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ON THE CROSSING NUMBER OF HIGH

DEGREE SATELLITES OF HYPERBOLIC KNOTS

Zheng-Xu He

Abstract. Let K be a hyperbolic knot, and let K′ be a satellite of K of (homo-
logical) degree p, where p is an integer. We show that the crossing number of K′ is

at least
(
area(E)

)(
length([m])

)−1(
2π − 2 length([m])

)−1
p2, where area(E) is the

area of the critical horo-torus of the hyperbolic structure on the knot complement
and length([m]) is the length of the meridian in the horo-torus. Our estimate is
an improvement over an earlier result of M. Freedman and the author in many
cases.

1. Introduction

The crossing number of a knot or link K, denoted by cr(K), is defined to be
the minimal number of crossings in a plane diagram representing the knot or
link (see e.g., [8, page 8]). For example, the crossing number of the trefoil is 3,
and the figure-eight knot 4. Using Jones polynomial, L. Kauffman [7] has shown
that if a knot or link can be represented by a reduced alternating diagram, then
its crossing number is actually equal to the number of crossings in the diagram.
This has also been extended to semi-alternating links, Montesinos links, and
other special cases (see [9, 14]). However, many elementary questions regarding
the crossing number remain unanswered. For example, it is believed, but not
proved, that the crossing number of a satellite is at least equal to that of its
companion (see e.g., [8]).

Let K be a non-trivial knot which is represented by a smooth, simple loop
κ in R

3. Let T be a compact tubular neighborhood of κ. That is, T is the
image of a smooth embedding I : S

1 × D
2 → R

3 such that κ = I(S1 × {0});
where D

2 denotes the closed unit disk in R
2. The degree of an (oriented) loop

in T will mean the homological degree. (This is well-defined up to a sign since
H1(T ; Z) ∼= Z.) Let p be an integer. A knot will be called a degree p satellite of
K if it can be represented by a simple loop of degree ±p in T .

It is conjectured that the crossing number of a degree p satellite K ′ of K is
at least p2 times the crossing number of K. In [4], we have shown that cr(K ′) is
bigger than or equal to p2

(
2 genus(K) − 1

)
. The proof made an application of

works of D. Gabai [5] on foliations of 3-manifolds and of W. Thurston on norms
of homology classes [16] (see also [13]).

Received January 15, 1998.
This research is partially supported by an NSF grant.

235



236 ZHENG-XU HE

Denote S
3 = R

3 ∪ {∞}, M(K) = S
3 − T , and M(K) = M(K) ∪ ∂T .

Then the inclusion ∂T ⊆ M(K) induces an inclusion π1(∂T ) ⊆ π1(M(K)).
Suppose that K is hyperbolic; that is, there exists a complete hyperbolic metric
on M(K)1. The group π1(M(K)) is clearly isomorphic to π1(M(K)), and hence
acts on the universal cover of M(K) as a group of hyperbolic isometries. For
simplicity of notation, we will just identify the two: π1(M(K)) = π1(M(K))
(the identification is unique up to inner isomorphisms). Let B(K) be the largest
open horoball in the universal cover of M(K) such that B(K)/π1(∂T ) embedds
into M(K). Let ∂B(K) be the bounday of B(K) in the hyperbolic space, and
let E(K) = ∂B(K)/π1(∂T ). The space E(K), with the induced metric, is a
euclidean torus. Moreover, π1(E(K)) can be naturally identified with π1(∂T ).

The euclidean torus E(K) is called the critical horo-torus of the hyperbolic
manifold M(K).

Let m and l be a meridian and longitude respectively on ∂M(K) = ∂T .
Thus, m bounds a disk in T , and l bounds a Seifert surface in M(K). For
simplicity, we will denote by [m] and [l] the corresponding homology classes in
H1(E(K); Z) = π1(E(K)) = π1(∂T ) ∼= Z

2. For any pair of integers k, j, let
length(k[m]+ j[l]) denote the length of a geodesic loop in E(K) representing the
homology class k[m] + j[l].

Our main theorem can be stated as follows.

1.1. Theorem. Let K be a hyperbolic knot, and let p be an integer. Let E(K)
be the critical horo-torus of the hyperbolic structure on the knot complement
M(K). The crossing number of any degree p satellite K ′ of K satisfies the
following estimate:

(1.1) cr(K ′) ≥
(

area(E(K))
length([m])

(
2π − length([m])

)
)

p2.

By a result of M. Gromov and W. Thurston [6], we have length([m]) < 2π
(since otherwise one would be able to construct a metric of nonpositive curvature
on S

3). On the other hand, it is known that the length of any non-trivial loop in
E(K) is at least 1 (see e.g., [10]). Thus, 1 ≤ length([m]) < 2π. It is interesting
to note that, by letting p = 1 in the above theorem, we obtain the following:

(1.2) length([m])
(
2π − length([m])

)
≥ area(E(K))/ cr(K) ≥

√
3/ cr(K),

where the inequality area(E(K)) ≥
√

3 can be derived by combining a recent
result of C. Adams [1] with the classical theorem on the optimal packings of
identical circles in the plane. In fact, the following can be proved (see Corol-
lary 3.2):

length([m])
(
2π − length([m])

)
cr(K) − 2π length([m]) ≥ area(E(K)) ≥

√
3.

1By Thurston’s Geometrization Theorem, a knot is hyperbolic if and only if it is not a
nontrivial satellite or a torus knot (see e.g. [15] or [12]).
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Theorem 1.1 follows as a corollary of an estimate on the asymptotical crossing
number2 ac(K) of K (see Theorem 2.1):

(1.3) ac(K) ≥ area(E(K))
length([m])

(
2π − length([m])

) .

Since length([m])
(
2π − length([m])

)
≤ π2, we have

(1.4) ac(K) ≥ area(E(K))/π2.

We do not know under what conditions does area(E(Kn)) converge to ∞ when
cr(Kn) → ∞. Where Kn is a sequence of hyperbolic knots. One may com-
pare (1.3) with the estimate of [4]: ac(K) ≥ 2 genus(K)− 1. We will see that in
some cases, the estimate in the present paper is better.

The paper will be organized as follows. In section 2, we will recall and dis-
cuss the asymptotical crossing number. The proof of our main estimate will
occupy section 3. Then, in section 4, we will give an application. Finally in
section 5, we will tabulate some computational data for some Montesinos knots,
using the program SnapPea, developed by J. Weeks at the Geometry Center,
Minnesotta [17].

2. Asymptotical crossing number

We will next recall the definition of asymptotical crossing number. The no-
tion was introduced in [4] for estimating the energy of divergence-free vector
fields in fluids (or gases) which are subject to incompressible deformations (see
also [11, 2, 3] for more background). As in [4], we will give an estimate for
the asymptotical crossing number, which implies Theorem 1.1 as an immediate
corollary.

Let L = (L1, L2) be a two-component link. The inter-crossing number of L,
denoted by cr-i(L), is defined to be the minimum number of crossings of the
first component over the second in a plane diagram representing the link. Here
is a more abstract way to define this. Let pr12 : R

3 → R
2 and pr3 : R

3 → R

be defined by: pr12((x1, x2, x3)) = (x1, x2) and pr3((x1, x2, x3)) = x3. Let
P, Q : S

1 → R
3 be a pair of disjoint simple loops. The inter-crossing num-

ber of the pair (P, Q) relative to the projection pr12, denoted by cr-i(P, Q),
is defined to be the cardinality of the set

{
(s, t) ∈ S

1 × S
1; pr12(P (s)) =

pr12(Q(t)), pr3(P (s)) > pr3(Q(s))
}
. Then inter-crossing number of (L1, L2)

is then the minimum inter-crossing number relative to pr12 of a pair of disjoint
simple loops in R

3 representing the link.
Let K be a knot, represented by a loop in R

3; and let T be a compact
tubular neighbourhood of the loop. Let p, q be integers. A two-component

2The definition of asymptotical crossing number given in our joint paper [4] is not the same
as the one given in Kirby’s problem list [8]. Theoretically ours can be smaller, although they
are conjectured to be identical.
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link L = (L1, L2) will be called a degree (p, q) satellite link of K, if it can be
represented by a pair of disjoint simple loops P, Q : S

1 → T of degrees p and
q respectively. The asymptotical crossing number ac(K) of K is defined to the
infimum of cr-i(L)/|pq|, where p, q ∈ Z − {0}, and L is a degree (p, q) satellite
link of K.

Clearly, ac(K) ≤ cr(K). In [4], it is proved that ac(K) ≥ 2 genus(K)−1. The
conjecture is that ac(K) actually equals cr(K). The method in present paper
will prove the following theorem.

2.1. Theorem. If K is a hyperbolic knot as in Theorem 1.1, then

(2.1) ac(K) ≥ area(E(K))
length([m])

(
2π − length([m])

) .

In light of the following observation and the fact that cr ≥ ac, it is easy to
see that the above theorem implies Theorem 1.1.

2.2. Remark. If p is a non-zero integer, and K ′ a degree p satellite of K, then

(2.2) ac(K ′) ≥ p2 ac(K).

3. Proof of Theorem 2.1

We will need the following geometrical lemma.

3.1. Lemma. Let K, T ,M(K),M(K), E(K) be as in Theorem 1.1. Let n, r ≥
0 and p �= 0 be integers. Let S be a connected compact planar surface with n + r
boundary components, and let F : (S, ∂S) → (M(K), ∂M(K)) be a map such
that the homology class F∗[S, ∂S] in H2(M(K), ∂M(K); Z) ∼= Z equals ±p times
the generator. Assume that there exist at least n components of ∂S whose image
loops under F is homotopically trivial in T . Then

(3.1)
(
2π − length([m])

)
n + (2π)r ≥ 4π + |p|area(E(K))

length([m])
.

Proof. For simplicity, we denote M = M(K) and M = M(K). By contradic-
tion, let us assume that there exist n, r, p, S and F which satisfy the hypotheses
of the lemma, and at the same time (3.1) fails. Let us choose them so that n+ r
is smallest possible.

If γ : ([0, 1], {0, 1}) → (S, ∂S) is a simple curve joining different boundary
components, then the curve Fγ : ([0, 1], {0, 1}) → (M, ∂M) cannot be homo-
toped into (∂M, ∂M). Suppose contrarily that it can, then we may cut S along
the (non-separating) curve, and obtain a new surface S̃, such that there exists
a map F̃ : (S̃, ∂S̃) → (M, ∂M) which equals F outside a small neighborhood
of the curve. Let ñ, r̃ and p̃ be integers such that the hypothesis of the lemma
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is satisfied if S, F , n, r and p are replaced by S̃, F̃ , ñ, r̃ and p̃. Clearly,
ñ+ r̃ = n+r−1, ñ ≤ n, r̃ ≤ r, and importantly, p̃ = p. Thus, by the minimality
of n + r, we deduce that (3.1) holds for ñ, r̃, p̃:

(3.2)
(
2π − length([m])

)
ñ + (2π)r̃ ≥ 4π + |p̃|area(E(K))

length([m])
.

But this implies (3.1), a contradiction.
F maps every essential simple loop in S to an essential curve in M. If not, we

may cut S along the simple loop, and then glue a disk (along the cut) on each
component to obtain two compact planar surfaces S1 and S2. For each i = 1, 2,
there is a map Fi : (Si, ∂Si) → (M, ∂M) which agrees with F outside of the
glued disk. There exist integers ni, ri, pi such that Si, Fi satisfy the hypothesis
of the lemma when n, r, p are replaced by ni, ri, pi respectively; and moreover,
n1 + r1 + n2 + r2 = n + r, n1 + n2 = n, and p1 + p2 = p. As ni + ri < n + r, by
minimality of n + r, (3.1) holds for ni, ri, pi; i.e.,

(
2π − length([m])

)
ni + (2π)ri ≥ 4π + |pi|

area(E(K))
length([m])

.

Adding the above inequalities over i = 1, 2, we obtain:

(
2π − length([m])

)
(n1 + n2) + (2π)(r1 + r2) ≥ 8π + (|p1| + |p2|)

area(E(K))
length([m])

.

It follows that (3.1) holds for n, r, p, a contradiction.

Since K is a nontrivial knot and p �= 0, n + r is at least 3. The interior
◦
S

of S admits hyperbolic structures. By small perturbation, we may assume that

F is transversal to ∂M. Thus F restricts to a map from
◦
S into the hyperbolic

manifold M. Let T be an ideal triangulation of
◦
S (in some hyperbolic metric)

such that each ideal edge joins different ends. Then using properties of F , we

may deform the map such that its restriction to
◦
S maps any ideal edge in T to a

geodesic curve in M, and any ideal triangle to a (singular) ideal triangle in M.
We will still use F to denote the new map.

There is a (unique) metric of curvature = −1 on
◦
S such that F is length

preserving from
◦
S to F (

◦
S). Moreover, it is elementary to show that the metric

is complete (because M is complete and F (
◦
S) is a closed subset). By Euler

characteristic considerations, the area of
◦
S is this metric is 2π(n+ r− 2). In the

following, we willl let
◦
S be endowed with this metric.

Consider the embedded image B/π1(∂T ) ⊆ M; where we recall that B =
B(K) is the maximum open horoball in the universal cover of M such that
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B/π1(∂T ) embedds into M. For each boundary component C of S, let AC ⊂
◦
S

be the connected component of F−1(B/π1(∂T )) whose closure in S contains C.
If C1 and C2 are different components of ∂S, then AC1 and AC2 are different

(hence disjoint). In fact, if AC1 = AC2 , then there is a simple path γ in S joining

C1 to C2, such that the interior of γ is contained in AC1 = AC2 ⊂
◦
S, and that

Fγ is a curve whose interior is contained in B(K)/π1(∂T ) ⊂ M. This means
that Fγ can be homotoped into the boundary ∂M, a contradiction.

The area of F (AC) is at least equal to length([F |C ]), the length of a geodesic
loop in E(K) which is homotopic to F |C in M. This can be proved as follows.
First, we may use the upper half space model H

3 = {(x1, x2, x3); x3 > 0} for
the universal cover of M, so that B(K) = {x3 > 1}, and that the action by the
homotopy class (in π1(∂T ) ⊂ π1(M)) of FC is

HC((x1, x2, x3)) = (x1 + length([F |C ]), x2, x3).

For any t ≥ 1, consider the length L(t) of the set {(x1, x2, x3) ∈ F (AC); x3 = t}.
Clearly, the set contains a curve (or a union of curves) which is homologic to
F |C , we deduce that L(t) ≥ length([F |C ])/t. It follows that the area of F (AC)
is at least

∫ ∞
1

(length([F |C ])/t)dt/t = length([F |C ]). We thus obtain

(3.3) 2π(n + r − 2) = area(F (
◦
S)) ≥

∑
C

area(F (C)) ≥
∑
C

length([F |C ]).

For each boundary component C, let αC , βC be such that F |C is a curve in
∂T homologic to αC [m] + βC [l]. The curve F |C is contractible in T if and only
if βC = 0; and in this case,

(3.4) length([F |C ]) = |αC | length([m]) ≥ length([m]).

On the other hand, if βC �= 0, then

(3.5) length([F |C ]) ≥ |βC | inf
j �=0

length(j[l] + k[m])
|j| = |βC |

area(E(K))
length([m])

.

By the assumption of the lemma, there are at least n components (of ∂S) C’s
for which βC = 0. Moreover,

∑
C βC = p. Thus, using (3.3), (3.4) and (3.5), we

deduce that

2π(n + r − 2) ≥
∑
C

length([F |C ])

≥
∑

βC=0

length([m]) +
∑

βC �=0

|βC | area(E(K))/ length([m])

≥ n length([m]) + |p| area(E(K))/ length([m]).
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This proves the lemma. �
Proof of Theorem 2.1. We will first follow the outline of [4]. The difference is
that here we will analyze surface areas instead of Thurston norms of homology
classes. Let P : S

1 → T ⊂ R
3 be a loop of degree p. Define P̃ : S

1× [0,∞) → R
3

by P̃ (s, t) = P (s)−(0, 0, t). The image of P̃ is a singular cylinder with boundary
curve P (S1), and (by slightly perturbing T if necessary) we may assume that P̃

is transverse to ∂T . Let n be the number of components D1, . . . , Dn of P̃−1(T )
which represent nonzero elements (under P̃∗) in H2(T , ∂T ; Z) ∼= Z. (Note that
the component of P̃−1(T ) containing S

1 × {0} is not a relative cycle, and is
therefore not among the Di’s).

Let Q : S
1 → T be a loop of degree q. Then for each i, Di will meet the

image of Q at least |q| times. It is intuitive to see that the inter-crossing number
relative to pr12 of P and Q is at least |q|n. As the choices of κ and T are
arbitrary, Theorem 2.1 is clearly implied by the following inequality:

(3.6) n ≥ |p| area(E(K))
length([m])

(
2π − length([m])

) .

In order to prove the above inequality, let X : D
2 − {0} → S

1 × [0,∞) be
defined by

X((x1, x2)) =

((
x1√

x2
1 + x2

2

,
x2√

x2
1 + x2

2

)
;− log(x2

1 + x2
2)

)
,

and let F1 : D
2 → S

3 = R
3 ∪ {∞} be the following map:

F1(x) =

{
P̃ (X(x)), for x �= 0;
∞, for x = 0.

Let S = P̃−1(M(K)), and F = F1|S : S → M(K). Clearly, S is a compact
(oriented) planar surface and F (∂S) ⊂ ∂M(K). Moreover, the homology class
F∗[S, ∂S] in H2(M(K), ∂M(K); Z) ∼= Z equals ±p times the generator.

By an elementary surgery technique, it is possible to change S, F , such that
each boundary component of S is mapped by F to a nontrivial curve in ∂M,
and that no component of S is an annulus. We will also drop those components
T of S, with the property that F maps each component of ∂T into a loop which
is homotopically trivial in T .

Let Su, u = 1, 2, . . . , U , be the connected components of S; where U ≥ 1. For
each u, let nu be the number of components of ∂Su of the form ∂Di; ru +nu the
total number of components of ∂Su; and pu the integer such that the homology
class of F∗[Su, ∂Su] in H2(M(K), ∂M(K); Z) equals pu times the generator. We
have n =

∑
u nu and ±p =

∑
u pu. By Lemma 3.1, we deduce that whenever

pu �= 0,

(3.7)
(
2π − length([m])

)
nu + (2π)ru ≥ 4π + |pu|

area(E(K))
length([m])

.
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But if pu = 0, then there must be zero, or at least two components of ∂Su which
are mapped by F to loops which are not homotopically trivial in T . Zero is
ruled out by our assumption, thus ru ≥ 2, and (3.7) still holds. Sum (3.7) over
the u’s, we obtain:

(
2π − length([m])

) ∑
u

nu + (2π)
∑

u

ru ≥ 4πU +
∑

u

|pu|
area(E(K))
length([m])

.

Thus,

(3.8)
(
2π − length([m])

)
n + (2π)

∑
u

ru ≥ 4πU + |p|area(E(K))
length([m])

.

By an elementary topological argument, it is easy to show that
∑U

u=1 ru ≤
2U − 1. So (3.8) implies:

(
2π − length([m])

)
n + 2π(2U − 1) ≥ 4πU + |p|area(E(K))

length([m])
.

As a consequence,

(3.9)
(
2π − length([m])

)
n ≥ 2π + |p|area(E(K))

length([m])
.

Thus (3.6), and hence Theorem 2.1 follows. �
3.2. Corollary. Let K, T ,M(K),M(K), E(K) be as in Theorem 2.1. We
have,

(3.10) length([m])
(
2π − length([m])

)
cr(K) − 2π length([m]) ≥

area(E(K)) ≥
√

3.

Proof. In the proof of Theorem 2.1, let p = q = 1, and let κ be a loop representing
K such that the projected image pr12 κ in R

2 has exactly cr(K) crossings (i.e.,
double points). Let P = κ, and Q a parallel copy of P (nearby in space), so
that cr-i(P, Q) = cr(K). Let n be as in the proof, we then have n ≤ cr-i(P, Q) =
cr(K). Thus, as p = 1, (3.10) follows directly by (3.9). �

4. An application

We will relate our main estimate to some results and conjectures in [4]3.

3By the way, in the paragraph just before Appendix A in the paper, on page 224, the
sentence “Recalling that power = (voltage)(resistance)−2, we see that it will require at least

(16/π)1/3 mega watts of power to maintain a one volt per revolution drop in electrical poten-
tial” needs to be replaced by “Recalling that power = (resistance)(current)2, we see that it

will require at least 16/π)1/3 mega watts of power to maintain a revolutionary electrical flow
of flux equal to 1 Ampère.
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Let K be a knot. Consider a solid torus T of knot type K made by 1 gram of
copper. How much power is it needed to maintain a steady revolutionary ellectric
flow of flux (or current) equal to one Ampère? The power needed (measured in
watts) will be denoted by R(T ); and we will say that the electrical resistance
of T is R(T ) ohms. Here it is helpful to recall the high school Physics formula:
power is equal to resistance times current squared.

Assume that the solid torus has flexible shape, but fixed knot type4. If the
knot type is trivial, it is possible to deform T (while keeping its volume and knot
type fixed) in such a way that R(T ) becomes arbitrarily small (see [4]). This
phenomenon is prevented if K is a nontrivial knot. In fact, by [4, (0.1), (2.40),
(3.4)], we have,

(4.1) R(T ) ≥ µ(16/π)1/3 ac(K);

where µ is the electrical resitance between a pair of opposite faces in a (solid)
cube made by 1 gram of copper.

It was conjectured [4] that the resistance of T becomes arbitrarily large if its
knot type gets more and more complicated; that is, if Tn is a sequence of solid
tori (each one is made by 1 gram of copper) such that the crossing numbers of
their knot types diverges to ∞, then R(Tn) → ∞. In case when the knot types
Kn of Tn are all hyperbolic, we have by (4.1) and (1.4) that

(4.2) R(T ) ≥ µ(16/π)1/3 area(E(Kn))/π2.

We hope that the above inequality, combined with other results, can be helpful
in solving the conjecture.

Finally, we note that similar results hold for hyperbolic links.

5. Numerical data

Using SnapPea, we have obtained some concrete data for some randomly
chosen Montesinos knots, and for which the estimate of our main theorem is
better than the earlier estimate ac(K) ≥ 2 genus(K) − 1.

Let a, b, c be positive odd integers. The Montesinos knot M(a, b, c) is the knot
represented in Figure 5.1, where a, b, c are the numbers of half-turns.

It is easy to see that the genus of M(a, b, c) is equal to 1, so the estimate
of [4] says that ac(M(a, b, c)) ≥ 1. We have computed the euclidean structure
of the critical torus E(M(a, b, c)) for some values of a, b, c, and we see from these
examples that the new estimate is an improvement.
Example 1. (a, b, c) = (7, 3, 5): The actions of [m] and [l] are given by the
following translations of R

2:

[m](x, y) = (x − 0.233762, y + 1.763538)

[l](x, y) = (x + 5.767326, y).

4This is the same as saying that T can be deformed by a volume-preserving diffeomorphism
of R3.
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a b c

Figure 5.1

We obtain area(E) = 10.1709, length([m]) = 1.77896, and thus,

ac(M(7, 3, 5)) ≥ 1.26933.

Example 2. (a, b, c) = (9, 7, 7):

[m](x, y) = (x − 0.079160, y + 1.863726)

[l](x, y) = (x + 5.955076, y).

We obtain area(E) = 11.0986, length([m]) = 1.86541, and thus,

ac(M(9, 7, 7)) ≥ 1.34676.

Example 3. (a, b, c) = (19, 11, 13):

[m](x, y) = (x − 0.017660, y + 1.927930)

[l](x, y) = (x + 5.934772, y).

We obtain area(E) = 11.4418, length([m]) = 1.92801, and thus,

ac(M(19, 11, 13)) ≥ 1.36263.

Example 4. (a, b, c) = (29, 23, 25):

[m](x, y) = (x − 0.002466, y + 1.981812)

[l](x, y) = (x + 5.990580, y).

We obtain area(E) = 11.8722, length([m]) = 1.98243, and thus,

ac(M(29, 23, 25)) ≥ 1.39248.
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