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SEIBERG-WITTEN THEORY AND Z/2p ACTIONS ON SPIN
4-MANIFOLDS

Jim Bryan

Abstract. Furuta’s “10/8ths” theorem gives a bound on the magnitude of the
signature of a smooth spin 4-manifold in terms of the second Betti number. We
show that, in the presence of a Z/2p action, this bound can be strengthened. As
applications, we give new genus bounds on classes with divisibility, and we give
a classification of involutions on rational cohomology K3’s.

We utilize the action of Pin (2)×̃Z/2p on the Seiberg-Witten moduli space.
Our techniques also provide a simplification of the proof of Furuta’s theorem.

1. Introduction

In early 1995, Furuta [6] proved that if X is a smooth, compact, connected
spin 4-manifold with non-zero signature σ(X), then

5
4
|σ(X)| + 2 ≤ b2(X).(1)

This estimate has been dubbed the “10/8ths” theorem in comparison with
the “11/8ths” conjecture, which predicts the following bound:

11
8
|σ(X)| ≤ b2(X).

Inequality (1) follows by a surgery argument from the non-positive signature,
b1(X) = 0 case:

Theorem 1.1 (Furuta). Let X be a smooth spin 4-manifold with b1(X) = 0
with non-positive signature. Let k = −σ(X)/16 and m = b+

2 (X). Then,

2k + 1 ≤ m

if m �= 0.

The main results of this paper improve the above bound by p under the
assumption that X has a Z/2p action satisfying some non-degeneracy conditions
(the analogues of the condition m �= 0 in the above theorem).

A Z/2p action is called a spin action if the generator of the action τ : X → X
lifts to the spin bundle τ̂ : PSpin → PSpin. Such an action is of even type if τ̂ has
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order 2p and is of odd type if τ̂ has order 2p+1. Using [2], it is easy to determine
if an action is spin and whether it is of even or odd type.

We assume throughout that X is a smooth spin 4-manifold with b1(X) = 0
and is oriented so that the signature is non-positive. We will continue with the
notation k = −σ(X)/16 and m = b+

2 (X). Our main results are the following:

Theorem 1.2. Suppose that τ : X → X generates a smooth Z/2p action that
is spin and of odd type. Let Xi denote the quotient of X by Z/2i ⊂ Z/2p. Then

2k + 1 + p ≤ m

if m �= 2k + b+
2 (X1) and b+

2 (Xi) �= b+
2 (Xj) > 0 for i �= j.

For even actions, the easiest results to state are for involutions:

Theorem 1.3. Suppose that σ : X → X is a smooth involution of even type.
Then

2k + 2 ≤ m

if m �= b+
2 (X/σ) > 0.

This is a special case of the following theorem:

Theorem 1.4. Suppose that σ1, . . . , σq : X → X are smooth involutions of
even type generating an action of (Z/2)q. Then

2k + 1 + q ≤ m

if m �= b+
2 (X/g) for any non-trivial element g ∈ (Z/2)q and b+

2 (X/(Z/2)q) �= 0.

Remark 1.1. The non-degeneracy conditions in Theorems 1.2, 1.3, and 1.4 can
be restated in terms of the fixed point set, although for our applications the
conditions on the quotient are more convenient.

We also include the following:

Theorem 1.5. Suppose that τ : X → X generates a smooth Z/2p action that
is spin and of either type. Then b+

2 (X/τ) �= 0 if k > 0.

One can apply Theorem 1.2 to a cover of a 4-manifold branched along a
smoothly embedded surface. The inequality can be used to get a bound on
the genus of the embedded surface (see Theorem 4.2). One special case is the
following:

Theorem 1.6. Let M be a smooth, compact, oriented, simply connected 4-
manifold (not necessarily spin) with b+

2 (M) > 1, and let Σ ↪→ M be a smooth
embedding of a genus g surface. Suppose that the homology class defined by Σ is
divisible by 2 and that [Σ]/2 ≡ w2(M) mod 2. Then

g ≥ 5
4

(
[Σ]2

4
− σ(M)

)
− b2(M) + 2.
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This bound is typically weaker than the adjunction inequality from the
Seiberg-Witten invariants (see [9]), but the bound applies to manifolds even
with zero Seiberg-Witten invariants. For examples where the bound is sharp
and new we have (see also example 4.1):

Corollary 1.7. The minimal genus of an embedded surface in CP2#CP2 rep-
resenting the class (6, 2) is 10. The minimal genus of an embedded surface in
S2 × S2#CP2 representing the class ((4, 4), 6) is 19.

Proof. In each case the lower bound of Theorem 1.6 is realized by the connected
sum of smooth algebraic curves in each factor.

As another application of the theorems, we give a “classification” of involu-
tions on rational cohomology K3’s.

Theorem 1.8. Let σ : X → X be a spin involution of a rational cohomology
K3 (i.e. b1(X) = 0 and QX

∼= QK3). If σ is of even type then it has exactly 8
isolated fixed points and b+

2 (X/σ) = 3; if σ is of odd type then b+
2 (X/σ) = 1.

This theorem recovers as a special case a theorem of Donaldson concerning
involutions on the K3 ([5] Cor. 9.1.4) and is related to a theorem of Ruberman
[11]. We also remark that both possibilities in the theorem actually occur.

Morgan and Szabó have proven that if X is a rational cohomology K3, then
the Seiberg-Witten invariant is non-trivial for the trivial spinC structure [12].

The proof of Theorems 1.2, 1.3, 1.4, and 1.5 uses Furuta’s technique of “finite
dimensional approximation” for the Seiberg-Witten moduli spaces to reduce the
problem to algebraic topology. The main innovation of our technique is our ap-
proach to the equivariant K-theory. In particular, we do not need the Adams’
operations in equivariant K-theory and can thus simplify that part of Furuta’s
proof. In section 2 we introduce the equations and use Furuta’s technique to
study the moduli space; in section 3 we use equivariant K-theory and representa-
tion theory to study the G-equivariant properties of the moduli space and prove
the main theorems; section 4 is devoted to applications, primarily genus bounds
obtained by branched covers and our classification of involutions on rational
cohomology K3’s.

2. Seiberg-Witten theory

In this section we use Furuta’s “finite dimensional approximation” technique
to study the Seiberg-Witten moduli space in the presence of our Z/2p symmetry.
The goal of the section is to use the Seiberg-Witten solutions to produce a certain
G-equivariant map between spheres. This map will then be studied by algebraic
topology in section 3 to produce a proof of the main theorems.

Let X be a smooth, compact, connected, spin 4-manifold with b1(X) = 0 and
fix an orientation so that σ(X) ≤ 0. By Rochlin’s theorem, σ(X) is divisible by
16, so let k = −σ(X)/16 and let m = b+

2 (X). Let τ : X → X be an orientation
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preserving diffeomorphism generating a Z/2p action and fix an invariant Rie-
mannian metric g. We assume that τ is a spin action. By definition this means
that τ∗(℘)−℘ is zero as an element of H1(X; Z/2) where ℘ is the spin structure
(the difference of two spin structures is naturally an element of H1(X; Z/2)).
There is then a lift τ̂ of τ to the spin bundle:

PSpin
τ̂−−−−→ PSpin� �

PSO(4)
dτ−−−−→ PSO(4)� �

X
τ−−−−→ X.

The order of τ̂ is either 2p or 2p+1 depending on whether (τ̂)2
p

is the identity or
the non-trivial deck transformation of the double cover PSpin → PSO(4). We say
that τ is of even type if τ̂ has order 2p and of odd type if τ̂ has order 2p+1. A
lemma of Atiyah and Bott makes it easy to determine the type of τ : The 2p−1-th
iteration of τ is an involution σ of X and will have a fixed point set consisting
of manifolds of constant even dimension. If the fixed point set of σ consists of
points (or all of X), then τ is of even type; if the fixed point set is dimension 2,
then τ is of odd type. In the case where σ acts freely, then τ is of even or odd
type depending on whether or not the quotient X/σ is spin (c.f. [2] or [4]).

On a spin manifold, the Seiberg-Witten equations for the trivial spinC struc-
ture take on a somewhat special form. In [6], Furuta gives a concise and elegant
description of the equations. We give a slightly different description to avoid
repetition and to make the exposition more closely match standard notation.

Let S = S+ ⊕ S− denote the decomposition of the spinor bundle into the
positive and negative spinor bundles. Clifford multiplication induces an isomor-
phism

ρ : Λ∗
C → EndC(S)

between the bundle of complex valued forms and endomorphisms of S. Let
∂/ : Γ(S+) → Γ(S−) be the Dirac operator. The Seiberg-Witten equations are
for a pair (a, φ) ∈ Ω1(X,

√−1R) × Γ(S+) and they are

∂/φ + ρ(a)φ = 0,

ρ(d+a) − φ ⊗ φ∗ + 1
2 |φ|21l = 0,

d∗a = 0.

This system of equations is elliptic as written—the last equation defines a
slice for the (based) gauge group of the usual equations. The image of

√−1Λ2
+

under ρ is the tracefree, hermitian endomorphisms of S+ which we denote
by

√−1su(S+). (We remark that by taking a slightly different gauge fixing
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condition, one could combine the last two equations in the single equation
ρ(d+a + d∗a) = φ ⊗ φ∗.)

Following Furuta’s notation, we regard the equations as the zero set of a map

D + Q : V → W ′

where V is the L4
2-completion of Γ(

√−1Λ1 ⊕ S+) and W ′ is the L3
2 completion

of Γ(S− ⊕ √−1su(S+) ⊕ √−1Λ0) and D and Q are the linear and quadratic
pieces of the equations respectively, i.e.

D(a, φ) = (∂/φ, ρ(d+a), d∗a),
Q(a, φ) = (ρ(a)φ, φ ⊗ φ∗ − 1

2 |φ|21l, 0).

The image of D + Q is L2-orthogonal to the constant functions in
√−1Ω0 ⊂

W ′. We define W to be the orthogonal complement of the constant functions in
W ′ and consider D + Q as defined on W :

D + Q : V → W.

We now wish to determine the group of symmetries of the equations. As
in Furuta, we will see that Pin (2) acts, and, as one would expect, there are
additional symmetries arising from τ . The symmetry group turns out to depend
on whether τ is of even or odd type.

Define Pin (2) ⊂ SU(2) to be the normalizer of S1 ⊂ SU(2). Regarding SU(2)
as the group of unit quaternions and taking S1 to be elements of the form e

√−1θ,
Pin (2) then consists of elements of the form e

√−1θ or e
√−1θJ (our quaternions

are spanned by 〈1,
√−1, J,

√−1J〉). We define the action of Pin (2) on V and
W as follows: Since S+ and S− are SU(2) bundles, Pin (2) naturally acts on
Γ(S±) by multiplication on the left. Z/2 acts on Γ(Λ∗

C
) by multiplication by ±1

and this pulls back to an action of Pin (2) by the natural map Pin (2) → Z/2. A
calculation shows that this pullback also describes the induced action of Pin (2)
on

√−1su(S+). Both D and Q are then seen to be Pin (2) equivariant maps.
Note that the action of S1 ⊂ Pin (2) is the ordinary action of the constant gauge
transformations.

The isometry τ acts on V and W by pull back by dτ and τ̂ ; D and Q are
equivariant with respect to this action. If τ is of even type, then it induces an
action of Z/2p on V and W ; if τ is of odd type, then it induces an action of
Z/2p+1. In the even case the symmetry group is thus

Gev ≡ Pin (2) × Z/2p.

In the odd case Pin (2)×Z/2p+1 acts but we see that the diagonal Z/2 subgroup
acts trivially: the 2p-th iteration of τ̂ acts on the spinors by the action induced
by the non-trivial deck transformation; this is the same as the action of the
constant gauge transformation −1 ⊂ S1 ⊂ Pin (2). Thus the symmetry group
for the odd case is

Godd ≡ Pin (2) × Z/2p+1

Z/2
.
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Throughout the sequel we write G to mean Godd or Gev.To state Furuta’s finite
dimensional approximation theorem, we define Vλ for any λ ∈ R to be the
subspace of V spanned by the eigenspaces of D∗D with eigenvalues less than or
equal to λ. Similarly, define Wλ using DD∗ and write pλ for the L2-orthogonal
projection from W to Wλ. Define

Dλ + Qλ : Vλ → Wλ

by the restriction of D + pλQ to Vλ.
Since the eigenspaces of D∗D and DD∗ are G invariant and pλ is a G-map,

Dλ + Qλ is a G equivariant map between finite dimensional G representations
and it is an approximation to D + Q in the following sense:

Lemma 2.1 (Lemma 3.4 of [6]). There exists an R ∈ R such that for all
λ > R the inverse image of zero (Dλ + Qλ)−1(0) is compact.

The lemma allows Furuta to use Dλ + Qλ to construct a G-equivariant map
on disks preserving boundaries

fλ : (BVλ,C, SVλ,C) → (BWλ,C, SWλ,C).

Here Vλ,C = Vλ ⊗ C, BVλ,C is homotopic to a ball in Vλ,C, and SVλ,C is the
boundary of BVλ,C with similar definitions for Wλ,C, BWλ,C, and SWλ,C.

The virtual G-representation [Vλ]− [Wλ] ∈ R(G), which is the G-index of D,
can be determined by the G index theorem and is independent of λ. We discuss
its computation in the next section.

3. Equivariant K-theory

In this section we use equivariant K-theory to deduce restrictions on the
map fλ : BVλ,C → BWλ,C. Combining this with the index theorem determining
[Vλ]−[Wλ] ∈ R(G) we will prove the main theorems. Our K-theoretic techniques
avoid Furuta’s use of the equivariant Adams’ operations and thus also provide
a simplification in the proof of his “10/8ths” theorem.

3.1. The representation ring of Gev and Godd. We write R(Γ) for the com-
plex representation ring of a compact Lie group Γ and we write direct sum
and tensor product of representations additively and multiplicatively respec-
tively. The representation ring R(Z/2p) of Z/2p is isomorphic to the group ring
Z(Z/2p) and is generated by the standard one dimensional representation ζ .
We write 1 for the trivial representation, so for example ζ2p

= 1, and as a Z

module, R(Z/2p) is generated by 1, ζ, . . . , ζ2p−1.
The group Pin (2) has one non-trivial one dimensional representation (which

we denote by 1̃) given by pulling back the non-trivial Z/2 representation by
the map Pin (2) → Z/2. It has a countable series of 2 dimensional irreducible
representations h1, h2, . . . . The representation h1, which we sometimes write as
h, is the restriction of the standard representation of SU(2) to Pin (2) ⊂ SU(2).
The representation hi can be obtained using the relation hihj = hi+j + h|i−j|
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where by convention h0 denotes 1 + 1̃. Note that 1̃ · hi = hi. Let θ denote the
standard 1 dimensional representation of S1 so that R(S1) ∼= Z[θ, θ−1]. It is
easy to see that hi restricts to θi + θ−i as an S1 representation.

Since Gev = Pin (2) × Z/2p, the representation ring is simply the tensor
product R(Gev) = R(Pin (2)) ⊗ R(Z/2p). We can thus write a general element
β ∈ R(Gev)

β = β0(ζ)1 + β̃0(ζ)1̃ +
∞∑

i=1

βi(ζ)hi

where β0, β̃0, β1, . . . are degree 2p − 1 polynomials in ζ and all but a finite
number of the βi’s are 0.

The irreducible representations of Godd = (Pin (2) × Z/2p+1)/(Z/2) are the
representations of Pin (2) × Z/2p+1 that are invariant under Z/2. To avoid
confusion we will use ξ for the generator of R(Z/2p+1). The Pin (2) × Z/2p+1

representations ξi and hi are non-trivial restricted to Z/2 if and only if i is odd
and the representation 1̃ is trivial restricted to Z/2. The subring R(Godd) ⊂
R(Pin (2) × Z/2p+1) is therefore generated by 1, 1̃, ξ2, and ξihj where i ≡ j
(mod 2). We write a general element β ∈ R(Godd) as

β = β0(ξ) + β̃0(ξ) +
∞∑

i=1

βi(ξ)hi

where now β0, β̃0, and β2i are even polynomials of degree 2p+1−2 and the β2i+1’s
are odd polynomials of degree 2p+1 − 1. In summary we have:

Theorem 3.1. The ring R(Gev) is generated by 1, 1̃, h1, h2, . . . , and ζ with
the relations ζ2p

= 1 and hihj = hi+j + h|i−j|, where h0 = 1 + 1̃.
The ring R(Godd) is generated by 1, 1̃, ξ2, h2, h4, . . . , and ξh1, ξh3, . . . with

the relations ξ2p+1
= 1 and hihj = hi+j + h|i−j|, where h0 = 1 + 1̃.

For G = Godd or Gev the restriction map R(G) → R(S1) ∼= Z[θ, θ−1] is given
by 1̃ �→ 1, ξ �→ 1 (or ζ �→ 1), and hi �→ θi + θ−i.

3.2. The index of D. The virtual representation [Vλ,C]− [Wλ,C] ∈ R(G) is the
same as Ind(D) = [KerD] − [Coker D]. Furuta determines Ind(D) as a Pin (2)
representation; denoting the restriction map r : R(G) → R(Pin (2)), Furuta
shows

r(Ind(D)) = 2kh − m1̃

where k = −σ(X)/16 and m = b+
2 (X). Thus Ind(D) = sh− t1̃ where s and t are

polynomials in ξ or ζ such that s(1) = 2k and t(1) = m. In the case of G = Gev

we write
s(ζ) =

∑2p

i=1 siζ
i and t(ζ) =

∑2p

i=1 tiζ
i

and for G = Godd we have

s(ξ) =
∑2p

i=1 siξ
2i−1 and t(ξ) =

∑2p

i=1 tiξ
2i.
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To compute the coefficients ti and si, one can use the Z/2p-index theorem. We
will only need information about the ti coefficients.

From the definition of the operator D we see that the polynomial
∑2p

i=1 tiζ
i

is the honest Z/2p representation

Coker((d∗, d+) : Ω1 → Ω0
⊥ ⊕ Ω2

+)

where Ω0
⊥ denotes the L2-orthogonal complement of the constant functions (this

is true for both the odd and even cases). The constant coefficient, t2p is the
dimension of the invariant part of H2

+(X) which is just b+
2 (X/τ). More generally,

b+
2 of the quotients of X by subgroups of Z/2p are given by the various sums of

the ti’s. The dimension of the subspace of
∑2p

i=1 tiξ
i invariant under Z/2j ⊂ Z/2p

is given by ∑
i≡0mod2j

ti = b+
2 (Xj)

where Xj is the quotient of X by Z/2j and X0 = X by convention.
We summarize the discussion in the following

Theorem 3.2. The index of D is given by

[Vλ,C] − [Wλ,C] = sh − t1̃ ∈ R(G)

where if G = Gev then

s(ζ) =
∑2p

i=1 siζ
i and t(ζ) =

∑2p

i=1 tiζ
i

and if G = Godd then

s(ξ) =
∑2p

i=1 siξ
2i−1 and t(ξ) =

∑2p

i=1 tiξ
2i.

For either Gev or Godd we have

2p∑
i=1

si = 2k

∑
i≡0mod2j

ti = b+
2 (Xj).

3.3. The Thom isomorphism and a character formula for the K-theo-
retic degree. The Thom isomorphism theorem in equivariant K-theory for a
general compact Lie group is a deep theorem proved using elliptic operators [1] .
The subsequent character formula of this section uses only elementary properties
of the Bott class. We follow tom Dieck [14] pgs. 254–255 for this discussion.

Let V and W be complex Γ representations for some compact Lie group Γ.
Let BV and BW denote balls in V and W and let f : BV → BW be a Γ-map
preserving the boundaries SV and SW . KΓ(V ) is by definition KΓ(BV, SV ), and
by the equivariant Thom isomorphism theorem, KΓ(V ) is a free R(Γ) module
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with generator the Bott class λ(V ). Applying the K-theory functor to f we get
a map

f∗ : KΓ(W ) → KΓ(V )

which defines a unique element αf ∈ R(Γ) by the equation f∗(λ(W )) = αf ·λ(V ).
The element αf is called the K-theoretic degree of f .

Let Vg and Wg denote the subspaces of V and W fixed by an element g ∈ Γ
and let V ⊥

g and W⊥
g be the orthogonal complements. Let fg : Vg → Wg be the

restriction of f (well defined because of equivariance) and let d(fg) denote the
ordinary topological degree of fg (by definition, d(fg) = 0 if dimVg �= dimWg).
For any β ∈ R(Γ) let λ−1β denote the alternating sum

∑
(−1)iλiβ of exterior

powers.
T. tom Dieck proves a character formula for the degree αf :

Theorem 3.3. Let f : BV → BW be a Γ-map preserving boundaries and let
αf ∈ R(Γ) be the K-theory degree. Then

trg(αf ) = d(fg) trg(λ−1(W⊥
g − V ⊥

g ))

where trg is the trace of the action of an element g ∈ Γ.

This formula will be especially useful in the case where dimWg �= dimVg so
that d(fg) = 0.

We also recall here that λ−1(
∑

i airi) =
∏

i(λ−1ri)ai and that for a one
dimensional representation r, we have λ−1r = (1 − r). A two dimensional
representation such as h has λ−1h = (1 − h + Λ2h). In this case, since h comes
from an SU(2) representation, Λ2h = deth = 1 so λ−1h = (2 − h).

All the proofs in the following subsections proceed by using the character
formula to examine the K-theory degree αfλ

of the map fλ : BVλ,C → BWλ,C

coming from the Seiberg-Witten equations. We will abbreviate αfλ
as just α

and Vλ,C and Wλ,C as just V and W , and we will use the following elements of
G. Let φ ∈ S1 ⊂ Pin (2) ⊂ G be an element generating a dense subgroup of S1;
let η ∈ Z/2p and ν ∈ Z/2p+1 be generators and recall that there is the element
J ∈ Pin (2) coming from the quaternions. Note that the action of J on h has two
invariant subspaces on which J acts by multiplication with

√−1 and −√−1.

3.4. Proof of Furuta’s theorem (Theorem 1.1). Consider α = αfλ
∈

R(Pin (2)); it has the form

α = α0 + α̃01̃ +
∞∑

i=1

αihi.

Since φ acts non-trivially on h and trivially on 1̃, we have that dimVφ �= dimWφ

as long as m > 0. The character formula then gives

trφ(α) = 0 = α0 + α̃0 +
∞∑

i=1

αi(φi + φ−i)
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so α0 = −α̃0 and αi = 0 for i ≥ 1.
Since J acts non-trivially on both h and 1̃, dimVJ = dimWJ = 0 so d(fJ) = 1

and the character formula says

trJ(α) = trJ(λ−1(m1̃ − 2kh))
= trJ((1 − 1̃)m(2 − h)−2k)
= 2m−2k

using trJ h = 0 and trJ 1̃ = −1. On the other hand, trJ(α) = trJ(α0(1 − 1̃)) =
2α0 therefore the degree is

α = 2m−2k−1(1 − 1̃)

and we can conclude 2k + 1 ≤ m.

The proofs of Theorems 1.2, 1.3, and 1.4 are a generalization of the above
proof.

3.5. Proof of Theorem 1.3. In this case the group is G = Gev = Pin (2)×Z/2
and

V − W = (s1ζ + s2)h − (t1ζ + t2)1̃

where t1+t2 = m and s1+s2 = 2k. The hypothesis m �= b+
2 (X/σ) > 0 translates

to t1 + t2 �= t2 > 0 which is equivalent to both t1 and t2 being non-zero.
Both φ and φν act non-trivially on h and trivially on 1̃ so (since t2 �= 0) we

have d(fφ) = d(fφν) = 0 so that trφ(α) = trφν(α) = 0.
The general form of α is

α = α0(ζ) + α̃0(ζ)1̃ +
∞∑

i=1

αi(ζ)hi

so the conditions trφ(α) = trφν(α) = 0 imply that

α0(±1) + α̃0(±1) = 0
αi(±1) = 0

since α0, α̃0, and αi are degree 1 in ζ we see that α0 = −α̃0 and αi = 0 so

α = (α1
0ζ + α2

0)(1 − 1̃).

We kow that Jν acts trivially on ζ1̃ and non-trivially on ζh and h so since t1 �= 0,
d(fJν) = 0. Thus we get

trJν(α) = 0 = (−α1
0 + α2

0) · 2
so that α1

0 = α2
0.

Finally, as before, J acts non-trivially on W and V , so that d(fJ) = 1 and
trJ(α) = 2m−2k so it must be the case that

α = 2m−2k−2(1 + ζ)(1 − 1̃)
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and thus 2k + 2 ≤ m.

3.6. Proof of Theorem 1.4. We generalize the preceding proof. Now G =
Pin (2) × (Z/2)q and we write ζi for the non-trivial representation of the i-th
copy of Z/2. The index Ind(D) is given by

V − W = s(ζ1, . . . , ζq)h − t(ζ1, . . . , ζq)1̃

where s and t are polynomial functions in the variables ζ1, . . . , ζq of multi-degree
(1, . . . , 1).

The hypothesis m �= b+
2 (X/g) then implies that the representation

t(ζ1, . . . , ζq) contains a summand on which g acts as −1. Since J acts on 1̃
by −1 we see that the representation t(ζ1, . . . , ζq)1̃ has a positive dimensional
subspace fixed by Jg for every non-trivial g ∈ (Z/2)q. On the other hand, Jg
always acts non-trivially on s(ζ1, . . . , ζq)h, so the character formula gives us

trJg(α) = 0.

Since b+
2 (X/(Z/2)q) �= 0, the coefficient of the trivial representation in

t(ζ1, . . . , ζq) is non-zero and so φg always fixes a non-trivial subspace of t1̃.
On the other hand, φg always acts non-trivially on sh, so again the character
formula shows that

trφg(α) = 0.

The general form of α is

α = α0 + α̃01̃ +
∞∑

i=1

αihi

where α0, α̃0, and αi are polynomial functions in ζ1, . . . , ζq of multi-degree
(1, . . . , 1).

Now for any polynomial function β(x1, . . . , xq) of multi-degree (1, . . . , 1), if
we know that β((−1)n1 , . . . , (−1)nq ) = 0 for any arrangement of the signs, then
β ≡ 0. Thus the formula trφg(α) = 0 for all g ∈ (Z/2)q implies that α0 + α̃0 ≡ 0
and αi ≡ 0. We can therefore write

α = α0(ζ1, . . . , ζq)(1 − 1̃).

Since J acts non-trivially on both U and V , we can compute as before:

trJ(α) = trJ(λ−1(W − V )) = 2m−2k.

This equation, along with the 2q − 1 equations trJg(α) = 0 for g �= 1 ∈ (Z/2)q

give 2q independent conditions on α0 which determine it uniquely. It must be
the following:

α = 2m−2k−1−q(1 + ζ1)(1 + ζ2) · · · (1 + ζq)(1 − 1̃)

and thus 2k + 1 + q ≤ m.



176 JIM BRYAN

3.7. Proof of Theorem 1.2. Recall that

[V ] − [W ] = s(ξ)h − t(ξ)1̃ ∈ R(Godd)

with s(ξ) =
∑2p

i=1 siξ
2i−1 and t(ξ) =

∑2p

i=1 tiξ
2i. The K-theory degree α = αfλ

of fλ has the form

α = α0(ξ) + α̃0(ξ) +
∞∑

i=1

αi(ξ)hi.

We compute the following characters of α:

Lemma 3.4. trφηj (α) = 0 for j = 1, . . . , 2p, trJηj (α) = 0 for j = 1, . . . , 2p − 1,
and trJ(α) = 2m−2k.

Proof. We introduce the notation (V )g = dimVg. By the character formula,
trφηj (α) = 0 if

(V )φηj − (W )φηj = (s(ξ)h − t(ξ)1̃)φηj �= 0.

Since φηj acts non-trivially on every ξih and φηj acts trivially on 1̃, we have

(V )φηj − (W )φηj ≤ −t2p .

By the hypothesis in Theorem 1.2, t2p = b+
2 (X/τ) > 0 so trφηj (α) = 0.

To show trJηj (α) = 0 for j = 1, . . . , 2p−1 we need to show (V )Jηj −(W )Jηj �=
0. The 2 dimensional representation h decomposes into two complex lines on
which J acts as

√−1 and −√−1, so

(ξ2i−1h)Jηj =

{
1 if ηj acts on ξ2i−1 by ±√−1
0 otherwise.

ηj acts as ±√−1 on ξ2i−1 if and only if j and i satisfy

(2i − 1)j ≡ ±2p−1 mod 2p+1.

If j = 2p−1, then the condition is satisfied for every i; if j �= 2p−1, the condition
is never satisfied (divide both sides by the highest power of 2 that divides j to
get an odd number on one side and an even on the other). Thus

(s(ξ)h)Jηj =

{
2k if j = 2p−1,
0 if j �= 2p−1.

Jηj acts on 1̃ by −1, therefore

(ξ2i1̃)Jηj =

{
1 if ηj acts on ξ2i by −1 and
0 otherwise.
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Thus we see that

(t(ξ)1̃)Jηj =
∑

2ij≡2pmod2p+1

ti

=
∑

ij≡2p−1mod2p

ti.

We want to see that the non-degeneracy conditions of the theorem imply
(V − W )Jηj �= 0. The conditions are equivalent to

0 < b+
2 (Xp) < b+

2 (Xp−1) < · · · < b+
2 (X1)

and

b+
2 (X1) �= m − 2k

which in terms of the ti’s are

t2p �= 0
t2p−1 �= 0

t2p−2 + t3·2p−2 �= 0
t2p−3 + t3·2p−3 + t5·2p−3 + t7·2p−3 �= 0

...
t2 + t3·2 + t5·2 + · · · �= 0

and ∑
i even

ti �= m − 2k.

Since m =
∑

ti the last condition is the same as

t1 + t3 + · · · + t2p−1 �= 2k.

From the previous discussion we have in the case j �= 2p−1

(V − W )Jηj = (s(ξ)h − t(ξ)1̃)Jηj

= −
∑

ij≡2p−1mod2p

ti

= −(t2a + t3·2a + · · · )
�= 0

where 2p−1−a is the largest power of 2 dividing j.
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For the case j = 2p−1

(V − W )Jηj = 2k −
∑

i2p−1≡2p−1mod2p

ti

= 2k −
∑

i≡1mod2

ti

�= 0.

To complete the lemma we compute trJ(α). Once again, since J acts non-
trivially on W and V ,

trJ(α) = trJ Λ−1(W − V ) = 2m−2k.

Lemma 3.5. Let β(ξ) be of the form
∑2p

i=1 βiξ
2i or

∑2p

i=1 βiξ
2i−1 in R(Z/2p+1).

If trηj β = 0 for j = 1, . . . , 2p then β ≡ 0.

Proof. Let β(x) =
∑2p

i=1 βix
i. β is then a degree 2p polynomial with roots at

all of the 2p-th roots of unity and at 0, so β is identically 0.
The general form of α is

α = α0(ξ) + α̃0(ξ)1̃ +
∞∑

i=1

αi(ξ)hi

so using the computation of Lemma 3.4

0 = trφηj (α)

= trηj (α0 + α̃0) +
∞∑

i=1

trηj (αi)(φi + φ−i)

for j = 1, . . . , 2p − 1.
Since each φi term must vanish separately, Lemma 3.5 immediately implies

that α0 + α̃0 ≡ 0 and αi ≡ 0. Thus α has the form α0(ξ)(1 − 1̃) where α0(ξ) =∑2p

i=1 αi
0ξ

2i. Since trJηj (α) = trηj (α0) · 2 = 0 for j = 1, . . . , 2p − 1, the degree
2p polynomial

α0(x) =
2p∑

i=1

αi
0x

i

has 2p known roots, namely the 2p − 1 non-trivial 2p-th roots of unity and 0.
Thus α0(x) = const.

∑2p

i=1 xi and we can use trJ(α) = 2m−2k to determine the
constant. Thus we can conclude that

α = 2m−2k−p−1(1 + ξ2 + ξ4 + · · · + ξ2p+1−2)(1 − 1̃),

and so 2k + 1 + p ≤ m and the theorem is proved.
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Remark 3.1. For a spin action of an arbitrary group Γ of order 2p on X our
methods should give the bound 2k + 1 + p ≤ m as long as the action is subject
to some non-degeneracy conditions. The proof would proceed as all the others,
using the non-degeneracy conditions and the character formula to guarantee
trJg(α) = 0 for non-trivial g ∈ Γ and trφg(α) = 0 for all g ∈ Γ. Then one can
show that

α = 2m−2k−1−p · ρ · (1 − 1̃)

where ρ is the regular representation of Γ. Complications do occur: in order
to guarantee that trJg(α) = 0 one needs to incorporate information about the
virtual representation s, i.e. the Γ-index of the Dirac operator. This can be
computed via the index theorem, but in general the non-degeneracy conditions
would then involve the fixed point set. A further complication occurs because
the lift of the action to the spin bundle can be complicated; some group elements
may lift with twice their original order while others may preserve their order.
Nevertheless, our techniques could be applied in a case-by-case basis if the above
issues are understood.

3.8. Proof of Theorem 1.5. This has a slightly different flavor than the pre-
vious proofs. The proof is essentially the same for Godd and Gev; we will use the
Gev notation. The index has the form

Ind(D) = s(ζ)h − t(ζ)1̃

and the hypothesis k > 0 means that s(ζ) =
∑2p

i=1 siζ
i has at least one positive

coefficient. From Theorem 1.1, k > 0 also implies m > 0. We will prove that
b+
2 (X/τ) �= 0 by contradiction. Suppose b+

2 (X/τ) = 0 so that the constant
coefficient of t(ζ) is 0, i.e. t2p = 0. Since m > 0 we have (W − V )φ �= 0 so
trφ(α) = 0 and since t2p = 0, we know that φν acts non-trivially on all of V and
W so

trφν(α) = λ−1(W − V )

=
(1 − ν)t1(1 − ν2)t2 · · · (1 − ν2p−1)t2p−1

(1 − νφ)s1(1 − νφ−1)s1 · · · .

Since at least one of the si’s is positive, the above expression has arbitrarily
high powers of φ in it. On the other hand

trφν(α) = trφν

(
α0(ζ) + α̃0(ζ)1̃ +

∞∑
i=1

αi(ζ)hi

)

= α0(ν) + α̃0(ν) +
∞∑

i=1

αi(ν)(φi + φ−i)

has only finitely many non-zero αi terms, which is our contradiction.
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4. Applications

4.1. Genus bounds. Our original motivation for this work is our application
to genus bounds. We refer the reader to our paper [4] for details of the set up.

Let M be a smooth 4-manifold (not necessarily spin) and let Σ ↪→ M be a
smoothly embedded surface representing a homology class a ∈ H2(M ; Z). A
basic question in 4-manifold topology asks for the minimal genus gmin(a) of a
smoothly embedded surface representing a given class a. In order to determine
gmin(a) one needs good lower bounds on the genus of embedded surfaces and
constructions realizing those bounds.

The basic ideas we use go back to Hsiang-Szczarba [15], Rochlin [10], and
Kotschick-Mat́ıc [7] (see also T. Lawson [8] and H. Tokui [13]).

Suppose the class a is divisible by some number d, then one can construct the
d-fold branched cover X → M branched along Σ. Under favorable hypotheses,
X will be spin and the covering transformation is a spin action. The signature
and Euler characteristic of X can be computed in terms of Σ · Σ and g(Σ) and
so the bounds of Theorems 1.1 and 1.2 give genus bounds.

The most straightforward implementation of this idea is for double branched
covers and results in Theorem 1.6. We will prove the general result coming from
2p covers in this section.

Proposition 4.1. Let Σ ↪→ M be a smoothly embedded surface of genus g in
a smooth, simply-connected, compact, oriented 4-manifold. Suppose that [Σ] ∈
H2(M) has the property that 2p|[Σ] and [Σ]/2p ≡ w2(M) mod 2.

Then there is a spin 4-manifold X with a spin Z/2p action τ : X → X of
odd type such that X/τ = M . Furthermore, k = −σ(X)/16 and m = b+

2 (X) are
given by :

k =
1
16

(
−2pσ(M) +

4p − 1
3 · 2p

[Σ] · [Σ]
)

,

m = 2pb+
2 (M) + (2p − 1)g − 4p − 1

6 · 2p
[Σ] · [Σ].

Proof. This is in [4]; a sketch of the proof is the following. The condition 2p|[Σ]
allows one to construct the 2p-fold branched cover X → M branched along Σ.
One can compute w2(X) using a formula of Brand [3] and the condition

of [Σ]/2p ≡ w2(M) mod 2 guarantees w2(X) vanishes.
π1(X) is finite (see [10], [7]) so b1(X) = b3(X) = 0 and so m and k can be

determined by e(X) and σ(X) which can be computed by the G-index theorem.
The covering action τ : X → X is automatically spin because H1(X; Z/2) = 0
(see [7]) and the action is of odd type since the fixed point set is two dimensional.

Here is our general genus bound (Theorem 1.6 is a special case):
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Theorem 4.2. Let Σ ↪→ M be a smoothly embedded surface of genus g in a
smooth, simply-connected, compact, oriented 4-manifold. Suppose that [Σ] ∈
H2(M) has the property that 2p|[Σ] and [Σ]/2p ≡ w2(M) mod 2.

Suppose b+
2 (M) > 1 and g �= [Σ]2(1+22i−2p+1)/6−b+

2 (M) for i = 1, . . . , p−1.
Then

g ≥ 1
2p − 1

[
5
4

(
4p − 1
6 · 2p

[Σ]2 − 2p−1σ(M)
)

+ 1 + p − 2p−1b2(M)
]

.(2)

Remark 4.1. The conditions on b+
2 (M) and g are so that the non-degeneracy

conditions of Theorem 1.2 are met. The condition on g is not present for p = 1.
Although it is aesthetically unpleasing to have restrictions on g in the hypothesis,
in practice the conditions are easy to dispense with (see example 4.1 ). Even
without the conditions, one still gets an inequality coming from Furuta’s theorem
that is the same as the bound (2) but without the p term in the brackets. Our
theorem thus improves the Furuta bound by p/(2p − 1). Probably the best
applications occur in the case p = 1 (as in Theorem 1.6 where

we improve the Furuta bound by 1). However, we will give examples where
Theorem 4.2 provides sharp bounds unobtainable from the Furuta bound.

Example 4.1. Let M = #NCP 2 with N > 1 and consider Σ ↪→ M representing
the class (4, . . . , 4). We can apply Theorem 4.2 with p = 2. It tells us

g ≥ 1
3 (8N + 3)

if g �= 3N . When N ≥ 6 the condition on g is no condition and for N = 2, . . . , 5
the theorem gives g ≥ 3N since if g = 3N −1 it would contradict g ≥ 1

3 (8N +3).
Since the connected sum of the algebraic representative in each factor has genus
3N , the theorem gives a sharp bound for N = 2, . . . , 5.

Proof of Theorem 4.2. Let X → M be the 2p-th branched cover and, to match
the notation of Theorem 1.2, let Xi be the 2p−i branched cover. Then X0 = X,
Xp = M and Xi is the quotient of X by Z/2i ⊂ Z/2p. Let mi = b+

2 (Xi) which
is computable by essentially the same formula as in Proposition 4.1

mi = 2p−imp + (2p−i − 1)g − 4p−i − 1
6 · 2p−i

[Σ]2.

Note that m0 ≥ m1 ≥ · · · ≥ mp > 1. The inequality of the theorem is equivalent
to 2k + 1 + p ≤ m0, so the only way the theorem can fail is if 2k + δ = m0 for
δ ∈ {1, . . . , p} and m0−2k = m1 or mi = mi−1 for i = 2, . . . , p. The hypothesis
g �= [Σ]2(1 + 22i−2p+1)/6 − b+

2 (M) is equivalent to mi �= mi+1, so we know that
m1 > m2 > · · · > mp = b+

2 (M). This implies m1 ≥ p − 1 + b+
2 (M), which,

combined with the hypothesis b+
2 (M) > 1, gives m1 > p. Then we see that we

cannot have 2k + δ = m0 and m0 − 2k = m1, since that would imply δ > p.
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4.2. Involutions on rational cohomology K3’s. The proof of Theorem 1.8
follows readily from our main theorems (Theorems 1.2, 1.3, and 1.5). Suppose
X is a rational cohomology K3 so that H∗(X; Q) ∼= H∗(K3; Q) and suppose
τ : X → X is a spin involution.

First suppose that τ is of odd type. Since the inequality of Theorem 1.2
is violated, one of the non-degeneracy conditions must also be violated and so
b+
2 (X/τ) is either 1 or 0. Theorem 1.5 shows that b+

2 (X/τ) is not 0 so it must
be 1. This can easily occur, for example K3 is a double branched cover over
CP 2, S2 ×S2, and E(1) ∼= CP 2#9CP

2
and it has a free involution covering the

Enriques surface.
Now suppose that τ is even so it must violate the non-degeneracy conditions

of Theorem 1.3. In conjunction with Theorem 1.5 we see that b+
2 (X/τ) must be

3. Since the fixed point set is at most points, the G-signature theorem tells us
that

σ(X/τ) = 1
2σ(X) = −8.

If N is then the number of fixed points, then the Lefschetz formula tells us the
Euler characteristic

χ(X/τ) = 1
2 (χ(X) + N) = 12 + N/2.

Since b1(X/τ) = 0 and we know b+
2 (X/τ) = 3, we can solve the above equations

to get b−2 (X/τ) = 11 and N = 8.
It was pointed out to us by P. Kronheimer that this does occur. The con-

struction is as follows. Let Ỹ be the K3 surface. There are 8 disjoint −2 spheres
S1, . . . , S8 such that S =

∑8
i=1 Si is divisible by 2. Let X̃ be the double branched

cover of Ỹ branched along S. The preimage of S in X̃ is then 8 disjoint (−1)
spheres which we can blow down to obtain X, a smooth manifold with an invo-
lution fixing 8 points covering Y , the orbifold obtained by collapsing the Si’s in
Ỹ :

X̃ −−−−→ X� �
Ỹ −−−−→ Y.

We will show that X is a rational cohomology K3 (with a little more work, one
can see that X ∼= K3) and b+

2 (Y ) = 3, so this is the example we seek. From
the signature theorem and Lefschetz formula, we compute that χ(X̃) = 2χ(Ỹ )−
χ(S) = 32 and σ(X̃) = 2σ(Ỹ ) − S2 = 24,so after blowing down χ(X) = 24 and
σ(X) = −16. Since the preimage of S is characteristic in X̃, we know that X is
spin and since b1(X̃) = b1(X) = 0, X is a rational cohomology K3.

Remark 4.2. It is easy to construct a homeomorphism τ : X → X generating
an involution with b+

2 (X/τ) = 2 (for example) but our classification implies this
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will not be smoothable, i.e. there is no smooth structure on X so that this τ is
a diffeomorphism.
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