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ZEROS OF SPARSE POLYNOMIALS OVER LOCAL FIELDS
OF CHARACTERISTIC p

Bjorn Poonen

1. Statement of results

Let K be a field of characteristic p > 0 equipped with a valuation v : K∗ → G
taking values in an ordered abelian group G. Let OK = {α ∈ K : v(α) ≥ 0} and
mK = {α ∈ K : v(α) > 0} be the valuation ring and maximal ideal, respectively,
and suppose that the residue field OK/mK is finite, with q elements.

Theorem 1. If f(x) = a0x
n0 + a1x

n1 + · · · + akxnk is a polynomial with k + 1
nonzero coefficients ai ∈ K∗, then f has at most qk distinct zeros in K.

This upper bound is sharp: if K is Fq((T )) with the usual discrete valuation
v : K∗ → Z, if V ⊂ K is an Fq-subspace of dimension k, and if c ∈ K is nonzero,
then the polynomial f(x) := c

∏
α∈V (x−α) has the form a0x+a1x

q + · · ·+akxqk

for some a0, a1, . . . , ak ∈ K∗.
Theorem 1 is the case d = 1 of the following generalization, which bounds the

number of distinct zeros of bounded degree. Let µ(n) be the Möbius µ-function.

Theorem 2. Fix d ≥ 1. If f(x) = a0x
n0 + a1x

n1 + · · ·+ akxnk is a polynomial
with k + 1 nonzero coefficients ai ∈ K∗, then the number of distinct zeros of f
in K of degree at most d over K is at most

∑d
j=1

∑
i|j qikµ(j/i).

This upper bound is sharp as well, for every q, k, and d. Let K = Fq((T )) and
v be as before. Let F be a finite field containing Fqi for i ≤ d. Let V ⊂ F((T )) be
a k-dimensional F-vector space that is Gal(F/Fq)-stable (or equivalently, has an
F-basis of elements of K). Then equality is attained in Theorem 2 for f(x) :=
c
∏

α∈V (x − α) for any c ∈ K∗. (The inner sum in Theorem 2 performs the
inclusion-exclusion to count zeros of exact degree j.)

We make no claim that these are the only polynomials that attain equality;
in fact there are many others. For example, if K, V , and f are as in the previous
paragraph, and if the F-basis of V consists of elements of K of distinct valuation,
with all these valuations divisible by a single integer e ≥ 1, then f(xe) also attains
equality, as a short argument involving Hensel’s lemma shows. Other examples
can be constructed using the observation that if f(x) ∈ K[x] has N zeros in a
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given field extension L of K, one of which is 0, then the same holds for xmf(1/x)
when m > deg f .

Remark. H. W. Lenstra, Jr. [Le1] proves related facts for finite extensions L
of Qp, using very different methods. One of his results is that for any such
L and any positive integer k, there exists a positive integer B = B(k, L) with
the following property: if f ∈ L[x] is a nonzero polynomial with at most k + 1
nonzero terms and f(0) �= 0, then f has at most B zeros in L, counted with
multiplicities. His bound B(k, L) is explicit, but almost certainly not sharp.
Finding a sharp bound seems difficult in general, although Lenstra does this for
the case k = 2 and L = Q2 (the bound then is 6). He also applies his local
result to bound uniformly the number of factors of given degree over number
fields. In [Le2] he shows that if f is represented sparsely, then these factors can
be found in polynomial time.

Remark. We cannot count multiplicities in either of our theorems and hope to
obtain a bound depending only on k and K (and d, for Theorem 2), because
of examples like f(x) = (1 + x)qm

with m → ∞. Requiring that f not be
a p-th power would not eliminate the problem, because one could also take
f(x) = (1 + x)qm+1.

2. Proof of Theorem 1

By a disk in a valued field K, we mean either an “open disk” D(x0, g) :=
{x ∈ K : v(x− x0) > g}, or a “closed disk” D(x0, g) := {x ∈ K : v(x− x0) ≥ g}
where x0 ∈ K and g ∈ G.

Let σ1, σ2, . . . , σt be the non-vertical segments of the Newton polygon of
f . Let −gj ∈ G ⊗ Q be the slope of σj . If e1, e2, . . . , er are the exponents
of the monomials in f corresponding to points on a given σj , define Nj as the
largest integer for which the images of (1 + x)e1 , (1 + x)e2 , . . . , (1 + x)er in
Fp[x]/(xNj ) are linearly dependent over Fp. We say that the σj are in a proper
order if N1 ≥ N2 ≥ · · · ≥ Nt. This particular ordering is crucial to the proof,
but it is hard to motivate its definition. It was discovered by analyzing proofs
of many special cases of Theorem 1. For instance, if the Newton polygon of f
has k non-vertical segments (each associated with exactly two exponents), then
the segments are being ordered according to the p-adic absolute values of their
horizontal lengths.

Lemma 3. Let L be a field of characteristic p > 0 with a valuation v : L∗ → G.
Suppose f(x) = a0x

n0 + a1x
n1 + · · · + akxnk ∈ L[x] with each ai nonzero. List

the segments of the Newton polygon of f in a proper order as above. Fix u and
let −gu ∈ G⊗Q be the slope of the u-th segment σu. Suppose r ∈ L is not a zero
of f , and v(r) = gu. Let S be the set of zeros of f in L lying inside D(r, gu).
Then #{v(α − r) : α ∈ S} ≤ k + 1 − u.
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Proof. Replacing f(x) by cf(rx) for suitable c ∈ L∗, we may reduce to the
case in which r = 1, gu = 0, f ∈ OL[x], and f mod mL is nonzero. Write
f(1+x) =

∑nk

j=0 bjx
j , and let M be the smallest integer for which bM is nonzero

modulo mL. By definition of Nu, f(1+x) �≡ 0 mod (mL, xNu+1). Hence M ≤ Nu.
For each i ≤ u, we have Nu ≤ Ni, so M ≤ Ni, and there is some Fp-linear

relation in Fp[x]/(xM ) between the (1 + x)e for the exponents e associated to
σi. The subspace of Fp[x]/(xM ) spanned by the (1+x)e, where e ranges over all
the exponents in f , then has dimension at most (k +1)−u, since the u relations
above are independent, the largest e involved in each relation being distinct from
the others. It follows that the Fp-subspace of K spanned by b0, b1, . . . , bM−1

is at most (k + 1 − u)-dimensional. Then #{v(bi) : 0 ≤ i < M and bi �= 0} ≤
k + 1− u, because nonzero elements of distinct valuations are automatically Fp-
independent. The left endpoints of the negative slope segments of the Newton
polygon of f(1 + x) correspond to bi of distinct valuations for i < M , so there
are at most k + 1− u such segments. Hence at most k + 1− u positive elements
of G can be valuations of zeros of f(1 + x), which is what we needed to prove.

Remark. Note that there is no assumption on the residue field in Lemma 3; L
could even be algebraically closed.

Let S be any finite subset of a field L with valuation v. We associate a tree T
to S as follows. (See [St] for arboreal terminology.) Let T be the Hasse diagram
of the finite poset (ordered by inclusion) of nonempty sets of the form S ∩ D
where D is a disk. Clearly T is a tree, whose leaves are the singleton subsets of
S. We would obtain the same tree if we required the disks D to be open (resp.
closed), since S is finite.

Suppose r and S are as in Lemma 3. Let T0 > T1 > · · · > T� be the longest
chain in T . Then T� is a leaf, and #T� = 1. Choose r0 ∈ D(r, gu) \ S closer to
the element of T� than to any other element of S. For various g > gu, the set
S ∩ D(r0, g) can equal T0, T1, . . . , T�, or ∅. Hence

#{v(α − r0) : α ∈ S} ≥ & + 1.

On the other hand, Lemma 3 applied to r0 yields

#{v(α − r0) : α ∈ S} ≤ k + 1 − u.

Combining these, we have that the length & = &(T ) of the tree satsifies & ≤ k−u.
Suppose S0 ∈ T is not a leaf (i.e. #S0 > 1), and let g = min{v(s − t) : s, t ∈

S0}, so that for any s ∈ S0, D(s, g) is the smallest disk containing S0. Then the
children of S0 in the tree are nonempty sets of the form S ∩ D(x0, g) for some
x0 ∈ D(s, g). In particular the number of children is at most the size of the
residue field of L.
Proof of Theorem 1. Let notation be as in Lemma 3, but take L = K. By the
theory of Newton polygons, each nonzero zero of f has valuation equal to gu for
some u. Let us now fix u and let Zu be the number of zeros in K of valuation
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gu. We may assume gu ∈ G, since otherwise Zu = 0. Then {x ∈ K : v(x) = gu}
is the union of q − 1 open disks Dj of the form D(xj , gu). As above, the tree
corresponding to the set of zeros in Dj has length at most k − u, and each
vertex has at most q children. Hence the tree has at most qk−u leaves, and
Zu ≤ (q − 1)qk−u. Allowing for the possibility that 0 also is a zero of f , we find
that the number of zeros of f in K is at most

1 +
t∑

u=1

Zu ≤ 1 +
t∑

u=1

(q − 1)qk−u ≤ 1 +
k∑

u=1

(q − 1)qk−u = qk.

3. Valuation theory

Before proving Theorem 2, we will need to recall some facts from valuation
theory. We write (K, v) for a field K with a valuation v. We say that (L, w) is an
extension of (K, v) if K ⊆ L and w|K = v. In this case, when we say that L has
the same value group (resp. residue field) as K, we mean that the inclusion of
value groups (resp. residue fields) induced from the inclusion of (K, v) in (L, w)
is an isomorphism. Recall that any valuation on a field K admits at least one
extension to any field containing K. An abelian group G is divisible if for all
g ∈ G and n ≥ 1, the equation nx = g has a solution x in G.

Proposition 4. Any valued field can be embedded in another valued field having
the same residue field, but divisible value group.

Proof. Let v : K∗ → G be the original valuation. If G is not already divisible,
then there exists g ∈ G and a prime number n such that nx = g has no solution
in G. Pick α ∈ K∗ with v(α) = g, and extend v to a valuation on L = K(α1/n).
Let e and f denote the ramification index and residue class degree for L/K.
Then e = n, and the inequality ef ≤ n (Lemma 18 in Chapter 1 of [Sch]) forces
f = 1. An easy Zorn’s lemma argument now shows that v extends to a valuation
v : M∗ → G⊗Q where M is an extension with the same residue field as K, but
with divisible value group.

Recall that (L, w) is called an immediate extension of (K, v) if

(1) (L, w) is an extension of (K, v);
(2) (L, w) has the same value group as (K, v); and
(3) (L, w) has the same residue field as (K, v).

Also recall that (K, v) is called maximally complete if it has no nontrivial imme-
diate extensions.

Proposition 5. Every valued field has a maximally complete immediate exten-
sion.

Proof. This is an old result of Krull: see Theorem 5 of Chapter 2 in [Sch].
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Proposition 6. Suppose that (K, v) is maximally complete of characteristic p >
0, and that Fq is contained in the residue field. Then Fq can be embedded in K.

Proof. Apply a suitable version of Hensel’s lemma (combine Theorems 6 and 7
of Chapter 2 of [Sch]) to the factorization of xq − x over Fq.

Proposition 7. Suppose that (K, v) is maximally complete of characteristic p >
0, with divisible value group G and with residue field Fq. If L ⊂ K is a finite
extension of K of degree n, then L is the compositum of Fqn and K in K.

Proof. Extend v to L. Theorem 11 in Chapter 2 of [Sch] shows that L is
maximally complete, and that ef = n holds for L/K. Since G is divisible, there
are no ordered abelian groups G′ with 1 < (G′ : G) < ∞. Hence e = 1, f = n,
and the residue field of L is Fqn . Proposition 6 implies that the subfield Fqn of
K is contained in L. But the compositum of the linearly disjoint fields Fqn and
K in K is already n-dimensional over K, so the compositum must equal L.

Remark. Lenstra notes that if one is interested in proving Theorem 2 only for
polynomials over K0 = Fq((T )), then one can circumvent the theory of maxi-
mally complete fields by choosing σ ∈ Gal(K0/K0) that acts as x �→ xq on Fq,
and by taking K to be the fixed field of σ. This K contains K0, still has residue
field Fq, and satisfies the conclusion of Proposition 7.

4. Proof of Theorem 2

In proving Theorem 2, we may first apply Propositions 4 and 5 to assume
that the value group G is divisible and that (K, v) is maximally complete (still
with residue field Fq). Let F = Fqd! ⊂ K. Proposition 7 shows that all elements
of K of degree at most d over K lie inside the compositum L := F · K of fields
in K. Extend v to L.

For each g ∈ G, choose βg ∈ K with v(βg) = g. Now suppose D := D(x0, g) is
a closed ball in L. Let I be the subgroup of Gal(L/K) ∼= Gal(F/Fq) that maps D
into D. Division by βg induces an isomorphism of I-modules D(0, g)/D(0, g) ∼=
F, so the cohomology group H1(I,D(0, g)/D(0, g)) is trivial. The long exact
sequence associated with the exact sequence

0 → D(0, g)
D(0, g)

→ L

D(0, g)
→ L

D(0, g)
→ 0

of I-modules shows that D contains an open disk D(x1, g) mapped to itself by
I. We then have a bijection of I-sets φD : D/D(0, g) → F that maps the coset
y + D(0, g) to the residue class of (y − x1)/βg. We assume that the elements βg

and the maps φD are fixed once and for all.
Now let gu, r, and S be as in Lemma 3, and let T be the tree associated to S

as in Section 2, so that &(T ) ≤ k−u. We now describe a labelling of the vertices
of T by elements of F. Recall that if S0 ∈ T is not a leaf, and if D = D(s, g)
is the smallest disk containing S0, then the children of S0 are nonempty sets of
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the form S ∩D(x0, g) for some x0 ∈ D. Label each child by φD(D(x0, g)). Note
that the children of S0 are labelled with distinct elements of F. Finally, label
the root of T with the residue of r/βgu in F∗.

Let R be the set of all roots of f in L, and let F[X]<k denote the set of
polynomials of the form a0 + a1X + · · ·+ ak−1X

k−1 with ai ∈ F. We now define
a map Φ : R → F[X]<k. First, if 0 ∈ R, define Φ(0) = 0 ∈ F[X]<k. If z ∈ R is
nonzero, then v(z) = gu for some u. Let T0 > T1 > · · · > Tn be the maximal
chain ending at Tn = {z} in the tree T associated to S := R ∩ D(z, gu). Define
Φ(z) = Xu−1

∑n
i=0 label(Ti)Xi. Since n ≤ &(T ) ≤ k−u, we have Φ(z) ∈ F[X]<k.

Lemma 8.

(1) The map Φ : R → F[X]<k is injective.
(2) If z ∈ R is of degree j over K, then Φ(z) ∈ Fqj [X].

Proof. To prove injectivity, we describe how to reconstruct z from Φ(z). If
Φ(z) = 0, then z must be 0. Otherwise its lowest degree monomial involves
Xu−1 where v(z) = gu. Hence, assuming from now on that z �= 0, we can
reconstruct v(z) from Φ(z). Next, the coefficient of Xu−1 determines which
(nontrivial) coset of D(0, gu) in D(0, gu) z belongs to. The other coefficients
uniquely determine a path ending at the leaf {z} in the tree associated to this
coset. Thus Φ(z) determines z.

For the second part, it suffices to show that if H is the subgroup of Gal(L/K)
fixing z ∈ R, then H (or equivalently the isomorphic subgroup of Gal(F/Fq))
fixes the coefficients of Φ(z) also. We may assume z �= 0. Let gu = v(z), and let
T0 > T1 > · · · > Tn = {z} be the maximal chain in the tree T associated to the
coset z + D(0, gu) in which z lies. Since H preserves the coset z + D(0, gu), H
fixes the label of T0. Now suppose 1 ≤ i ≤ n. The smallest disk containing Ti−1

is of the form D := D(z, g) for some g > gu, so H is contained in the subgroup
I ⊆ Gal(L/K) preserving this disk. The label of the child Ti is φD(z + D(0, g)),
and φD respects the action of H ⊆ I, so H fixes this label. This holds for all i,
so H fixes all coefficients of Φ(z).

Lemma 8 shows that the number of zeros of f in K of degree at most d is less
than or equal to the number of polynomials in F[X]<k that are defined over Fqj

for some j ≤ k. The number of such polynomials defined over Fqj but no subfield
is

∑
i|j qikµ(j/i), by Möbius inversion. Theorem 2 follows upon summing over

j.
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