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SOME PROPERTIES OF FINITE-DIMENSIONAL
SEMISIMPLE HOPF ALGEBRAS

Pavel Etingof and Shlomo Gelaki

Kaplansky conjectured that if H is a finite-dimensional semisimple Hopf alge-
bra over an algebraically closed field k of characteristic 0, then H is of Frobenius
type (i.e. if V is an irreducible representation of H then dimV divides dimH)
[Ka]. It was proved that the conjecture is true for H of dimension pn, p prime
[MW], and that if H has a 2−dimensional representation then dimH is even
[NR]. It was also proved that the dimension of an irreducible D(H)-submodule
of H divides the dimension of H [Z2].

In this paper we first prove in Theorem 1.4 that if V is an irreducible represen-
tation of D(H), the Drinfeld double of any finite-dimensional semisimple Hopf
algebra H over k, then dimV divides dimH (not just dimD(H) = (dimH)2). In
doing this we use the theory of modular tensor categories (in particular Verlinde
formula). We then use Theorem 1.4 to prove in Theorem 1.5 that Kaplan-
sky’s conjecture is true for finite-dimensional semisimple quasitriangular Hopf
algebras over k. As a result we prove easily in Theorem 1.7 that Kaplansky’s
conjecture [Ka] on prime dimensional Hopf algebras over k is true by passing to
their Drinfeld doubles (compare with [Z1]).

Second, we use a theorem of Deligne [De] to prove in Theorem 2.1 that tri-
angular semisimple Hopf algebras over k are equivalent to group algebras as
quasi-Hopf algebras (see formulas (1.11) and (1.12) in [Dr2]).

1. Quasitriangular semisimple Hopf algebras are of Frobenius type

Throughout this paper k will denote an algebraically closed field of charac-
teristic 0.

Let (H, R) be a finite-dimensional quasitriangular Hopf algebra over k, and
write R =

∑
i ai ⊗ bi. Let u =

∑
i S(bi)ai be the Drinfeld element in H (where

S is the antipode of H). Drinfeld showed in [Dr1, Proposition 2.1 1)] that u is
invertible and

uxu−1 = S2(x)(1)

for any x ∈ H. He also showed that

∆(u) = (R21R)−1(u⊗ u).(2)
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Suppose further that H is semisimple or equivalently that H∗ is cosemisimple.
Then by Theorem 3.3 in [LR2], H∗ is semisimple or equivalently H is cosemisim-
ple. Therefore if (H, R) is semisimple then by Theorem 2 in [LR1], S2 = 1, and
hence u is a central element in H. Furthermore,

u = S(u).(3)

Indeed, we have (S ⊗ S)(R) = R, so S(u) =
∑

S(ai)S2(bi) =
∑

aiS(bi). This
shows that tr(u) = tr(S(u)) in every irreducible representation of H. But u and
S(u) are central, so they act as scalars in this representation, which proves (3).

Let H be a finite-dimensional semisimple Hopf algebra over k. Then the Drin-
feld double of H, D(H), is semisimple by Proposition 7 in [R1] and the fact that
H∗ is semisimple too as explained above (this follows from [R1, Theorem 4] and
the fundamental [Mo, Theorem 2.2.1]). Furthermore, by Section 6 on page 335
in [Dr1], D(H) is quasitriangular with universal R−matrix R =

∑
i hi ⊗ h∗i ,

where {hi} and {h∗i } are dual bases of H and H∗ respectively. It is moreover
a ribbon Hopf algebra (see e.g. Definition XIV.6.1 in [Kas]) with the central
Drinfeld element u, defined in (1), as the ribbon element v (note that u is a rib-
bon element by (2), (3) and the fact that it is central). In particular the special
grouplike element defined by g = uv−1, equals 1 in this case. Therefore, the
category Rep(D(H)) of finite-dimensional representations of D(H) is a semisim-
ple ribbon (i.e. braided, rigid and balanced) category with quantum trace equal
to the ordinary trace. Let Irr(D(H)) = {Vi|0 ≤ i ≤ m} be the set of all the
isomorphism classes of irreducible representations of D(H) with V0 = k, and let
C(D(H)) ⊆ D(H)∗ be the ring of characters. Clearly, {χi = tr|Vi

|0 ≤ i ≤ m}
forms a linear basis of C(D(H)). We also let χi∗ = S(χi) be the character of the
irreducible representation Vi∗ = V ∗i .

Recall that a modular category [Ki,T] is a semisimple ribbon category with
finitely many (up to isomorphism) irreducible objects {Vi|0 ≤ i ≤ m} with V0

as the unit representation, so that the matrix s = (sij), where

sij = (tr|Vi
⊗ tr|Vj∗ )(R

21R)

is invertible. Note that s is symmetric and si0 = s0i = dimVi for all i.

Lemma 1.1. Let H be a finite-dimensional semisimple Hopf algebra over k.
Then Rep(D(H)) is a modular category.

Proof. We only have to show that the matrix s = (sij), where sij = (χi ⊗
χj∗)(R21R) is invertible. Indeed, by the second paragraph on page 226 in [R2],
D(H) is factorizable (i.e. the map F : D(H)∗ → D(H) given by F (p) =
(1⊗ p)(R21R) is an isomorphism of vector spaces), and F|C(D(H)) : C(D(H))→
Z(D(H)) is an isomorphism of algebras, where Z(D(H)) is the center of D(H).
Let B = {χj∗ |0 ≤ j ≤ m} and C = {ej |0 ≤ j ≤ m} be bases of C(D(H)) and
Z(D(H)) respectively, where C is the set of central primitive idempotents of
D(H). Then s = DA where A is the invertible matrix which represents F with



FINITE-DIMENSIONAL SEMISIMPLE HOPF ALGEBRAS 193

respect to the bases B and C, and D = diag(dimVi) is the invertible diagonal ma-
trix with entries dimVi. Indeed, since F (χ∗j ) =

∑
i Aijei and χi(ej) = δij dimVi

it follows that

(DA)ij =
∑

k

DikAkj = DiiAij

= (dimVi)
(

1
dimVi

χi(F (χ∗j ))
)

= (χi ⊗ χj∗)(R21R) = sij .

Thus, s is invertible.

Lemma 1.2. Let C be a modular category over k with irreducible objects {Vi|0 ≤
i ≤ m} with V0 = 1. Set R =

⊕m
i=0 Vi⊗V ∗i . Then dimR

(dim Vj)2
is an algebraic integer

for all 0 ≤ j ≤ m.

Proof. It is known that
∑

i sjisij∗ = dimR for all j (see e.g. [Ki]), hence∑ sji

sj0

sij∗
s0j∗

= dimR
(dim Vj)2

. We show that sij

si0
is an algebraic integer for all 0 ≤ i, j ≤

m. Define a map φ from Rep(C) to the algebra of functions k{i|0 ≤ i ≤ m} by

φ(Vj)(i) =
sij

si0
=

1
dimVi

(tr|Vi
⊗ tr|Vj∗ )(R

21R).

It is straightforward to check that φ is an isomorphism of algebras (see e.g. [T]
or Remark 1.3 below). Since multiplication by φ(Vj) has eigenvalues { sij

si0
|0 ≤

i ≤ m} it follows that multiplication by Vj in Rep(C) (Vi �→ Vj ⊗ Vi) has the
same eigenvalues (this statement is called “Verlinde Formula” [V]). But, multi-
plication is represented by an integral matrix (N l

ij) where Vj ⊗ Vi =
∑

l N
l
ijVl.

We thus conclude that sji

sj0
is an algebraic integer. Since s is symmetric [Ki,T] it

follows that sij∗
s0j∗

is an algebraic integer too.

Remark 1.3. We demonstrate that the map φ : Rep(D(H))→ k{i|0 ≤ i ≤ m}
is an algebra isomorphism. Indeed, φ(Vj)(i) = 1

dim Vi
χi(F (χj∗)) where F is as

in the proof of Lemma 1.1. Since F|C(D(H)) is an isomorphism of algebras onto
Z(D(H)) we have

φ(Vj ⊗ Vl)(i) =
1

dimVi
χi(F (χj∗χl∗)) =

1
dimVi

χi(F (χj∗)F (χl∗))

=
1

(dimVi)2
χi(F (χj∗))χi(F (χl∗)) = φ(Vj)(i)φ(Vl)(i).

So φ is an algebra map, and an isomorphism since s is non-degenerate.

Theorem 1.4. Let H be a finite-dimensional semisimple Hopf algebra over k.
If V is an irreducible representation of D(H) then dimV divides dimH.

Proof. First note that since D(H) is semisimple, D(H) =
⊕m

i=0 Vi ⊗ V ∗i . Now,
by Lemmas 1.1 and 1.2, (dim H)2

(dim V )2 is an algebraic integer. This implies that dim H
dim V

is an algebraic integer too, hence an integer.
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We are ready now to prove Kaplansky’s conjecture for quasitriangular semi-
simple Hopf algebras.

Theorem 1.5. Let (H, R) be a finite-dimensional quasitriangular semisimple
Hopf algebra. Then H is of Frobenius type.

Proof. It is straightforward to check that the map f : D(H) → H given by
f(ph) = (p⊗ 1)(R)h for all p ∈ H∗ and h ∈ H, is a surjection of Hopf algebras.
Therefore, if V is an irreducible representation of H then it is also an irreducible
representation of D(H) via pull back along f, and the result follows by Theorem
1.4.

Example 1.6. The group algebra H = kG of a finite group G is quasitriangular
with R = 1⊗1. In this case Theorem 1.5 is the classical theorem stating that the
dimensions of the irreducible representations of a finite group divide its order.

In the following we show how Kaplansky’s conjecture on prime dimensional
Hopf algebras follows easily from Theorem 1.4 (compare with [Z1]).

Theorem 1.7. Let H be a Hopf algebra of prime dimension p. Then H = kZp

is the group algebra of the cyclic group of order p.

Proof. By [NZ], either |G(H)| = 1 or |G(H)| = p, and the same holds for H∗.
Suppose |G(H)| = |G(H∗)| = 1. Then it is easy to show that H is semisimple
(see e.g.[Z1]). But then by Theorem 1.4, if V is an irreducible representation of
D(H) then either dimV = 1 or dimV = p. Since G(D(H)∗) = 1 (i.e. D(H)
has only one 1−dimensional representation) and dimD(H) = p2, it follows that
p2 = 1 + ap2 for some positive integer a which is absurd. Therefore, either
|G(H∗)| = p or |G(H)| = p, and the result follows.

2. Semisimple triangular Hopf algebras

By Theorem 1.5, if (H, R) is a finite-dimensional triangular (i.e. R21R = 1)
semisimple Hopf algebra then it is of Frobenius type. In fact, we can say much
more in this case. In the following we show that H is a twisted group algebra
in the sense of [Dr2] (see formulas (1.11) and (1.12) there); that is, that H is
isomorphic as a Hopf algebra to a group algebra with a modified comultiplication
which is obtained by a conjugation of the standard one by an invertible counital
cocycle.

Let (H, R) be a finite-dimensional semisimple triangular Hopf algebra. In this
case u is a grouplike element by (2), and u2 = 1 by (3). For some purposes it is
useful to assume that the Drinfeld element u acts as 1 (see e.g. [CWZ]). Let us
demonstrate that it is always possible to replace R with a new R−matrix R̃ so
that the new Drinfeld element ũ equals 1. Indeed, for any irreducible represen-
tation V of H define the parity of this representation, p(V ) ∈ Z2, by (−1)p(V ) =
u|V . Define R̃ ∈ H ⊗H by the condition R̃|V⊗W = (−1)p(V )p(W )R|V⊗W . It is
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straightforward to verify that R̃ = 1
2 (1 ⊗ 1 + 1 ⊗ u + u ⊗ 1 − u ⊗ u)R is a new

triangular structure on H, with Drinfeld element ũ = 1.
Our main result in this section is:

Theorem 2.1. Let (H, R) be a finite-dimensional semisimple triangular Hopf
algebra over k. Then there exists a finite group G, an invertible element J ∈
kG⊗ kG which satisfies

(∆0 ⊗ 1)(J)J12 = (1⊗∆0)(J)J23, (ε0 ⊗ 1)(J) = (1⊗ ε0)(J) = 1,(4)

(where ∆0, ε0 are the coproduct and the counit of the group algebra), and an
algebra isomorphism φ : kG→ H such that

(φ−1 ⊗ φ−1)(∆(φ(a))) = J−1∆0(a)J,(5)

and

(φ−1 ⊗ φ−1)(R̃) = (J21)−1J.(6)

That is, (H, R̃) and (kG,∆, (J21)−1J) are isomorphic as triangular Hopf alge-
bras, where ∆ : kG→ kG⊗ kG is determined by ∆(g) = J−1(g ⊗ g)J, g ∈ G.

Proof. Let C be the category of finite-dimensional representations of H. This
is a semisimple abelian category over k with finitely many irreducible objects,
which has a structure of a rigid symmetric tensor category [DM]. Here the
commutativity isomorphism in C is defined by the operator τR̃ : V ⊗W →W⊗V,
where τ : V ⊗ W → W ⊗ V is the usual permutation map. Moreover, the
categorical dimension [DM] of an object V ∈ C is equal to tr |V (ũ), so it equals
to the ordinary dimension of V as a vector space (since ũ = 1). In particular,
all categorical dimensions are non-negative integers.

In this situation we can apply the following deep theorem of Deligne:

Theorem. [De, Theorem 7.1] Let C be a semisimple rigid symmetric tensor
category over an algebraically closed field k with finitely many irreducible objects,
in which categorical dimensions of objects are non-negative integers. Then for
a suitable finite group G there exists an equivalence of symmetric rigid tensor
categories F : C → Rep(G) (where Rep(G) is the category of finite dimensional
k−representations of G).

So let G, F be the group and the functor corresponding to our category C.
Let K : Rep(G)→ V ect be the forgetful functor to the category of vector spaces.
Since the functor F preserves dimensions, and the category is semisimple, the
functor K ◦ F is isomorphic (as an additive functor) to the forgetful functor
L : C → V ect. We might as well assume that K ◦ F = L as additive functors.

By a standard argument we have End(L) = H. On the other hand, the group
G by definition acts on K ◦ F as a tensor functor, which defines an algebra
homomorphism φ : kG→ H. It is obvious that φ is an algebra isomorphism.



196 PAVEL ETINGOF AND SHLOMO GELAKI

The functor K ◦ F has a tensor structure which preserves the commutativity
isomorphism. This structure is given by a collection of invertible linear maps

J̃V W : (K ◦ F )(V )⊗ (K ◦ F )(W )→ (K ◦ F )(V ⊗W )

for irreducible V, W , which can be united in an invertible element J̃ ∈ End((K ◦
F )2) = kG⊗kG (since (K ◦F )(V )⊗(K ◦F )(W ) = L(V )⊗L(W ) = L(V ⊗W ) =
(K◦F )(V ⊗W )). The element J = J̃−1 satisfies (4) and (5) because J̃ is a tensor
structure, and satisfies (6) because J̃ preserves the commutativity isomorphism.

Remark 2.2. One should distinguish between the categorical dimensions of
objects, defined in any rigid braided tensor category, and their quantum di-
mensions, defined only in a ribbon category. In the diagrammatic language of
[Kas, Ki] the quantum dimension corresponds to a loop without self-crossing,
and the categorical dimension to a loop with one self-overcrossing. They may be
different numbers for a particular irreducible object. For example, in the cate-
gory of representations of a triangular semisimple Hopf algebra (H, R), quantum
dimensions (for an appropriate ribbon structure) are ordinary dimensions (as in
Section 1), while categorical dimensions are u|V dim(V ), where u|V is the scalar
by which the Drinfeld element u acts on V, i.e. 1 or −1 (as in Section 2).

Remark 2.3. As seen from Remark 2.2, if u �= 1, then the category of rep-
resentations of (H, R) is equivalent to the category of representations of some
group as a rigid tensor category but not as a symmetric category. This was the
reason for passing from R to R̃. It is easy to see that as a symmetric rigid tensor
category, the category of representations of (H, R) is equivalent to the category
of representations of G on super-vector spaces, such that u acts by 1 on the even
part and as −1 on the odd part. For example, if H = kZ2 with central primitive
idempotents a and b, and R = a⊗ a + b⊗ a + a⊗ b− b⊗ b, then the category of
representations is just the category of super-vector spaces.
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