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JACOBIANS OF RIEMANN SURFACES AND
THE SOBOLEV SPACE H1/2 ON THE CIRCLE

Indranil Biswas and Subhashis Nag

Abstract. We solve the problem of embedding the universal cover of the Jaco-
bian of any Riemann surface, X, into the “universal Jacobian” H1/2(S1), (see
[7]). The latter is the Sobolev space of half-order differentiable functions on the
unit circle. As the complex structure on X is deformed, we show how to define
a (T (X)-parametrized) family of these natural embeddings, such that they pro-
vide a holomorphic homomorphism of a vector bundle over the Teichmüller space
T (X), into the tautological vector bundle over the universal Siegel space which
commutes with the universal period map.

In sections 6 and 7 we study the above embeddings with reference to towers
of Jacobians arising from towers of finite coverings of Riemann surfaces. We can
pass to inductive limits and see the role of the commensurability automorphism
groups acting on the limit objects.

1. Introduction

The half-order Sobolev space on the unit circle, H1/2(S1), plays an elegant
role in the theory of Teichmüller spaces, as shown in earlier joint work of the
second author with Dennis Sullivan, (see [7]). We recall that H1/2(S1) stands for
the real Hilbert space of real functions f on S1 (modulo the constant functions),
whose Fourier expansions: f(eiθ) =

∑∞
n=−∞ uneinθ, u−n = ūn, have the prop-

erty that the sequence {√nun} is square-summable. In fact, every such Fourier
series is known to converge quasi-everywhere, and defines a real function of the
required type. The norm of f ∈ H1/2(S1) is the �2 norm (

∑∞
n=1 n|un|2)1/2.

There are many connections between H1/2(S1) and universal Teichmüller
theory. We point out two salient ones.

Firstly, the Hilbert space comprising all square-integrable harmonic 1-forms
on the unit disc ∆, is canonically and isometrically isomorphic to this Sobolev
space H1/2(S1). More precisely, integrate the 1-form to get a Dirichlet-finite
harmonic function on ∆, and pass to the trace of this harmonic function on
the boundary circle. The inverse map is given by the differential of the Poisson
integral of any f ∈ H1/2(S1). Now, H1/2(S1) is invariant under the Hilbert
transform, and it carries a natural symplectic structure arising from the cup
product of harmonic forms:

ℵ(f, g) =
1
2π

∫
S1

f · dg
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The Hilbert transform provides a canonical complex structure on H1/2(S1) that
is compatible with (i.e., positive with respect to) the symplectic form ℵ. Conse-
quently, (see [7]), this space H1/2(S1) can be identified with the “Hodge-theoretic
Jacobi variety” of the unit disc.

Secondly, this Hilbert space H1/2(S1) is quasisymmetrically invariant – in-
deed, q.s. homeomorphisms constitute precisely those homeomorphisms of S1

that preserve the H1/2(S1) space; (the action is, of course, “precomposition by
ρ”: ρ∗(f) = f ◦ ρ, for ρ ∈ Homeo(S1)). Every quasisymmetric homeomorphism
of S1 acts as a bounded symplectic automorphism on H1/2(S1). Further, and
that is crucial for us, among all q.s. homeomorphisms, precisely the Möbius
transformations of S1 act unitarily on H1/2(S1).

That allows us the natural embedding, which had been called in [7] the uni-
versal period map:

(1.1) Π : T (∆) −→ S(H1/2)

mapping the universal Teichmüller space, T (∆), into the universal Siegel space
S(H1/2) = Sp(H1/2(S1))/U(H1/2(S1)). It had been shown in [6] and [7] that Π
is a holomorphic embedding of T (∆), and that Π is equivariant with respect to
the Teichmüller modular group acting on T (∆), and the Siegel symplectic group
Sp(H1/2(S1)) acting transitively on the homogeneous space S(H1/2). In fact,
Π provided us with a faithful picture of every Teichmüller space (of arbitrary
Fuchsian group) as embedded inside the universal Siegel space.

One can consider, for arbitrary (open or closed) Riemann surface X, the
Hilbert space Har1L2(X) of square-integrable R-valued harmonic 1-forms on X.
The Hodge star operator equips this with a complex structure. It is natural to
think of Har1L2(X) as the “universal covering of the Jacobian variety of X”, in a
Hodge theoretic sense. For the unit disc, this object is H1/2(S1). Of course, this
concept coincides with the universal covering of the usual Jacobian torus in the
case of compact Riemann surfaces. (There is also a natural associated concept
of a generalized Jacobi variety for any X, obtained by taking a natural quotient
of Har1L2(X) by H1(X, Z).)

In the earlier work ([6], [7]), the following question had been left unsolved:
to relate the the theory of the Jacobians of closed Riemann surfaces to the
“universal Jacobian”, H1/2(S1), which is associated to the universal covering. In
this paper we find and study a natural embedding of the Hilbert space Har1L2(X),
for arbitrary Riemann surface X, into the universal Jacobian H1/2(S1). We
obtain such an embedding,

(1.2) ηX : Har1L2(X) −→ H1/2(S1)

the moment we fix a fundamental region representing X in the universal covering
disc. Then we show that the embedding can be deformed to a natural family as
the complex structure on X is deformed. Theorem 4.5 below fits together all
the embeddings into a holomorphic family – giving a natural holomorphic vector
bundle morphism of a holomorphic vector bundle over T (X) into the tautological
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vector bundle over the universal Siegel space. This bundle morphism on the
total spaces covers the universal period mapping Π between the base spaces,
and restricts to the desired embeddings on the fibers. Moreover, the vector
bundle constructed over T (X) has a natural lifting on it, as holomorphic vector
bundle automorphisms, of the biholomorphic action of the Teichmüller modular
group.

Remark. The constructions developed here point out a rather remarkable result
showing that the universal Teichmüller space, T (∆), has a natural holomorphic
embedding into an infinite dimensional Grassmann manifold such that the non-
trivial tautological bundle over that Grassmannian pulls back to a trivial, and
actually canonically trivialized, holomorphic vector bundle over T (∆).

In Sections 6 and 7 we consider how the embeddings ηX and ηY are related
when π : Y → X is a finite covering space between Riemann surfaces. We
find that the embeddings are related by commutative diagrams that allow us to
proceed to inductive limit constructions. Indeed, as we go over a tower of finite
coverings over an (arbitrary) base Riemann surface X, we obtain a direct system
of universal covers of the corresponding Jacobians, as well as a concomitant direct
system of the images of these J̃(X) via the η embeddings in H1/2(S1). The
universal commensurability modular group, CM∞(X) (that acts as a modular
group on the inductive limit of the Teichmüller spaces of the covering surfaces),
operates on all these limit objects. The embeddings η fit together to give in the
limit an equivariant map:

(1.3) η∞ : Hol∞(X) −→ H1/2
∞ (X)

Finally these mappings further fit together as morphisms of appropriate vector
bundles over T∞(X), – namely, they fit as the complex structure on X itself, or
even on any of its finite coverings, is varied.

2. Closed embedding of Har1
L2(X) in H1/2(S1)

Let X be any Riemann surface, not necessarily compact, whose universal
cover is the hyperbolic unit disc ∆, and let G denote an uniformizing Fuchsian
group such that X = ∆/G. We will let

(2.1) p : ∆ −→ X

denote the holomorphic universal covering projection onto X.
In what follows, Ω1

L2(X) will stand for the real Hilbert space of measurable
square integrable R-valued 1-forms on X. Letting � denote the Hodge star op-
erator on 1-forms, we can write the inner product on Ω1

L2(X) as

(2.2) (ω1, ω2)X =
∫

X

ω1 ∧ �ω2.
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Recall the fundamental theorem (see, for example, Chapter II.3 of [3]) that
the Hilbert space Ω1

L2(X) has the following orthogonal direct sum decomposition
into closed subspaces:

(2.3) Ω1
L2(X) = EX ⊕ ÊX ⊕Har1L2(X).

Here EX (“exact”) denotes the L2 closure of the forms df , with f ∈ C∞
0 (X)

(smooth functions with compact support); ÊX (“co-exact”) denotes the closure
of the forms �df , with f as before; and Har1L2(X), which is the piece of principal
interest to us, is the space of harmonic 1-forms on X that are square-integrable.
The Hodge star maps E and Ê onto each other, while � acts as an automorphism,
whose square is negative identity, on Har1L2(X). Thus, for arbitrary Riemann
surface X, the space Har1L2(X) is a real Hilbert space equipped with a complex
structure given by the Hodge star.

Let

(2.4) PX
har = Phar : Ω1

L2(X) −→ Har1L2(X).

be the orthogonal projection onto the harmonic subspace. Our first and foremost
consideration is to provide a natural mapping that associates to any square-
integrable harmonic form, ω, on X, a harmonic form on the universal covering
disc which is also square-integrable on ∆. [The pullback by an infinite degree
covering of a L2 form is, of course, never L2, (except for the trivial form).]

We shall do this utilizing the projection Phar for the disc.

Remark. Since every harmonic form is canonically the sum of a holomorphic and
an anti-holomorphic form, we can canonically identify Har1L2(X) with either the
square integrable holomorphic 1-forms, or its conjugate space, Hol

1

L2(X). The
projection to the conjugate holomorphic part is actually C-linear. (The other
projection is conjugate linear.) We shall, without further comment, identify
Har1L2(X) with Hol

1

L2(X).

The embedding ηF : Let F be any region in ∆ which is covered by a finite
number (say N) of fundamental domains for the group G. We assume that the
relative boundary of F in the disc, ∂F , is a null-set for two-dimensional planar
Lebesgue measure. In the cases of chief interest to us, F will be a fundamental
polygon, or a finite union of fundamental polygons, for the Fuchsian group G.
Such regions have piecewise analytic arcs as the relative boundary.

Consider the pullback p∗ω, restrict it to F , and extend that by setting it equal
to zero outside F . Clearly, this “cutoff of the pullback” (p∗ω)χF , is a measurable
and square-integrable form on the disc ∆. We define:

ηF : Har1L2(X) −→ Har1L2(∆)

(2.5) ηF (ω) = P∆
har(p

∗ω.χF )
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As explained in the Introduction, there are canonical isometric isomorphisms
of the following Hilbert spaces:

(2.6) Har1L2(∆) ∼= Dir(∆) ∼= H1/2(S1)

Here Dir(∆) denotes the space of Dirichlet-finite harmonic functions on the
disc having mean value zero. The Hodge star operator for forms on the disc
equips Har1L2(∆) with a complex structure which, under the isomorphism with
H1/2(S1), gets translated into the Hilbert transform on these circle functions.

Proposition 2.7. Let the cutoff region F ⊂ ∆ be simply connected, and the in-
terior of its closure. Then ηF is a closed embedding of Har1L2(X) into H1/2(S1),
which is complex linear with respect to the Hodge star and the Hilbert transform
complex structures, (on domain and target, respectively). The operator norm of
ηF is bounded by

√
N .

Idea of Proof. Express the projection operator from L2 forms to harmonic/holo-
morphic L2 forms by using the Bergman kernel projector (as an integral opera-
tor). Fundamental properties of the Bergman kernel for the disc then imply the
statements.

3. Deformation of the embedding for deformation of complex
structure

The universal Siegel space, S(H1/2), is a complex Banach manifold comprising
all the complex structures on the real Hilbert space H1/2(S1) whose eigenspace
for the eigenvalue

√−1 (in the complexified Hilbert space) are positive polarizing
isotropic subspaces with respect to the canonical symplectic form ℵ. Another
description of S(H1/2), (amongst several useful ones) is the homogeneous space
Sp(H1/2(S1))/U . The relationships among the various descriptions are spelled
out in [7].

The universal Teichmüller space T (∆) is the space of quasisymmetric home-
omorphisms of S1 modulo the Möbius transformations. T (∆) is naturally a
complex Banach manifold (in fact, a contractible domain of holomorphy), where
the complex structure comes from the space of Beltrami differentials on the disc.
(See, for instance, [4] or [5] for this material.)

The “universal period” (or “universal polarization”) mapping gives a faithful
holomorphic embedding of T (∆) into S(H1/2). Recall that this goes as follows.
Given any point [µ] of T (∆), represented by a Beltrami coefficient µ on ∆, one
associates the bounded linear symplectic automorphism of H1/2(S1):

(3.1) T[µ] : H1/2(S1)→ H1/2(S1)

given by pre-composition (“pullback”) of H1/2(S1) functions by the quasisym-
metric homeomorphism of the circle which arises as the boundary values of the
µ-conformal automorphism wµ of the disc. (Here wµ is the quasiconformal self-
map of ∆ solving the Beltrami equation wz̄ = µwz, and fixing {1,−1, i}.)
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The U -coset of T[µ] determines the point Π([µ]) of the Siegel space. Al-
ternatively, if we conjugate the reference complex structure (i.e., the Hilbert
transform), J0 : H1/2(S1) → H1/2(S1) by this symplectomorphism, we get the
µ-deformed complex structure operator on H1/2(S1):

(3.2) J[µ] = T[µ] ◦ J0 ◦ T[µ]
−1

This is again compatible (i.e., positive) with respect to the symplectic form, and
describes the desired point Π([µ]).

Now we bring back into play the Fuchsian group G and its Teichmüller space
T (G) = T (X). Let us fix a fundamental polygon F for G. Notice that fixing
such an F requires simply the choice of one base point in the universal cover
of X. Indeed, we may take F to be the Dirichlet polygon in ∆ centered at the
chosen point.

Let µ be a G-invariant Beltrami coefficient on the disc, namely [µ] represents
a point of T (G)(⊂ T (∆)). We let Xµ denote the Riemann surface with the µ
complex structure.

Definition/Lemma 3.3. There is a closed embedding

(3.3) η[µ] : Har1L2(X) −→ H1/2(S1), η[µ] = T[µ] ◦ ηF .

The map η[µ] depends only on the Teichmüller class of µ: since the symplecto-
morphism T[µ] depends only on the boundary homeomorphism of the quasicon-
formal automorphism wµ of ∆. The image of η[µ] is a closed complex subspace
of the Hilbert space H1/2(S1) equipped with the J[µ] complex structure.

4. Vector bundles over Siegel and Teichmüller spaces

The discussion regarding the period mapping in references [6], [7], tells us
that the image of η[µ] will represent the square-integrable harmonic forms for the
deformed Riemann surface Xµ. Our object is to show that the embeddings η[µ]

vary holomorphically with deformation of complex structure on X. That result is
best formulated in terms of certain natural holomorphic vector bundles that live
over the Teichmüller spaces, and over the universal Siegel space, respectively.
Bundle of eigenspaces over Siegel space: We construct the tautological
vector bundle, V, over S(H1/2). Let J be a positive polarizing complex structure
on H1/2(S1); by definition J determines a point in S(H1/2). The fiber of V over
the point J ∈ S(H1/2) will be canonically identified with the complex Hilbert
space (H1/2(S1), J).

Note that the inner product on (H1/2(S1), J) is given by 〈u, u〉 = ℵ(Ju, u).
This will provide natural hermitian structure on the fibers of V.

Recall the decomposition of the complexification of H1/2(S1):

(4.1) H1/2(S1)⊗ C = E+ ⊕ E−, E− = Ē+,

where E+ consists of complex valued H1/2 functions which are boundary val-
ues of Dirichlet-finite conjugate holomorphic functions; E+ is precisely the +i
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eigenspace of the Hilbert transform operator J0, (extended to H1/2(S1)⊗ C by
C-linearity). The boundary values of holomorphic functions on the disc whose
derivatives are square integrable, comprise the −i eigenspace, E−.

We utilize the holomorphic embedding of S(H1/2) in a complex analytic
Grassmannian which is discussed in [7]. Introduce

(4.2) P : S(H1/2) −→ Gr = Gr(E+, H1/2(S1)⊗ C)

parametrizing subspaces that are “comparable to” E+ in the complexified Hilbert
space H1/2(S1) ⊗ C. This Grassmannian is a complex Banach manifold mod-
eled on the Banach space of all bounded complex linear operators from E+ to
E−. The subspaces we are parametrizing are the graphs of such operators. The
tautological vector bundle over Gr, a holomorphic bundle, is defined standardly
by

(4.3) Taut = {(v,Γ) ∈ (H1/2(S1)⊗ C)×Gr : v ∈ Γ}.
One now obtains V as the restriction of the tautological bundle:

Proposition 4.4. The map P : S(H1/2) −→ Gr, which associates to the point
J ∈ S(H1/2) the +i eigenspace for J is a holomorphic embedding. The image
comprises the positive polarizing isotropic subspaces in H1/2(S1)⊗ C.

The pullback bundle, P∗(Taut) over S(H1/2), is a holomorphic and hermi-
tian vector bundle V → S(H1/2), whose fibers are complex Hilbert spaces. The
symplectic automorphism group on S(H1/2) has a natural lifted action, by holo-
morphic vector bundle automorphisms, acting as isometries, on V.

Utilizing the fact that the equivariant map Π induces a monomorphism of the
group of right translations on T (∆) into Sp(H1/2(S1)), we derive:

Theorem 4.5. The universal Teichmüller space T (∆) carries a holomorphic
vector bundle W = Π∗V, arising as the pullback by the period mapping Π of
the bundle V → S(H1/2). But T (∆) is a group, in which the right translations
act as biholomorphic automorphisms; these automorphisms lift as holomorphic
bundle automorphisms of W acting as hermitian isometries on the fibers. This
structure provides a canonical trivialization of the bundle W.

5. Morphism of vector bundle over T (X) into V
Let X be ∆/G, for arbitrary Fuchsian G, and let F be a fundamental domain

for G as in sections 2 and 3. Let N denote the image of ηF (as a closed complex
subspace in (H1/2(S1), J0)). By transporting N via the liftings of the right-
translations to all fibers of W, we obtain a certain holomorphic subbundle, say
N �, of W. Since the Teichmüller space T (X) = T (G) sits holomorphically
embedded in T (∆), we obtain a holomorphic vector bundle N �

X over T (X) by
restricting N �.

If [µ] is a point of T (X), then the “deformed embedding” η[µ] = T[µ] ◦ηF (see
(3.3)), is seen to have image equal to the fiber of N �

X over the point [µ]. Hence,
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the entire family of embeddings η[µ], as [µ] varies over all of T (X), fit together
to give a holomorphic isomorphism η� : Har1L2(X)× T (X)→ N �

X . One proves:

Theorem 5.1. The holomorphic vector bundle N �
X → T (X) carries a lifting of

the action of the modular group Mod(T (X)); the lifts of modular transformations
act as holomorphic and isometric bundle automorphisms.

One has a commuting square, with the holomorphic morphism η� covering the
universal period mapping Π (restricted to T (X)):

Hol
1

L2(X)× T (X)
η�

−→ V�
�

T (X) Π−→ S(H1/2)

The morphism η� is a closed injection on each fiber, and is equivariant with
respect to the actions of the Teichmüller modular group (on the domain) and the
Siegel symplectic group (on the range).

Remark. In case X = ∆, the bundle N �
X is exactly the W of Theorem 4.5.

6. Coverings of surfaces and the η embeddings

The aim now is to show the naturality with which the various η embeddings fit
together as we go through finite coverings of Riemann surfaces. Let q : Y → X
be any finite unbranched covering map, determined by a subgroup H, (of some
finite index n), in the Fuchsian group G (recall, G uniformized X). We will
call the covering “enhanced” if a set of n coset representatives for G/H, say
g1, · · · , gn, (we assume g1 = 1) are given. We emphasize that X need not be
compact.

Having fixed the fundamental polygon F for X, we obtain a corresponding
union of translates of F : namely FY = g1F ∪ · · · ∪ gnF , so that FY is a fun-
damental region in the disc representing Y . We have the η embeddings of the
Hilbert spaces of (conjugate) holomorphic (or harmonic) square-integrable forms
for each surface into H1/2:

(6.1) ηX := ηF : Hol
1

L2(X) −→ H1/2(S1), ηY := ηFY
: Hol

1

L2(Y ) −→ H1/2(S1)

Remark. The domain FY may not be connected, but that will not affect our
inductive limit constructions. It is possible to choose the representatives so that
the translates of F are contiguous.

The Lemma is the following relationship between the two η mappings:
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Lemma 6.2. Let q∗ : Hol
1

L2(X) → Hol
1

L2(Y ) denote the pullback of 1-forms
induced by the finite cover. The following diagram commutes:

Hol
1

L2(X)
ηX−→ H1/2(S1)�q∗

�Aq

Hol
1

L2(Y )
ηY−→ H1/2(S1)

where Aq(f) =
∑n

i=1 U∗
gi

(f), is the sum of the adjoints of n unitary operators
on H1/2(S1). Here, Ug(f) = f ◦ g, is the unitary operator corresponding to the
Möbius transformation g of S1. Unitarity implies, U∗

g = Ug−1 .

Idea of proof. The lemma rests on basic invariance properties enjoyed by the
Bergman kernel for the disc; one utilizes the fact that both ηX and ηY may be
expressed as integral operators using that kernel.

Remark. It is also possible to form a direct system of η embeddings for the
tower of finite covers by fixing a region F in the universal covering disc for all
the surfaces. Then one has ηX = ηY ◦q∗; consequently the inductive limit of the
images of the η embeddings (in H1/2(S1)) is constructible. A parallel theory to
the one being described emerges.

Towers of enhanced coverings: It is easy to see that the composition of
two finite enhanced coverings, r : Z → Y (say degree m), q : Y → X (say
degree n), is itself naturally an enhanced cover. Let {g1, · · · , gn} be the coset
representatives for q, and {h1, · · · , hm} be those chosen for r. Then, in fact,
the mn elements of G obtained as the pairwise products {hjgi} constitute coset
representatives for the composite covering q ◦ r.

Therefore enhanced finite coverings over any Riemann surface X constitute
a directed set, where one cover dominates another if there is a factoring in the
category of enhanced covers.

It is important now to observe that the linear operators Aq satisfy the com-
patibility condition:

(6.3) Ar ◦ Aq = Aq◦r.

Consequently, we can construct, over the directed set of enhanced finite covers
over X, the direct systems of Hilbert spaces of square integrable forms, as well
as the direct system of the images (by η) of these spaces within H1/2(S1).

One obtains several inter-related limit objects. Define:

(6.4) Hol∞(X) = lim−→
{Y →X}

Hol
1

L2(Y )

Since the inductive limit of Banach spaces is also a Banach space, we note that
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Hol∞(X) is a complex Banach space. Now define:

(6.5) H1/2
∞ (X) = lim−→

{Y →X}
ηY (Hol

1

L2(Y ))

The connecting maps for the inductive system in (6.5) are, of course, the Aq

(which are injections when restricted to the η images).
Clearly, the maps ηY give a map between the inductive systems themselves,

and hence induces a complex linear map on the inductive limits:

(6.6) η∞ : Hol∞(X) −→ H1/2
∞ (X)

Let us also introduce the direct limit of the Teichmüller spaces of the covering
surfaces Y over X:

(6.7) T∞(X) = lim−→T (Y )

This complex analytic “ind-space”, (see [8]), is a stratified object that embeds in
the universal Teichmüller space T (∆) as the directed union of the Teichmüller
spaces of the finite index Fuchsian subgroups (corresponding to the covers Y )
of the original Fuchsian group G. Its closure in T (∆) is a complex Banach
manifold. In the case of X compact, a study was made of this ind-space, and
of bundles over it, in the works [2], [1]. T∞(X) was called the commensurability
Teichmüller space.
The action of the commensurability groups: Any element of the univer-
sal commensurability modular group, CM∞(X), (see [2], [1]), arises from an
undirected polygon whose edges represent pointed unramified coverings, in the
topological category, starting at and returning to X. For X connected and com-
pact, this group was shown to operate faithfully, as a group of biholomorphic
automorphisms, on the commensurability Teichmüller space, T∞(X).

Now, for essentially set-theoretic reasons, such a phenomenon continues to
hold true for the limit objects we introduced in (6.4), (6.5), (and actually, very
generally, in other similar situations). Namely, a group of automorphisms of the
limit object is created by considering undirected polygons in the holomorphic
category.

Let F be a contravariant functor that associates to the objects and morphisms
of the inverse system constituted by some finite holomorphic coverings over the
Riemann surface X, objects and morphisms from any category, (for instance the
categories in (6.4) (6.5)). Denote by F∞(X) = lim−→F (Y ).

Lemma 6.8. Given any morphism in the inverse system q : Y → X, we get a
natural induced map of the direct system of F -objects over Y to the direct system
of F -objects over X. (Since the system above Y is cofinal with that above X.)
The corresponding map of direct limits:

F∞(q) : F∞(Y ) −→ F∞(X)

is a bijection.
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Since each F∞(q) is invertible, we obtain the desired group of automorphisms
on F∞(X), defined by following around undirected cycles of covering morphisms
in the holomorphic category, starting and ending at X. For a given Riemann
surface X, this turns out to be the naturally associated “commensurability au-
tomorphism group”, ComAut(X), of that Riemann surface; it is the group of
finite holomorphic self-correspondences of X.

Remark. There is an intimate relationship between the commensurability groups
in the two categories, which will be taken up in future publications. The group
ComAut(Y ), for any Riemann surface Y covering X, embeds in CM∞(X) as the
isotropy subgroup of the action of CM∞(X) at the point of T∞(X) represented
by Y .

It can be proved in this generality, that each commensurability group we are
working with may be described as the fundamental group of an appropriate
2-complex obtained from the graph of the inverse system by filling in a 2-cell
wherever there is a commuting triangle of covering morphisms. This connects
up CM∞(X), and ComAut(X), with the virtual automorphism group of the
fundamental group of X, as in previous work ([2], [1]).

Remark. The solenoidal surface obtained as the inverse limit of the coverings:
H∞(X) = lim←−Y , has a mapping class group related intimately to CM∞(X),
– even in this more general situation where the surface X is not necessarily
compact. The Teichmüller space of the solenoid can be defined to be the closure
in T (∆) of T∞(X).

7. Vector bundles on T∞(X) and the limit map η∞

As in sections 4 and 5, the idea even with these direct limit Banach spaces, is
to transport the subspace H

1/2
∞ (X) into each fiber of the vector bundle W that

we had obtained over the universal Teichmüller space, by utilizing the liftings of
the right translation biholomorphisms. Here we utilize the natural embedding
of T∞(X) into T (∆) (described above). If [µ] represents a point of T∞(X), one
transports the basic fiber H

1/2
∞ (X) (over [0]) to the space T[µ](H

1/2
∞ (X)) as the

fiber above [µ].

Theorem 7.1. There is a holomorphic subbundle W∞(X) of W → T (∆) whose
fiber above the base point is H

1/2
∞ (X). The direct limit form of the embeddings

η, composed with the symplectomorphisms T[µ], namely, T[µ] ◦ η∞, provides us
a holomorphic bundle map of Hol∞(X) × T∞(X) to the restriction of W∞(X)
over the commensurability Teichmüller space T∞(X).

The entire construction is equivariant with respect to the actions of the com-
mensurability groups explained above. The action of CM∞(X), by biholomorphic
automorphisms on T∞(X), lifts naturally to these bundles, and the product group
CM∞(X)× ComAut(X), acts on the bundle W∞(X) restricted over T∞(X).

Details and proofs will appear elsewhere.
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