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SOME PROPERTIES OF FINITE-DIMENSIONAL
SEMISIMPLE HOPF ALGEBRAS

PAVEL ETINGOF AND SHLOMO GELAKI

Kaplansky conjectured that if H is a finite-dimensional semisimple Hopf alge-
bra over an algebraically closed field k of characteristic 0, then H is of Frobenius
type (i.e. if V' is an irreducible representation of H then dim V divides dim H)
[Ka]. It was proved that the conjecture is true for H of dimension p"™, p prime
[MW], and that if H has a 2—dimensional representation then dim H is even
[NR]. It was also proved that the dimension of an irreducible D(H)-submodule
of H divides the dimension of H [Z2].

In this paper we first prove in Theorem 1.4 that if V' is an irreducible represen-
tation of D(H), the Drinfeld double of any finite-dimensional semisimple Hopf
algebra H over k, then dim V divides dim H (not just dim D(H) = (dim H)?). In
doing this we use the theory of modular tensor categories (in particular Verlinde
formula). We then use Theorem 1.4 to prove in Theorem 1.5 that Kaplan-
sky’s conjecture is true for finite-dimensional semisimple quasitriangular Hopf
algebras over k. As a result we prove easily in Theorem 1.7 that Kaplansky’s
conjecture [Ka] on prime dimensional Hopf algebras over k is true by passing to
their Drinfeld doubles (compare with [Z1]).

Second, we use a theorem of Deligne [De] to prove in Theorem 2.1 that tri-
angular semisimple Hopf algebras over k are equivalent to group algebras as
quasi-Hopf algebras (see formulas (1.11) and (1.12) in [Dr2]).

1. Quasitriangular semisimple Hopf algebras are of Frobenius type

Throughout this paper k will denote an algebraically closed field of charac-
teristic 0.

Let (H, R) be a finite-dimensional quasitriangular Hopf algebra over k, and
write R =), a; ® b;. Let u= )", S(b;)a; be the Drinfeld element in H (where
S is the antipode of H). Drinfeld showed in [Drl, Proposition 2.1 1)] that u is
invertible and

(1) uru~t = S%(z)
for any x € H. He also showed that
(2) A(u) = (R*R) ™ (u® u).
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Suppose further that H is semisimple or equivalently that H* is cosemisimple.
Then by Theorem 3.3 in [LR2], H* is semisimple or equivalently H is cosemisim-
ple. Therefore if (H, R) is semisimple then by Theorem 2 in [LR1], S? = 1, and
hence u is a central element in H. Furthermore,

(3) u=S(u).

Indeed, we have (S ® S)(R) = R, so S(u) = _ S(a;)S?(b;) = >_ a;S(b;). This
shows that tr(u) = tr(S(u)) in every irreducible representation of H. But u and
S(u) are central, so they act as scalars in this representation, which proves (3).

Let H be a finite-dimensional semisimple Hopf algebra over k. Then the Drin-
feld double of H, D(H), is semisimple by Proposition 7 in [R1] and the fact that
H* is semisimple too as explained above (this follows from [R1, Theorem 4] and
the fundamental [Mo, Theorem 2.2.1]). Furthermore, by Section 6 on page 335
n [Drl], D(H) is quasitriangular with universal R—matrix R = ) . h; ® h,
where {h;} and {h}} are dual bases of H and H* respectively. It is moreover
a ribbon Hopf algebra (see e.g. Definition XIV.6.1 in [Kas]) with the central
Drinfeld element u, defined in (1), as the ribbon element v (note that w is a rib-
bon element by (2), (3) and the fact that it is central). In particular the special
grouplike element defined by g = wv™!, equals 1 in this case. Therefore, the
category Rep(D(H)) of finite-dimensional representations of D(H) is a semisim-
ple ribbon (i.e. braided, rigid and balanced) category with quantum trace equal
to the ordinary trace. Let Irr(D(H)) = {Vi|0 < i < m} be the set of all the
isomorphism classes of irreducible representations of D(H) with V = k, and let
C(D(H)) € D(H)* be the ring of characters. Clearly, {x; = try; [0 < i < m}
forms a linear basis of C(D(H)). We also let x;« = S(x;) be the character of the
irreducible representation V- = V;*.

Recall that a modular category [Ki,T] is a semisimple ribbon category with
finitely many (up to isomorphism) irreducible objects {V;|0 < i < m} with Vj
as the unit representation, so that the matrix s = (s;;), where

sij = (try, @ tr)y,. )(R*'R)
is invertible. Note that s is symmetric and s;9 = sg; = dim V; for all .

Lemma 1.1. Let H be a finite-dimensional semisimple Hopf algebra over k.
Then Rep(D(H)) is a modular category.

Proof. We only have to show that the matrix s = (s;;), where s;; = (x;
x;j+)(R*'R) is invertible. Indeed, by the second paragraph on page 226 in [R2],
D(H) is factorizable (i.e. the map F : D(H)* — D(H) given by F(p)
(1®p)(R*'R) is an isomorphism of vector spaces), and EC(D(H)) C(D(H)) —
Z(D(H)) is an isomorphism of algebras, where Z(D(H)) is the center of D(H).
Let B = = {e;|0 < j < m} be bases of C(D(H)) and
Z(D(H)) respectively, where C' is the set of central primitive idempotents of
D(H). Then s = DA where A is the invertible matrix which represents F' with
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respect to the bases B and C, and D = diag(dim V) is the invertible diagonal ma-
trix with entries dim V;. Indeed, since F(X;‘) =), Ajje; and x;(e;) = 0;; dimVj
it follows that

(DA);; = ZDikAkj = Dj; Ay
k

= @i ¥5) (g e (FOG)) = (6 8 ) (U R) =5

Thus, s is invertible. O

Lemma 1.2. Let C be a modular category over k with irreducible objects {V;|0 <

i <m}withVy=1.Set R =@~ , Vi®V;*. Then (d(ﬂgl‘z_ay is an algebraic integer
J

for all0 < j <m.

Proof. It is known that ), sj;s;;+ = dimR for all j (see e.g. [Ki]), hence
> jﬁ% = %. We show that zﬁ is an algebraic integer for all 0 <¢,5 <

m. Define a map ¢ from Rep(C) to the algebra of functions k{i|0 < i < m} by

Sij 1
¢(V])(Z) = ﬁ = dm v, (tI‘|Vi ®tr‘vj* )(Rle).
It is straightforward to check that ¢ is an isomorphism of algebras (see e.g. [T]
or Remark 1.3 below). Since multiplication by ¢(V;) has eigenvalues {%m <
i < m} it follows that multiplication by V; in Rep(C) (V; — V; ® V;) has the
same eigenvalues (this statement is called “Verlinde Formula” [V]). But, multi-
plication is represented by an integral matrix (N};) where V; @ V; = Y-, NLVi.

We thus conclude that ;%; is an algebraic integer. Since s is symmetric [Ki, T] it

follows that jéj ~ is an algebraic integer too. O
J

Remark 1.3. We demonstrate that the map ¢ : Rep(D(H)) — k{i|0 <i < m}
is an algebra isomorphism. Indeed, ¢(V;)(i) = mXi(F(Xj*)) where F' is as

in the proof of Lemma 1.1. Since Fic(p(m)) s an isomorphism of algebras onto
Z(D(H)) we have

oV & VD) = oo xa(Flext) = g (F ) F ()
— GG D) = 605DV

So ¢ is an algebra map, and an isomorphism since s is non-degenerate.

Theorem 1.4. Let H be a finite-dimensional semisimple Hopf algebra over k.
If V is an irreducible representation of D(H) then dim V' divides dim H.

Proof. First note that since D(H) is semisimple, D(H) = @, V; ® V;*. Now,

. 2 .
by Lemmas 1.1 and 1.2, % is an algebraic integer. This implies that jﬁg
is an algebraic integer too, hence an integer. I
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We are ready now to prove Kaplansky’s conjecture for quasitriangular semi-
simple Hopf algebras.

Theorem 1.5. Let (H,R) be a finite-dimensional quasitriangular semisimple
Hopf algebra. Then H is of Frobenius type.

Proof. 1t is straightforward to check that the map f : D(H) — H given by
fph) = (p@ 1)(R)h for all p € H* and h € H, is a surjection of Hopf algebras.
Therefore, if V' is an irreducible representation of H then it is also an irreducible
representation of D(H ) via pull back along f, and the result follows by Theorem
1.4. O

Example 1.6. The group algebra H = kG of a finite group G is quasitriangular
with R =1®1. In this case Theorem 1.5 is the classical theorem stating that the
dimensions of the irreducible representations of a finite group divide its order.

In the following we show how Kaplansky’s conjecture on prime dimensional
Hopf algebras follows easily from Theorem 1.4 (compare with [Z1]).

Theorem 1.7. Let H be a Hopf algebra of prime dimension p. Then H = kZ,
is the group algebra of the cyclic group of order p.

Proof. By [NZ], either |G(H)| = 1 or |G(H)| = p, and the same holds for H*.
Suppose |G(H)| = |G(H*)| = 1. Then it is easy to show that H is semisimple
(see e.g.[Z1]). But then by Theorem 1.4, if V' is an irreducible representation of
D(H) then either dimV = 1 or dimV = p. Since G(D(H)*) = 1 (i.e. D(H)
has only one 1—dimensional representation) and dim D(H) = p?, it follows that
p? = 1 + ap? for some positive integer a which is absurd. Therefore, either

|G(H*)| =p or |G(H)| = p, and the result follows. O

2. Semisimple triangular Hopf algebras

By Theorem 1.5, if (H, R) is a finite-dimensional triangular (i.e. R*'R = 1)
semisimple Hopf algebra then it is of Frobenius type. In fact, we can say much
more in this case. In the following we show that H is a twisted group algebra
in the sense of [Dr2] (see formulas (1.11) and (1.12) there); that is, that H is
isomorphic as a Hopf algebra to a group algebra with a modified comultiplication
which is obtained by a conjugation of the standard one by an invertible counital
cocycle.

Let (H, R) be a finite-dimensional semisimple triangular Hopf algebra. In this
case u is a grouplike element by (2), and u? = 1 by (3). For some purposes it is
useful to assume that the Drinfeld element u acts as 1 (see e.g. [CWZ]). Let us
demonstrate that it is always possible to replace R with a new R—matrix R so
that the new Drinfeld element @ equals 1. Indeed, for any irreducible represen-
tation V of H define the parity of this representation, p(V) € Zy, by (—1)P(V) =
u|y. Define R € H ® H by the condition R|ygw = (=1)PV)PMWIRlyow. Tt is
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straightforward to verify that R = %(1 RI1I+1Qu+u®l—u®u)R is a new
triangular structure on H, with Drinfeld element o = 1.
Our main result in this section is:

Theorem 2.1. Let (H, R) be a finite-dimensional semisimple triangular Hopf
algebra over k. Then there exists a finite group G, an invertible element J €
kG ® kG which satisfies

(4)  (Ao®@1)(J)J12=(1® Ag)(J)J23, (0@ 1)(J) = (1®e0)(J) =1,

(where Ag,eo are the coproduct and the counit of the group algebra), and an
algebra isomorphism ¢ : kG — H such that

(5) (0t @ o™ )(A(g(a) = T Ag(a),
and
(6) (6" @ HR) = (J*) 1.

That is, (H,R) and (kG, A, (J*")~1J) are isomorphic as triangular Hopf alge-
bras, where A : kG — kG ® kG is determined by A(g) = J 1 (g® g)J, g € G.

Proof. Let C be the category of finite-dimensional representations of H. This
is a semisimple abelian category over k with finitely many irreducible objects,
which has a structure of a rigid symmetric tensor category [DM]. Here the
commutativity isomorphism in C is defined by the operator TR: VW — WV,
where 7 : VW — W ® V is the usual permutation map. Moreover, the
categorical dimension [DM] of an object V' € C is equal to tr|y (@), so it equals
to the ordinary dimension of V' as a vector space (since @ = 1). In particular,
all categorical dimensions are non-negative integers.
In this situation we can apply the following deep theorem of Deligne:

Theorem. [De, Theorem 7.1] Let C be a semisimple rigid symmetric tensor
category over an algebraically closed field k with finitely many irreducible objects,
in which categorical dimensions of objects are non-negative integers. Then for
a suitable finite group G there exists an equivalence of symmetric rigid tensor
categories F' : C — Rep(G) (where Rep(QG) is the category of finite dimensional
k—representations of G).

So let G, F' be the group and the functor corresponding to our category C.
Let K : Rep(G) — Vect be the forgetful functor to the category of vector spaces.
Since the functor F' preserves dimensions, and the category is semisimple, the
functor K o F' is isomorphic (as an additive functor) to the forgetful functor
L :C — Vect. We might as well assume that K o F' = L as additive functors.

By a standard argument we have End(L) = H. On the other hand, the group
G by definition acts on K o F' as a tensor functor, which defines an algebra
homomorphism ¢ : kG — H. It is obvious that ¢ is an algebra isomorphism.
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The functor K o F' has a tensor structure which preserves the commutativity
isomorphism. This structure is given by a collection of invertible linear maps

Jyw (Ko F)(V) & (Ko F)(W) — (Ko F)(V®W)

for irreducible V, W, which can be united in an invertible element J € End((K o
F)?) = kGRkG (since (Ko F)(V)®@(KoF)(W) = L(V)QL(W)=LVaW) =
(KoF)(V@W)). The element .J = J~* satisfies (4) and (5) because .J is a tensor
structure, and satisfies (6) because J preserves the commutativity isomorphism.

O

Remark 2.2. One should distinguish between the categorical dimensions of
objects, defined in any rigid braided tensor category, and their quantum di-
mensions, defined only in a ribbon category. In the diagrammatic language of
[Kas, Ki] the quantum dimension corresponds to a loop without self-crossing,
and the categorical dimension to a loop with one self-overcrossing. They may be
different numbers for a particular irreducible object. For example, in the cate-
gory of representations of a triangular semisimple Hopf algebra (H, R), quantum
dimensions (for an appropriate ribbon structure) are ordinary dimensions (as in
Section 1), while categorical dimensions are u|y dim(V'), where u|y is the scalar
by which the Drinfeld element u acts on V| i.e. 1 or —1 (as in Section 2).

Remark 2.3. As seen from Remark 2.2, if u # 1, then the category of rep-
resentations of (H, R) is equivalent to the category of representations of some
group as a rigid tensor category but not as a symmetric category. This was the
reason for passing from R to R. It is easy to see that as a symmetric rigid tensor
category, the category of representations of (H, R) is equivalent to the category
of representations of GG on super-vector spaces, such that u acts by 1 on the even
part and as —1 on the odd part. For example, if H = kZ, with central primitive
idempotents ¢ and b, and R=a®a+b®a+a®@b—b®b, then the category of
representations is just the category of super-vector spaces.
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