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THE EXTENDED FUTURE TUBE

IS A DOMAIN OF HOLOMORPHY

Xiang-Yu Zhou

0. Introduction

In this note, we present an approach to proving the extended future tube con-
jecture, which asserts that the extended future tube is a domain of holomorphy.
Our main result is that the extended future tube conjecture is valid. Our basic
tools for the proof are the minimum principle due to C.O. Kiselman and J. J.
Loeb and the slice theory due to D. Luna. Our proof is based on several simple
key observations. The starting observation is to relate the conjecture to the
minimum principle. After applying the minimum principle and the slice theory,
we reduce our proof to several more or less elementary (though less obvious)
propositions (cf. §3). The details of the proof will appear elsewhere [18]. In this
note, we present our main idea and main technical propositions of the proof.

1. The extended future tube conjecture:
Background and reformulation

1.1. The extended future tube conjecture originated naturally from the ax-
iomatic quantum field theory nearly four decades ago when properties of the
Wightman functions were studied. Some mathematicians and physicists includ-
ing N. N. Bogoliubov, K. Hepp, R. Jost, V. S. Vladimirov, and A. S. Wightman
posed or tackled this conjecture (cf. R. Jost [2], R. F. Streater and A. S. Wight-
man [11], V. S. Vladimirov [12, 13], V. S. Vladimirov–V. V. Zharinov [14], A. G.
Sergeev-V. S. Vladimirov [7], A. G. Sergeev–X. Y. Zhou [8], A. G. Sergeev–P.
Heinzner [9], B. I. Zav’yalov–V. B. Trushin [16], and references therein). This
conjecture has consequences in physics.

Definition 1. Let M4 be the Minkowski space with the Lorentz metric: x · y =
x0y0 − x1y1 − x2y2 − x3y3, where x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) ∈ R4.
The future (past) light cone V +(V −) is defined as

V + := {y ∈ M4 : y2 > 0, y0 > 0}, (V − = −V +).

The future and past tubes τ± are defined as the correspording tube domains
τ± = R4 + iV ± in C

4. The N -point future (past) tube is defined as τ+
N =

τ+ × · · · × τ+ N -times (τ−
N = τ− × · · · × τ− N -times).
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Definition 2. The identity component of the Lorentz group is called the re-
stricted Lorentz group L↑

+ = SO+(1, 3). The identity component of the complex
Lorentz group is called the proper complex Lorentz group L+(C) = SO(1, 3, C) ∼=
SO(4, C).

The group L↑
+ is a connected closed real form of L+(C). The sets V + and τ+

are L↑
+-invariant with respect to the usual linear action.

Definition 3. Let L+(C) act diagonally on C
4N , i.e., for z = (z(1), · · · , z(N)) ∈

C
4N ,Λz = (Λz(1), · · · ,Λz(N)), where Λ ∈ L+(C), z(1), · · · , z(N) ∈ C

4. The
extended (N -point) future tube is defined as τ ′

N = L+(C) · τ+
N = {Λz : z ∈

τ+
N ,Λ ∈ L+(C)} which is obviously a domain in C

4N .

The extended future tube conjecture asserts that τ ′
N is a domain of holomor-

phy for N ≥ 3. It is known that τ ′
1 and τ ′

2 are domains of holomorphy (cf.
Vladimirov [12]).

1.2. The extended future tube conjecture is regarded to be a very natural con-
jecture from the physical point of view. From a mathematical point of view,
it is also quite natural in view of the following BHW Theorem and Streater’s
Theorem.

Theorem [Bargman, Hall, and Wightman (BHW)]. An L↑
+-invariant

holomorphic function on τ+
N can be extended to an L+(C)-invariant holomorphic

function on τ ′
N (cf. [2, 11] ).

A natural question arises, i.e., can these holomorphic functions be extended
further? This is equivalent to asking if τ ′

N is a domain of holomorphy.

Theorem (Streater). A holomorphic function on the Dyson domain given by
τ+
N ∪ τ−

N ∪ J (where J := τ ′
N ∩ M4N is the set of Jost points which was proved

to exist and characterized by R. Jost) can be extended to a holomorphic function
on τ ′

N (cf. [2, 11] ).

A natural question is to construct the envelope of holomorphy of the Dyson
domain τ+

N ∪ τ−
N ∪ J . (This question is mentioned in the article “Quantum

field theory” of the Russian great dictionary “Encyclopaedia of Mathematics”.)
The extended future tube conjecture means that this envelope of holomorphy is
exactly the extended future tube τ ′

N .

1.3. The Pauli mapping is defined as follows:

P : C
4 −→ C[2 × 2]

z = (z0, z1, z2, z3) �→ Z :=
(

z0 + z3 z1 − iz2

z1 + iz2 z0 − z3

)
.
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Here, C[2× 2] consists of all 2× 2 complex matrices. Let H be the image of τ+

under P . One can easily check that

H =
{

Z ∈ C[2 × 2] :
Z − Z̄ ′

2i
> 0

}
,

where Z̄ ′ is the conjugate transpose of Z.
For every A ∈ SL(2, C), the linear transformation of C[2 × 2] : Z �→ AZĀ′

determines under the Pauli mapping a linear transformation of C
4 : z �→ gA · z,

where gA ∈ L↑
+. This determines a universal double covering homomorphism ρ :

SL(2, C) → L↑
+. Similarly, the linear transformation of C[2 × 2] : Z �→ AZB−1,

A, B ∈ SL(2, C), determines under the Pauli mapping a linear transformation
of C

4 : z �→ g(A,B) ·z, where g(A,B) ∈ L+(C). This determines a universal double
covering homomorphism ρ̃ : SL(2, C) × SL(2, C) → L+(C).

Consider an action of SL(2, C) × SL(2, C) on C
N [2 × 2] given by

(A, B) · Z =
(
AZ1B

−1, · · · , AZNB−1
)
,

where
A, B ∈ SL(2, C), Z1, · · · , ZN ∈ C[2 × 2].

The induced real action of SL(2, C) is given by

A · Z = (A, (Ā′)−1) · Z = (AZ1Ā
′, · · · , AZN Ā′),

where A ∈ SL(2, C).
Set P̃ := P × · · · × P : C

4N → C
N [2 × 2]. Denote by

H ′
N = P̃ (τ ′

N ) = (SL(2, C) × SL(2, C)) · HN

= {(AZ1B
−1, · · · , AZNB−1) : (Z1, · · · , ZN ) ∈ HN , A, B ∈ SL(2, C)},

where HN = H × · · · × H, N -times. Note that HN = P̃ (τ+
N ) is SL(2, C)-

invariant, and P̃−1 is ρ̃-equivariant and biholomorphic. Therefore, the extended
future tube conjecture is equivalent to the assertion that H ′

N is a domain of
holomorphy for N ≥ 3.

2. Preparatory tools

2.1. Let X be a complex manifold, GC a connected complex Lie group, and GR a
connected closed real form of GC. Denote ψ : GC → GC/GR, and p : X×GC → X
the natural projections. The group GC acts on X × GC on the right by:

(X × GC) × GC −→ X × GC

((x, g), h) �−→ (x, gh).
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Let Ω ⊂ X × GC be a right GR-invariant domain and have connected fibres of
p, and u ∈ C∞(Ω) be a right GR-invariant function. The function u naturally
induces a smooth function u̇(x, ψ(g)) on Ω̇ := (idX , ψ)(Ω). Suppose that

(1) u is p.s.h on Ω,
(2) ∀x ∈ p(Ω), u(x, ·) is strictly p.s.h. on Ωx = Ω ∩ p−1(x), and
(3) u̇(x, ·) is exhaustive on Ω̇x = ψ(Ωx),

then the minimum principle asserts that v(x) = inf
g∈Ωx

u(x, g) is C∞ and p.s.h.

on p(Ω).

Remark 1. C. O. Kiselman in [3] first obtained the minimum principle when
X = C

n, GC = C
m, GR = Im C

m. J. J. Loeb in [4] generalized Kiselman’s result
to the present general case.

Remark 2. One can seemingly weaken condition (3), replacing it by the condition
that u̇(x, ·) attains its minimum on Ω̇x. Our first proof used this seemingly
weaker version of the minimum principle, so that the proof is more complicated.
However, the essential point of our proof shows that one can actually use the
above version of the minimum principle, so that the proof can be considerably
simplified.

2.2. In this section, let GC be a connected complex reductive Lie group, X be
a connected holomorphical GC-Stein manifold. By the Slice theorm of Luna-
Snow (cf. Luna [5], Snow [9]), the categorical quotient X//GC is a normal Stein
space and π : X → X//GC is holomorphic (for the definition of the categorical
quotient, cf. Snow [9]). It is known that π is open, semi-proper, surjective, sub-
mersive (i.e. X//GC carries the quotient topology), and each fibre is connected
and contains a unique closed orbit (cf. Snow [9]).

One can naturally introduce a partial order on the set of all closed GC orbits,
i.e., for two closed GC-orbits GC ·x and GC · y, we say GC ·x > GC · y if and only
if there exists an equivariant holomorphic mapping from GC ·x onto GC · y. The
maximal element must exist and is called the principal orbit; the corresponding
isotropy group at the principal orbit is called the principal isotropy group. By
the Slice theorem of Luna-Snow, the principal isotropy groups are conjugate,
and a closed orbit GC · x is principal if and only if π(x) is a regular point of
X//GC and π : X → X//GC is nondegenerate at x.

Denote X ′ := {x ∈ X : GC · x is closed and principal}, Xpr := π−1(π(X ′)),
S := {x ∈ X : rankxπ < dim(X//GC)}, and Sing (X//GC) the singular locus
of X//GC. Then (Xpr)c = π−1(π(S)) ∪ π−1 (Sing (X//GC)). Since S is a
GC-invariant analytic set in X, by semi properness of π, then π(S) is also an
analytic set in X//GC. Therefore Xpr is Zariski open in X. The set π(X ′) is
the so called principal model or principal stratum.

If X has FPIG (i.e., all principal isotropy groups are finite), then X ′ = Xpr,
and π−1(π(x)) = GC · x for x ∈ X ′.
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3. Proof of the reformulation of the
extended future tube conjecture

Our starting point is a simple and less obvious observation which is to relate
the conjecture to the minimum principle which is stated in §2.1. In order to use
the minimum principle, we make the following two simple observations.

Proposition 1. The Bergman kernel of HN is SL(2, C)-invariant strictly p.s.h.;

in fact, KHN
(Z, Z̄) = c

N∏
j=1

1/det(Im Zj)4, where Z = (Z1, · · · , ZN ), c is a posi-

tive constant, Im Zj = (Zj − Z̄ ′
j)/2i.

Proposition 2. The space C
N [2 × 2] has FPIG with respect to the SL(2, C) ×

SL(2, C) action for N ≥ 3. Denote by

A = C
N [2×2]\{Z ∈ C

N [2×2] : (SL(2, C)×SL(2, C))·Z is closed and principal}.

Hence A is an SL(2, C) × SL(2, C)-invariant analytic (actually, algebraic) set
in C

N [2 × 2] by Luna’s slice theory (cf.2.2.).

The idea of the proof of the conjecture is to construct a p.s.h. exhaustion
function on H ′

N from a special strictly p.s.h. function on HN . Choose a spe-
cial SL(2, C)-invariant s.p.s.h. function ϕ on HN (for example, choose ϕ as

KHN
(Z, Z̄) or

N∑
j=1

1/det(Im Zj)4, or
N∑

j=1

1/det(Im Zj)). Consider the holomor-

phic mapping

ρ : C
N [2 × 2] × (SL(2, C) × SL(2, C)) −→ C

N [2 × 2]

(Z, (A, B)) �−→ A−1ZB.

The set Ω := ρ−1(HN ) ⊂ C
N [2×2]× (SL(2, C)×SL(2, C)) has connected fibres

of p since HN is orbit connected. (This fact is an essential part of the BHW
Theorem. For a definition of orbit connectedness, cf. Zhou [17]). The smooth
function ϕ(A−1ZB) is defined and p.s.h on Ω.

Denote v(Z) := inf(A,B)∈ΩZ
ϕ(A−1ZB). Then v(Z) is upper semicontinuous,

and actually continuous, on p(Ω) = H ′
N . Consider Ω′ := ρ−1(HN\A) which

still has connected fibres of p since HN\A is still orbit connected. The function
ϕ(A−1ZB) is strictly p.s.h. on (Ω′)Z = ΩZ for any fixed Z ∈ p(Ω′) = H ′

N\A.
In order to use the minimum principle finally, we still need the following.

Proposition 3. The function ϕ̇ induced by ϕ(A−1ZB) on (Ω′)Z is an exhaus-
tion function on ψ((Ω′)Z) for Z ∈ p(Ω′).

Now using the minimum principle (Propositions 1, 2, 3 make it possible), one
has that v(Z) is p.s.h. on H ′

N\A. By the extension theorem for p.s.h functions
(cf. Gunning [1]), v(Z) is p.s.h. in H ′

N . Our final step to prove the conjecture is
the following.
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Proposition 4. The function v(Z) goes to infinity as Z goes to a boundary
point of H ′

N .

Although the proofs of Proposition 3 and Proposition 4 are less obvious, they
are more or less elementary.
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