injectivity. Suppose *θ and *θ′ are homogeneity-m Frobenius

coframes with Levi-Civita connection forms *Ω and *Ω′ respectively, and suppose
that S( *[θ]) = S( *[θ′]). The Egoroff property (C1) of the connection forms then
implies *Ω = *Ω′. By (C4), the canonical coefficients *H = iI*θ and *H ′ = iI*θ

′ are
pointwise eigenvectors of M with eigenvalue m

2 . M has three distinct eigenvalues
since k = m2/8 is nonzero, so *H ′ = c *H for some scalar function c, and (C3)
implies d c = 0. Since *θ′ = c *θ for a constant c, we have shown that *[θ] = *[θ′].

We finally establish surjectivity. Let *F be a solution of the structural equation
of nonzero trace k = m2/8. Let *Ω be the Egoroff connection form with Egoroff
coefficients *F . Then the Cartan curvature form eq.(4.2) vanishes, see eq.(A.1)
below, so the connection is flat. Let *Fp be the value of *F at at a point p ∈ U ,
and choose a nonzero *Hp such that *Fp× *Hp = m

2
*Hp. Assuming that U is simply

connected, parallel transport with the flat connection generates the unique *H

that satisfies condition (C3) and has the value *Hp at p. Furthermore *H satisfies
(C4) on U , because *F × *H − m

2
*H is covariantly constant by (C2) and (C3), and

*Fp × *Hp − m
2

*Hp = 0. This data satisfies conditions (C1)-(C4) of Proposition
4.1, so the canonical coframe *θ with canonical coefficients *H is a homogeneity-m
Frobenius coframe such that S( *[θ]) = *F . �

To summarize, a trace-k solution *F of the structural equation generates a
homogeneity-m Frobenius coframe for each distinct root m of m (m2 − 8 k) = 0.
The explicit construction of the homogeneity-0 Frobenius coframe from *F is
trivial by Corollary 4.2. The explicit construction of the nonzero homogeneity
Frobenius coframes is somewhat more complicated, see Hitchin [Hi].

Appendix: Proof of Proposition 4.1

To prove Proposition 4.1, we need to establish that the conditions (C1)-(C4)
together with the Cartan torsion equation are equivalent to the conditions (M1)-
(M3).

Lemma A.1. If (C1)-(C4) hold, then d *θ − *Ω × *θ = 0.

Proof. The proof only requires conditions (C1) and (C3). The first component
of the torsion of a canonical coframe is

d θ1 − Ω2 θ3 + Ω3 θ2 = d(h1 dx1) − Ω2 ∧ (h3 dx3) + Ω3 ∧ (h2 dx2).

The Egoroff condition (C1) is equivalent to

Ω1 ∧ (dx2 − dx3) = 0, Ω2 ∧ (dx3 − dx1) = 0, Ω3 ∧ (dx1 − dx2) = 0,
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and we have

d θ1 − Ω2 θ3 + Ω3 θ2 = (d h1 − Ω2 h3 + Ω3 h2) ∧ dx1,

which vanishes by (C3). The other components of the torsion vanish analogously.
�

We may therefore assume d *θ − *Ω × *θ = 0, and establish ((C1)-(C4))⇔((M1)-
(M3)) under this assumption. We will break this up into a number of separate
steps:

(1) (C3)⇔(M3)
(2) ((C3) and (C4))⇔((M3) and (M2))
(3) ((C1) and (C2))⇒(M1)
(4) (C2)⇐((M1) and (M2))
(5) (C3)⇒(C1)

Proof of (C3)⇔(M3). I = h1 e1 + h2 e2 + h3 e3, so the covariant constancy of I

is equivalent to *∇ *H = d *H − *Ω × *H = 0. �

Proof of ((C3) and (C4))⇔((M3) and (M2)). (M2) is equivalent to LE
*H = m

2
*H.

If (C3) or equivalently (M3) holds, then

0 = iE(d *H − *Ω × *H) = LE
*H − *F × *H,

and then (M2) is equivalent to (C4). �
Proof of ((C1) and (C2))⇒(M1). Substitute Ωi from eq.(4.3) into the first com-
ponent of the Cartan curvature equation eq.(4.2) and use eq.(4.4);

(A.1)

R1 = dΩ1 − 1
2 (Ω2 ∧ Ω3 − Ω3 ∧ Ω2)

= d f1 ∧
(

dx2 − dx3

x2 − x3

)
− f2 f3

(
dx3 − dx1

x3 − x1

)
∧

(
dx1 − dx2

x1 − x2

)

= −f2 f3
iE ((dx2 − dx3) ∧ (dx3 − dx1) ∧ (dx1 − dx2))

(x2 − x3)(x3 − x1)(x1 − x2)
,

which vanishes because (dx2 − dx3) ∧ (dx3 − dx1) ∧ (dx1 − dx2) = 0. The other
components of the curvature form *R vanish similarly. �

Recall that a vector field B is said to be a “conformal Killing vector” for the
Riemannian metric g if LB g = r g for some constant r. The following standard
lemma holds in any dimension.

Lemma A.2. If B is a conformal Killing vector for a flat Riemannian metric
g, then the tangent bundle endomorphism ∇B is covariantly constant.

Proof. A flat Riemannian metric locally admits “flat coordinates” {ti} such that
{εi = ∂

∂ti
} is an orthonormal frame. The basis vector fields are covariantly
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constant, ∇εi = 0, and the covariant derivatives along the basis vectors commute,
∇εi ∇εj = ∇εj ∇εi . The metric equals g =

∑
j dtj ⊗ dtj , where {dti} is the dual

coframe.
Writing B =

∑
k bk εk, we have LB dtj = d(LB tj) = d bj =

∑
k(∇εk

bj) dtk,
and

LB g =
∑

j

LB (dtj ⊗ dtj) =
∑
j,k

(∇εj bk + ∇εk
bj) dtj ⊗ dtk.

Since r is constant and g is covariantly constant, LB g = r g implies

0 = ∇εi(LB g) =
∑
j,k

(∇εi∇εj bk + ∇εk
∇εibj) dtj ⊗ dtk.

After several permutations of the indices,

∇εi
∇εj

bk = −∇εk
∇εi

bj = ∇εj
∇εk

bi = −∇εi
∇εj

bk,

which implies ∇εi ∇εj bk = 0 for any i, j, k. We conclude that ∇B is covariantly
constant, as

∇εi(∇B) =
∑
j,k

(∇εi ∇εj bk) dtj = 0. �

Proof of (C2)⇐((M1) and (M2)). Assume (M1) and (M2) hold. Since LE dxi =
dxi, (M2) implies LE g = (m + 2) g. From (M1) and Lemma A.2 we conclude
that ∇E is covariantly constant. We will now show that ∇E is covariantly
constant only if (C2) holds.

We compute ∇Z(∇E) for an arbitrary vector field Z. From the Leibniz
property

∇Z〈∇E, Y 〉 = 〈∇Z(∇E), Y 〉 + 〈∇E,∇ZY 〉

conclude that

(A.2) 〈∇Z(∇E), Y 〉 = ∇Z∇Y E −∇(∇ZY )E.

We compute ∇V E for an arbitrary vector field V . The vanishing torsion of the
Levi-Civita connection gives

(A.3) ∇V E = ∇EV − LEV.

Now ei = h−1
i ∂i, so using the Leibniz property of the Lie derivative and the

homogeneity property LE h−1
i = −m

2 h−1
i , we have LE ei = −β ei, where β =(

m
2 + 1

)
, so

LEV = LE(V1 e1 + V2 e2 + V3 e3)

= (LEV1 − β V1) e1 + (LEV2 − β V2) e2 + (LEV3 − β V3) e3.
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Now eq.(A.3) written in in terms of components is

(A.4)
*∇V

*E = (LE
*V − (iE*Ω) × *V ) − (LE

*V − β *V )

= −*F × *V + β *V

Setting V = Y in eq.(A.4) and applying *∇Z gives

*∇Z
*∇Y

*E = −(*∇Z
*F ) × *Y − *F × (*∇Z

*Y ) + β *∇Z
*Y ,

while setting V = ∇ZY in eq.(A.4) gives

*∇(∇ZY )
*E = −*F × (*∇Z

*Y ) + β *∇Z
*Y ,

and from eq.(A.2) we conclude that 〈∇Z(∇E), Y 〉 = 0 if and only if (*∇Z
*F ) ×

*Y = 0. Since Y and Z are arbitrary, ∇E is covariantly constant if and only if
0 = *∇*F = d *F − *Ω × *F . This is just the condition (C2). �

The following lemma will complete the proof of Proposition 4.1, and also
establish the equivalence of our definition of the Egoroff condition, eq.(4.3),
with the usual definition, (C1a) below.

Lemma A.3. Let *θ be a canonical coframe with canonical coefficients *H = iI *θ,
and let *Ω be its Levi-Civita connection form. Then the following are equivalent.

(C1) *Ω is an Egoroff connection form.
(C1a) The one-form *H · *θ = g11 dx1 + g22 dx2 + g33 dx3 is closed.
(C1b) (d *H − *Ω × *H) · *θ = 0.

(C1c) iI *Ω = 0.

Proof. The equivalence (C1a)⇔(C1b) is immediate from the derivation property
of d and the triple-product identity:

d ( *H · *θ) = (d *H) · *θ + *H · (d*θ) = (d *H) · *θ + *H · (*Ω × *θ) = (d *H − *Ω × *H) · *θ.

To prove (C1b)⇔(C1c), start with

d *H − *Ω × *H = d iI*θ − *Ω × (iI*θ)

= (LI
*θ − iI d *θ) + iI (*Ω × *θ) − (iI*Ω) × *θ

= LI
*θ − (iI*Ω) × *θ − iI

(
d *θ − *Ω × *θ

)

= LI
*θ − (iI*Ω) × *θ,

which implies

(d *H − *Ω × *H) · *θ = (LI
*θ − (iI*Ω) × *θ) · *θ = (LI

*θ) · *θ − (iI*Ω) · (*θ × *θ).
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Now

(LI
*θ) ·*θ = (LI h1)h1 dx1∧dx1 +(LI h2) h2 dx2∧dx2 +(LI h2) h2 dx2∧dx2 = 0,

and

(iI*Ω) · (*θ × *θ) = 2 (iIΩ1) θ2 ∧ θ3 + 2 (iIΩ2) θ3 ∧ θ1 + 2 (iIΩ3) θ1 ∧ θ2,

so (d *H − *Ω × *H) · *θ vanishes if and only if each component of iI*Ω vanishes.
Finally we prove (C1c)⇔(C1). Any coframe *θ and dual frame *e tautologically

satisfy iei
θj = δij . A canonical coframe has the additional property ie2 ie3 d θ1 =

0, which follows from d θ1 = h−1
1 d h1 ∧ θ1. The first component of the Cartan

torsion equation gives

0 = ie2 ie3 (d θ1 − Ω2 ∧ θ3 + Ω3 ∧ θ2) = ie2 Ω2 + ie3 Ω3,

which together with the other components ie3 Ω3 + ie1 Ω1 = 0 and ie1 Ω1 +
ie2 Ω2 = 0 implies iei Ωi = 0, or equivalently i∂i Ωi = 0. So the connection form
of a canonical coframe satisfies

*Ω =


 i∂2 Ω1 dx2 + i∂3 Ω1 dx3

i∂3 Ω2 dx3 + i∂1 Ω2 dx1

i∂1 Ω3 dx1 + i∂2 Ω3 dx2


 , iI *Ω =


 i∂2 Ω1 + i∂3 Ω1

i∂3 Ω2 + i∂1 Ω2

i∂1 Ω3 + i∂2 Ω3


 .

Now (C1c) is equivalent to

i∂3 Ω1 = −i∂2 Ω1, i∂1 Ω2 = −i∂3 Ω2, i∂2 Ω3 = −i∂1 Ω3,

which is equivalent to (C1), compare with eq.(4.3):

*Ω =


 f1 (x2 − x3)−1 (dx2 − dx3)

f2 (x3 − x1)−1 (dx3 − dx1)
f3 (x1 − x2)−1 (dx1 − dx2)


 , *F =


 f1

f2

f3


 =


 (x2 − x3) i∂2 Ω1

(x3 − x1) i∂3 Ω2

(x1 − x2) i∂1 Ω3


 .

�
Proof of (C3)⇒(C1). Obviously (C3)⇒(C1b), and (C1b)⇔(C1) by Lemma A.3.

�
This completes the proof of Proposition 4.1.
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