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THE LONGEST INCREASING SUBSEQUENCE

IN A RANDOM PERMUTATION AND A

UNITARY RANDOM MATRIX MODEL

Kurt Johansson

Abstract. If LN is the expected length of the longest increasing subsequence in

a random permutation, then LN ∼ 2
√

N as N → ∞. We give a new proof of
this result using a connection with a certain unitary random matrix model. The
asymptotic formula is directly related to a third order phase transition in this
model found by Gross and Witten.

1. Preliminaries and main results

Let SN be the group of all permutations of {1, 2, . . . , N}. We take the uniform
distribution on SN as our probability distribution. If π ∈ SN we say that
π(i1), . . . , π(ik) is an increasing subsequence in π if i1 < i2 < · · · < ik and
π(i1) < π(i2) < · · · < π(ik). We are interested in the random variable 	N (π) the
length of the longest increasing subsequence in π. Let FN (n) = P [	N (π) ≤ n] be
its distribution function. For large N the function FN (n) rises sharply from close
to 0 to close to 1 when n ∼ 2

√
N . A consequence of this is that the expectation

LN of 	N (π) is asymptotically 2
√

N . The problem of the asymptotics of LN has
a long history starting with Ulam, [U], [BB] and Hammersley, [Ha], and there are
now several proofs, see [LS], [VK], [AD], [DZ1] and [Se1]. In the present paper
we will show that the sharp transition of FN (n) around n ∼ 2

√
N is associated

with a certain third-order phase transition in a unitary random matrix model
first studied by Gross and Witten, [GW], in connection with the large-N limit of
2-d U(N) lattice gauge theory. This connection is interesting since it connects
the questions about the distribution of 	N (π) with the asymptotic properties of
large random matrices a field which has recently advanced considerably.

The connection is through the following formula of Odlyzko et al, [OPWW],
and Rains, [Ra],

(1.1) FN (n) =
22NN !
(2N)!

J (2N, n),
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where

(1.2)

J (m, n) =
1

(2π)nn!

∫
[−π,π]n

( n∑
j=1

cos θj

)m ∏
1≤j<k≤n

|eiθj − eiθk |2dnθ

=
∫

U(n)

(Tr (
U + U∗

2
))mdU.

Here dU denotes normalized Haar measure on the unitary group. The second
equality in (1.2) follows from Weyls integration formula, [We]. The proof in
[OPWW] starts from Gessel’s generating function for FN (n), [Ge], see below. A
nice derivation, using representation theory, has been given by Rains [Ra].

Clearly

LN =
N∑

n=1

n(FN (n) − FN (n − 1)),

and a summation by parts gives

(1.3) LN =
N−1∑
n=0

(1 − FN (n)).

To simplify the asymptotic analysis we will now assume that N is a Poisson
random variable with mean λ, and consider the expectation (Poissonization)

(1.4) φn(λ) =
∞∑

N=0

e−λλN

N !
FN (n),

where F0(n) ≡ 1. We will show below that FN (n) is decreasing in N for a fixed n,
and hence from asymptotic information about φn(λ) we can extract asymptotic
information about FN (n) (de-Poissonization). Since J (m, n) = 0 if m is odd,
we get

(1.5) φn(λ) =

e−λ 1
(2π)nn!

∫
[−π,π]n

exp(2
√

λ
n∑

j=1

cos θj)
∏

1≤j<k≤n

|eiθj − eiθk |2dnθ

= e−λEn(exp(2
√

λ
n∑

j=1

cos θj)),

by combining (1.1), (1.2) and (1.4). Here En(·) denotes expectation with respect
to the probability density

1
(2π)nn!

∏
1≤j<k≤n

|eiθj − eiθk |2
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on [−π, π]n. This is the probability density for the eigenvalues of a unitary
random matrix taken randomly with respect to normalized Haar measure on
U(n), see [Me]. It is the representation (1.5) that allows us to use random
matrix theory. The expectation in the last expression in (1.5) can also be given
another interpretation. It is equal to the n × n Toeplitz determinant, Dn(f),
with generating function f(θ) = exp(2

√
λ cos θ). Thus

(1.6) φn(λ) = Dn(e2
√

λ cos θ).

Actually in going to formula (1.6) we have gone back to Gessel’s generating func-
tion, see sect. 7 in [Ge] and [GWW]; the elements in the Toeplitz determinant
are lj−k(2

√
λ), where lj is the jth modified Bessel function. This formula is

interesting since it opens the possibility of investigating the asymptotic proper-
ties of FN (n) through asymptotic properties of Toeplitz determinants. It follows
from Szegö’s strong asymptotic formula for Toeplitz determinants, [Sz2], that
φn(λ) → 1 as n → ∞ for λ fixed. In the present case we are interested in the
case when n and

√
λ are of the same order, so we are considering a different

type of asymptotics. From a statistical mechanical point of view we can think
of (1.5) as the partition function of a Coulomb gas of unit charges on the unit
circle with logarithmic repulsion and an external potential 2

√
λ cos θ. Consider

the free energy,

f(γ) = lim
n→∞

1
n2

log En(exp(γn
∑

j

cos θj)),

of this Coulomb gas. We will show below, lemma 2.1, that f(γ) = γ2/4 if
0 ≤ γ ≤ 1 and f(γ) = γ−3/4−(log γ)/2 if γ > 1. Hence d3f/dγ3 is discontinuous
at γ = 1, and we have a third order phase transition, [GW]. For γ < 1 the
asymptotic eigenvalue distribution is supported on the whole unit circle, whereas
for γ > 1 it is supported on a subset of the circle. If we compare with (1.5) we
see that the phase transition occurs when n ∼ 2

√
λ, and the analysis below will

show that this entails that FN (n) rises sharply from 0 to 1 when n ∼ 2
√

N , and
thus, by (1.3), we expect LN/

√
N → 2 as N → ∞. Of course, to make this

rigorous we have to make precise estimates. The main results are

Theorem 1.1. If FN (n) is the distribution of the length of the longest increasing
subsequence in a random permutation from SN , then

(1.7) lim
N→∞

FN (x
√

N) =
{

0 if 0 ≤ x < 2,

1 if x > 2.

We will also give a new proof of

Theorem 1.2. The expected length LN of the longest increasing subsequence in
a random permutation in SN satisfies

(1.8) lim
N→∞

LN√
N

= 2.
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As stated above there are many proofs of this result, see [LS], [VK], [AD] and
[Se1], and the purpose of the present paper is to show that the result can also be
obtained using analytic tools from the theory of random matrices. Since there
has recently been a lot of interest in random martices and many new results,
this opens a new perspective on the problem of understanding the distribution
of 	N (π). The formulas (1.5) and (1.6) make it possible to use tools for asymp-
totic analysis that have been used in connection with random matrix problems.
For example to get the variance of 	N we need precise information about the
behaviour of φn(λ) near the transition point. This is related to the so called
double-scaling limit for the unitary random matrix model, see [PS]. A heuristic
analysis using the free energy, lemma 2.1, shows that φn(λ should, as a function
of n, rise from 0 to 1 in a region of size ∼ N1/6, which leads to var(	N ) ∼ N1/3.
That var(	N ) grows like N1/3 was first conjectured by Odlyzko and Rains about
5 years ago on the basis of Monte Carlo simulations, [Od], see also [Ki] for a
discussion of this conjecture. These Monte Carlo simulations also give more de-
tailed information about the mean and the variance, see [OR]. Work to prove
this rigorously is in progress, [BDJ].

The theorems will be proved in the next section, but we postpone the proofs
of several lemmas to sections 3 and 4. The ideas used in the asymptotic analysis
are closely related to those in [Jo], but a more refined analysis is needed in the
present case.

2. Proof of the main theorems

Put
Gn(γ) = En(exp(γn

∑
j

cos θj)),

for γ ≥ 0, so that

(2.1) φn(λ) = e−λGn(
2
√

λ

n
).

We have

Lemma 2.1. [GW] If fn(γ) = n−2 log Gn(γ), then

lim
n→∞

fn(γ) = f(γ) =
{

γ2/4 if 0 ≤ γ ≤ 1,

γ − 3/4 − (log γ)/2 if γ > 1.

The proof will be given in section 3. Using lemma 2.1 we can prove

Lemma 2.2. Let ε > 0 be given. There are positive constants C, δ, that only
depend on ε, such that if n ≤ (1 + ε)−12

√
λ, then

(2.2) φn(λ) ≤ Ce−δλ.
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Proof. Clearly FN,n is increasing in n, so the same is true for φn(λ) by (1.4).
Hence, if we write n(λ) = [(1 + ε)−12

√
λ], then

(2.3) φn(λ) ≤ φn(λ)(λ) = e−λEn(λ)(exp(
2
√

λ

n(λ)
n(λ)

∑
j

cos θj)).

Now, ∣∣∣∣∣2
√

λ

n(λ)
− (1 + ε)

∣∣∣∣∣ ≤ 2
n(λ)

,

if λ is sufficiently large and ε ≤ 1. Consequently,∣∣∣∣∣∣
2
√

λ

n(λ)
n(λ)

∑
j

cos θj − (1 + ε)n(λ)
∑

j

cos θj

∣∣∣∣∣∣ ≤ 2n(λ) ≤ 4
√

λ,

and the estimate (2.3) yields

(2.4) φn(λ) ≤ exp(−λ + 4
√

λ + n(λ)2fn(λ)(1 + ε)).

Since n(λ)2/λ → 4/(1 + ε)2 as λ → ∞, (2.4) and lemma 2.1 give

lim sup
λ→∞

φn(λ)1/λ ≤ exp(−1 +
4

(1 + ε)2
f(1 + ε)).

Expanding in a Taylor series we see that

−1 +
4

(1 + ε)2
f(1 + ε) = −2

3
ε3 +

11
6

ε4 − . . .

and thus, if 0 < ε < ε0, ε0 sufficiently small, then

lim sup
λ→∞

φn(λ)1/λ ≤ exp(−ε3/3).

It follows that φn(λ) ≤ exp(−ε3λ/4) for all sufficiently large λ, and the lemma
is proved. �

Lemma 2.1 can be interpreted as a large deviation result for the Poissonized
case,

lim
λ→∞

1
λ

log φ[x
√

λ](λ) = −1 + 2x − 3
4
x2 +

x2

2
log

x

2
,

if x < 2. A large deviation result for 	N has recently been proved in [DZ2], see
also [Se2].

The proof of the next lemma is long and occupies a large part of the paper,
so we postpone it to the next two sections.
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Lemma 2.3. Let ε > 0 be given. There is a constant C, which only depends on
ε > 0, such that

(2.5) 0 ≤ 1 − φn(λ) ≤ C

n
,

if n ≥ 2
√

λ
1−ε .

The upper bound in (2.5) is not optimal. The methods of the present paper
can be used to show that 1−φn(λ) ≤ Cd/nd for any fixed d. A more precise large
deviation result has recently been proved in [Se2], see also [DZ2]. Seppäläinen
shows that

lim
λ→∞

1√
λ

(1 − φ[x
√

λ](λ)) = −2x cosh−1(
x

2
) + 2

√
x2 − 4,

if x ≥ 2.
In order to extract asymptotic information about FN (n) from φn(λ) we will

use the fact that FN (n) is decreasing in N for n fixed:

Lemma 2.4. For all n, N ≥ 1,

FN+1(n) ≤ FN (n).

Using this lemma we can show the following “de-Poissonization”-lemma. Both
the lemmas will be proved in section 4.

Lemma 2.5. Write µN = N + 4
√

N log N and νN = N − 4
√

N log N . Then
there is a constant C such that

(2.6) φn(µN ) − C

N2
≤ FN (n) ≤ φn(νN ) +

C

N2
,

for all sufficiently large N , 0 ≤ n ≤ N

We can now give the

Proof of theorem 1.1. Let x < 2. From (2.6) we get

FN ([x
√

N ]) ≤ φ[x
√

N ](νN ) +
C

N2
.

Since [x
√

N ]/
√

νN ≤ 1/(1 + ε), we see from lemma 2.2 that, if we choose ε
sufficiently small and N sufficiently large,

0 ≤ FN ([x
√

N ]) ≤ Ce−δνN +
C

N2
.
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This proves the first half of (1.7). In the case x > 2 the first inequality in (2.6)
gives

(2.7) φ[x
√

N ](µN ) − C

N2
≤ FN ([x

√
N ]) ≤ 1.

We have [x
√

N ]/
√

µN ≥ 1/(1 − ε) if ε is small and N large enough. Thus by
lemma 2.3 and (2.7),

1 − C

[x
√

N ]
− C

N2
≤ FN (n) ≤ 1,

which establishes the second half of theorem 1.1. �

Next we prove theorem 1.2 by using the formula (1.3).

Proof of theorem 1.2. Fix ε > 0. Then, by (2.6) and lemma 2.2, FN (n) ≤ C/N2

if n ≤ (1 + ε)−12
√

N , and by (2.6) and lemma 2.3, 1 − FN (n) ≤ C/N2 + C/n,
if n ≥ 2

√
N/(1 − ε), N sufficiently large. Using (1.3) we thus have

|LN − 2
√

N | ≤ C(ε
√

N + log N + 1),

and the theorem is proved since ε was arbitrary. �

3. Proofs of the asymptotic formulas

Let hn(θ) be a 2π-periodic function, which is C1 and satisfies |h′
n(θ)| ≤ C for

some constant C, n ≥ 1. Let uξ,hn
n (t) be the 1-point function of the probability

density

(3.1)
1

Zn

∏
j �=k

|eiθj − eiθk | exp(ξn
∑

j

cos θj +
∑

j

hn(θj))

on [−π, π]n. Note that

(3.2) u0,0
n (t) =

1
2π

.

Now,

(3.3)
d

dξ
log Gn(ξ) = n2

∫ π

−π

cos t uξ,0
n (t)dt,

so we need to understand the asymptotics of uξ,0
n . Define for |z| < 1,

Un(z) =
∫ π

−π

un(t)
1 − ze−it

dt
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(we suppress the upper indices of un), and

Hn(z) =
∫ π

−π

−ihn(t)un(t)
1 − ze−it

dt.

Let kn(t, s) = nun(t)un(s) − (n − 1)un(t, s), where un(t, s) is the two-point
function of (3.1), and

(3.4) Kn(z) =

n

∫ π

−π

∫ π

−π

(
1

(1 − ze−it)(1 − ze−is)
− 1

(1 − ze−it)2

)
kn(t, s)dtds.

We will show in section 4 that Un satisfies the equation

(3.5) nUn(z)2 − n(
ξ

2
(z − 1

z
) + 1)Un(z) − 1

2
ξncn − ξn

2z
=

1
n

Kn(z) − Hn(z),

where
cn =

∫ π

−π

eitun(t)dt.

Lemma 3.1. Let δ > 0. If |z| ≤ 1 − δ and n ≥ 1, then

|Kn(z)| ≤ 2n

δ2
.

Proof. Let {pn,k(eiθ)}∞k=0 be the sequence of orthonormal polynomials on the
unit circle with respect to the weight wn(θ) = exp(γnn cos θ + hn(θ)). Then,
[Me],

kn(t, s) =
1
n

∣∣∣∣∣
n−1∑
k=0

pn,k(eit)pn,k(eis)

∣∣∣∣∣
2

wn(t)wn(s),

so kn ≥ 0. Also,
∫

kn = 1, so the result follows immediately by estimating the
integral in (3.4). �

The sequence {Un} is a normal family in |z| < 1. If Unj is a convergent
subsequence, then the limit U must satisfy the equation

(3.6) U(z)2 − (
ξ

2
(z − 1

z
) + 1)U(z) − ξ

2
1
z
− ξ

2
c = 0,

where

(3.7) U(z) =
∫ π

−π

dµ(t)
1 − ze−it

,

for some probability measure dµ, which is the weak-∗-limit of unj dt;
c =

∫
[−π,π]

exp(it)dµ(t). This follows from (3.5) by dividing with n, letting
nj → ∞, using |Hn(z)| ≤ C/δ for |z| ≤ 1 − δ and lemma 3.1.
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Lemma 3.2. ([GW]) Suppose that U(z) is given by (3.7) and satisfies the equa-
tion (3.6) with ξ ≥ 0 and c a constant.

(i) If ξ ≤ 1, then U(z) = 1+ξz/2, c = ξ/2 and dµ(t) = (2π)−1(1+ξ cos t)dt.

(ii) If ξ > 1, dµ(t) = π−1ξ cos(t/2)
√

1/ξ − sin2(t/2)χ[−tc,tc](t)dt, where
sin2(tc/2) = 1/ξ, 0 ≤ tc < π and c = 1 − 1/(2ξ).

The proof will be given in section 4. Since the limit U is unique it follows
that Un → U as n → ∞ and

(3.8)
∫ π

−π

cos t uξ,0
n (t)dt → ψ(t) =

{
ξ/2 if 0 ≤ ξ ≤ 1,
1 − 1/(2ξ) if ξ > 1.

(Note that uξ,0
n is an even function.)

We are now ready for the

Proof of lemma 2.1. It follows from (3.3) that f ′
n(ξ) =

∫
[−π,π]

cos t uξ,0
n (t)dt, and

hence |f ′
n(ξ)| ≤ 1. Since f ′

n → ψ as n → ∞ in [0, γ], the dominated convergence
theorem gives

fn(γ) =
∫ γ

0

f ′
n(ξ)dξ →

∫ γ

0

ψ(ξ)dξ = f(γ).

and we are done. �

Next, we give the

Proof of lemma 2.3. Write uξ(t) = (2π)−1(1 + ξ cos t). Then, by (3.3),

(3.9)
d

dξ
log Gn(ξ) = n2

∫ π

−π

cos t(uξ,0
n (t) − uξ(t))dt + n2 ξ

2
.

Put

An(ξ) = n3

∣∣∣∣
∫ π

−π

cos t(uξ,0
n (t) − uξ(t))dt

∣∣∣∣ .

It follows from (3.2) that An(0) = 0. Let ε > 0 be given and pick γ ∈ [0, 1 − ε].
Integration of (3.9) from 0 to γ gives

(3.10) | log Gn(γ) − n2γ2

4
| ≤ 1

n

∫ γ

0

An(ξ)dξ.

From the definition it is clear that An(ξ) is a continuous function on [0, 1 − ε]
and hence

max
0≤ξ≤1−ε

An(ξ) = An(γn)

for some γn ∈ (0, 1 − ε]. We can assume that γn > 0 since An(0) = 0 and
An(ξ) ≥ 0. The inequality (3.10) gives

(3.11) | log Gn(γ) − n2γ2

4
| ≤ 1

n
An(γn),



72 KURT JOHANSSON

if γ ∈ [0, 1 − ε]. Let lim supn→∞ An(γn) = limk→∞ Ank
(γnk

), where we can as-
sume that γnk

→ γ0 ∈ [0, 1− ε], after, perhaps, picking yet another subsequence.
To simplify notation we will write γn instead of γnk

. The key result is the next
lemma which we will prove below.

Lemma 3.3. Let ε > 0 be given. If 0 < γn ≤ 1 − ε and γn → γ0 as n → ∞,
then there is a constant C, which only depends on ε, such that An(γn) ≤ C for
all n ≥ 1.

If we accept lemma 3.3, the inequality (3.11) gives

| log Gn(γ) − n2γ2

4
| ≤ C

n
.

If n ≥ 2
√

λ/(1 − ε), we can take γ = 2
√

λ/n and get

| log Gn(2
√

λ/n) − λ| ≤ C/n,

which, using (2.1), proves lemma 2.3. �

Proof of lemma 3.3. Below hn will be either identically zero, or a certain 2π-
periodic C1-function, (4.3), on R satisfying

(3.12) ||h′
n||∞ ≤ C, n ≥ 1,

for some constant C. Here and in what follows C denotes a constant which only
depends on ε, but which may vary from place to place. Then

(3.13) |Hn(z)| ≤ C

δ
, |z| ≤ 1 − δ.

Observe that Uγn satisfies

(3.14) Uγn(z)2 − (
γn

2
(z − 1

z
) + 1)Uγn(z) − γn

2
1
z
− γ2

n

4
= 0.

Put
Dn(z) = Dγn,hn

n (z) = n(Uγn,hn
n (z) − Uγn(z)).

Taking the difference between the two equations (3.5) and (3.14) we see that Dn

satisfies

(3.15)
1
n2

D2
n − (

γn

2
(z +

1
z
) + 1)

Dn

n
− xn =

1
n2

Kn − 1
n

Hn,

where xn = γn(cn − γn/2)/2. Let zn = −1/γn +
√

1/γ2
n − 1, which is the root

of γn(z + 1/z)/2 + 1 = 0 that lies inside the unit circle. Since 0 < γn ≤ 1− ε for
all n we can choose δ, 0 < δ < 1/4, so that 0 < |zn| < 1 − 2δ for all n ≥ 1.
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Equation (3.15) can be written

(3.16)
1
n

Dn =
xn + Kn/n2 − D2

n/n2 − Hn/n

γn(z + 1/z)/2 + 1
.

Let
Mn = sup

|z|=1−δ

| 1
n

Dn(z)|.

From equation (3.16), lemma 3.1 and inequality (3.13) we find

(3.17) Mn ≤ L(|xn| + 1/n + M2
n),

where the constant L only depends on ε, and we can assume L ≥ 1. We now
claim that there is an n0 ≥ 16L2 such that if n ≥ n0, then

(i) |xn| ≤ 1/16L2,
(ii) |Mn| ≤ 1/16L2.

To see this let
ηn = sup

|z|≤1−δ

| 1
n

Dn(z)|, n ≥ 1,

which gives a bounded sequence. Assume that there is a subsequence ηnk
such

that ηnk
→ η > 0 as nk → ∞. Since {Unk

} is a normal family in the open
unit disk, we can extract a subsequence {Unkj

} which converges uniformly in
|z| ≤ 1− δ. It follows from equation (3.5) and lemma 3.2 that the limit must be
Uγ0(z) = 1 + γ0z/2, and since γn → γ0 it follows that ηnkj

→ 0 as j → ∞, and
we have a contradiction. Hence ηn → 0 as n → ∞ and we can pick n0 so that
|Dγn,hn

n (z)/n| ≤ 1/(16L2) if |z| ≤ 1 − δ and n ≥ n0; n0 can be chosen so that
this hold for both choices of hn. Now,

xn =
γn

4πi

∫
|z|=1−δ

Dn(z)/n

z2
dz,

and thus |xn| ≤ 1/16L2 if n ≥ n0. This proves (i) and (ii).
Using (i) it follows from (3.17) that

Mn ≤ 2L(|xn| + 1/n), n ≥ n0.

Since |zn| < 1 − δ the maximum principle gives |Dn(zn)|/n ≤ 2L(|xn| + 1/n),
and hence taking z = zn in (3.15) we obtain

|xn| ≤ 4L2(|xn| + 1/n)2 + 2/(nδ2) + C/n,

or
|xn|2 − (1/4L2 − 2/n)|xn| + C/n ≥ 0.

Together with the estimate (ii) above this gives |xn| ≤ C/n and thus

(3.18) |Dγn,hn
n (z)| ≤ C,

if |z| ≤ 1 − δ and n ≥ n0.
The inequality (3.18), with hn given by (4.3) below, is the basis for the proof

of the next lemma. We postpone the proof to section 4.
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Lemma 3.4. There is a constant C such that

(3.19) |Kγn,0
n (z)| ≤ C,

for all |z| ≤ 1 − δ and n ≥ n0.

Now, take hn ≡ 0 so that Hn ≡ 0 in (3.15), and put z = zn. The estimates
(3.18) and (3.19) then give |nxn| ≤ C/n, n ≥ n0. Combining this estimate with
equation (3.16), the estimates (3.18), (3.19) and the maximum principle, we get

(3.20) |Dγn,0
n (z)| ≤ C/n,

for all |z| ≤ 1 − δ and n ≥ n0.
To get further we need a better estimate of Kγn,0

n than the one in lemma 3.4,
and below we will prove

Lemma 3.5. There is a constant C such that

(3.21) |Kγn,0
n (z)| ≤ C/n,

for all |z| ≤ 1 − 3δ/2 and n ≥ n0.

We can now repeat the same type of argument one more time. Equation (3.15)
with z = zn together with the estimates (3.20) and (3.21) give |n2xn| ≤ C/n.
The same estimates and equation (3.15) then yield

(3.22) |n2Dγn,0
n (z)| ≤ C, n ≥ n0,

for |z| = 1 − 3δ/2.
Since uγn,0

n (t) is even a straightforward computation shows that

An(γn) =
1

2πi

∫
|z|=1−3δ/2

n2Dn(z)
z2

dz.

Combining this with (3.22), lemma 3.3 follows. �

4. The variational formulas and proofs of some lemmas

Let h and g be two given 2π-periodic, C1-functions. In the integral

Zn =
∫

[−π,π]n

(∑
j

g(θj)
)

e
∑

j �=k log |2 sin
θj−θk

2 |+ξn
∑

j cos θj+
∑

j hn(θj)dnθ,

we make the change of variables θj = xj + εψ(xj), where ψ is a 2π-periodic,
C1-function with ||εψ′||∞ < 1. The obvious equality d

dε log Zn|ε=0 = 0 yields

(4.1) Eγn,hn
n

[(
1
2

∑
j �=k

cot(
xj − xk

2
)(ψ(xj) − ψ(xk))

− ξn
∑

j

ψ(xj) sinxj

∑
j

h′
n(xj)ψ(xj)

+
∑

j

ψ′(xj)
)(∑

�

g(x�)
)

+
∑

�

g′(x�)ψ(x�)
]

= 0.
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In our first application of (4.1) we choose g(θ) = 1/n, and obtain the identity

(4.2)
1
2
n(n − 1)

∫ π

−π

∫ π

−π

cot
t − s

2
(ψ(t) − ψ(s))un(t, s)dtds

− ξ2n2

∫ π

−π

sin t ψ(t)un(t)dt + n

∫ π

−π

h′
n(t)ψ(t)un(t)dt

+ n

∫ π

−π

ψ′(t)un(t)dt = 0,

where un(t, s) is the 2-point function of (3.1). Now, choose ψ(t) = (1− ze−it)−1

in (4.2). This gives equation (3.5) after some algebraic manipulation.
Next, we will give the

Proof of lemma 3.3. Let Ω = {|z| ≤ 1 − δ} × {|w1| ≤ 1} × {|w2| ≤ 1} ⊆ C
3 and

gn(θ; z, w1, w2) = w1

(
eiθ −

∫ π

−π

eituγn(t)dt
)
+ w2

( 1
1 − ze−iθ

−
∫ π

−π

uγn(t)
1 − ze−it

dt
)
.

On Ω we define

Fn(z, w1, w2) = Eγn,0
n (exp(

∑
j

gn(θj ; z, w1, w2))),

where Eγn,0
n (·) denotes expectation wih respect to (3.1) with hn = 0. Below we

omit the superscripts. Then

|Fn(z, w1, w2)| ≤ En(exp(
∑

j

Re gn(θj ; z, w1, w2))).

The right hand side is a continuous function of (z, w1, w2) in Ω, a compact set,
so it assumes its maximum at some point (z(n), w

(n)
1 , w

(n)
2 ). Write

(4.3) hn(θ) = Re gn(θ; z(n), w
(n)
1 , w

(n)
2 ),

and consider
fn(θ) = log En(exp(ξ

∑
j

hn(θj))),

for 0 ≤ ξ ≤ 1. It is easy to see that f ′′
n (ξ) ≥ 0, so f ′

n(ξ) is increasing and
consequently

fn(1) =
∫ 1

0

f ′
n(ξ)dξ ≤ f ′

n(1).

Now,

f ′
n(1) = n

∫ π

−π

hn(t)uγn,hn
n (t)dt

= Re

(
w

(n)
1

1
2πi

∫
|ζ|=1−δ

Dγn,hn
n (ζ)

ζ2
dζ + w

(n)
2 Dγn,hn

n (z(n))

)
,
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so using the inequality (3.18) we obtain

(4.4) |Fn(z, w1, w2)| ≤ C,

for all (z, w1, w2) in Ω and n ≥ n0. Put Gn(w) = Fn(z, 0, w) for a fixed z.
Cauchy’s integral formula gives |G′

n(0)| ≤ 4C and |G′′
n(0)| ≤ 8C, and since

Kγn,0
n (z) = −(G′′

n(0)−G′
n(0)2), we obtain |Kγn,0

n (z)| ≤ 24C2, and the lemma is
proved. �

We will now use equation (4.1) with other choices of of g but with hn = 0.
Write r(z) = 1 + γn(z − 1/z)/2 and choose ψ(t) = (1 − ze−it)−1 in (4.1). This
gives

(4.5) En

[(
−

∑
j,k

1
(1 − ze−ixj )(1 − ze−ixk)

+ nr(z)
∑

j

1
(1 − ze−ixj )

+
γn

2

∑
j

eixj +
γn2

2z

)(∑
j

g(xj)
)
− i

∑
j

g′(x�)
1

(1 − ze−ixj )

]
= 0.

Write F =
∑

j(1 − ze−ixj )−1 and G =
∑

j g(xj). Define

Ln(z; g) = En(FG) − En(F )En(G),

K(2)
n (z) = En(F 2) − En(F )2 and

K(3)
n (z, g) = En(FG2) − En(F 2)En(G) − 2En(F )En(FG) + 2En(F )2En(G).

Note that K
(2)
n (z) = −Kγn,0

n (z). Furthermore, let

µn(g) =
∫ π

−π

g(t)uγn,0
n (t)dt,

and
νn(g) = En((

∑
j

eixj )G).

Equation (4.1) can now be written

− K(3)
n (z, g) − n3[

1
n2

K(2)
n (z) + Un(z)2 − r(z)Un(z)

− γn

2
cn − γn

2z
]µn(g) − γnn3

2
cnµn(g) − n(2Un(z)

− r(z))Ln(z; g) +
γnn

2
νn(g) − in

∫ π

−π

g′(t)un(t)
1 − ze−it

dt = 0.
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Using equation (3.5) this can be simplified to

(4.6) − K(3)
n (z; g) − n[(2Un(z) − r(z))Ln(z; g) − γnn3

2
µn(g)cn

+
γnn

2
νn(g) − in

∫ π

−π

g′(t)un(t)
1 − ze−it

dt = 0.

If we choose g(t) = (1 − ze−it)−1, then µn(g) = Un(z), νn(g) = Ln(z; eit) +
n2Un(z)cn, and Ln(z; g) = K

(2)
n (z). Writing K

(3)
n (z) = K

(3)
n (z; g), the equation

(4.6) gives

(4.7) − K(3)
n (z) − n(2Un(z) − r(z))K(2)

n (z) +
γnn

2
Ln(z; eit)

− nzU ′
n(z) − nz2

2
U ′′

n (z) = 0,

after some simplification. Next, we choose g(t) = eit in (4.6). Then µn(g) = cn

and νn(g) is independent of z. Equation (4.6) becomes

(4.8) −K(3)
n (z; eit) − n(2Un(z) − r(z))Ln(z; eit) + fn + nzUn(z) = 0,

where fn = −γnn3c2
n/2 + γnnνn(eit)/2 + ncn.

Multiply equation (4.7) with 2Un(z) − r(z) and use equation (4.8) to get

(4.9) − (2Un(z) − r(z))K(3)
n (z) +

γn

2
[−K(3)

n (z; eit) + fn + nUn(z)]

− n(2Un(z) − r(z))2K(2)
n (z) − n(zU ′

n(z) +
z2

2
U ′′

n (z))(2Un(z) − r(z)) = 0.

Note that

(4.10)
γnz

2
Uγn(z) − [z(Uγn)′(z) +

z2

2
(Uγn)′′(z)](2Uγn(z) − r(z)) = 0.

Multiply equation (4.10) with n and subtract from equation (4.9). This gives
the following equation

(4.11) − 2
n

Dn(z)K(3)
n (z) − s(z)K(3)

n (z) − n(
2
n

Dn(z) + s(z))2K(2)
n (z)

+
γn

2
K(3)

n (z; eit) +
γn

2
(fn + Dn(z) + zDn(z))

+ (
2
n

Dn(z) + s(z))(zD′
n(z) +

z2

2
D′′

n(z)) = 0,

where s(z) = γn(z + 1/z)/2 + 1. This equation is the basis for the
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Proof of lemma 3.4. We use the same notation as in the proof of lemma 3.3.
Note that

K(3)
n (z) =

∂3Fn

∂w3
2

− 3
∂2Fn

∂w2
2

∂Fn

∂w2
+ 2(

∂Fn

∂w2
)3,

and

K(3)
n (z; eit) =

∂3Fn

∂w2
2∂w1

− ∂2Fn

∂w2
2

∂Fn

∂w1
− 2

∂2Fn

∂w1∂w2

∂Fn

∂w2
+ 2(

∂Fn

∂w2
)2

∂Fn

∂w1
,

where all derivatives are evaluated at the point (z, 0, 0). Cauchy’s integral for-
mula and inequality (4.4) now yield

(4.12) |K(3)
n (z)| ≤ C and |K(3)

n (z; eit)| ≤ C.

If we use (3.20), Cauchy’s integral formula to estimate D′
n and D′′

n, the estimates
(4.12) and take z = zn in (4.11) (s(zn) = 0), we get

(4.13) |γnfn

2
| ≤ C,

if n ≥ n0. Now, use equation (4.11) again with |z| = 1−3δ/2 together with (3.20)
and (4.11) - (4.13) to see that |nK

(2)
n (z)| ≤ C if n ≥ n0 and |z| = 1−3δ/2. Since

Kγn,0
n (z) = −K

(2)
n (z) lemma 3.4 follows using the maximum principle. �

The rest of this section is devoted to the proofs of the lemmas 2.4, 2.5 and
3.2.

Proof of lemma 2.4. Denote a permutation in SN by π(N) and put gn(π(N)) = 1
if π(N) does not have an increasing subsequence of length > n and gn(π(N)) = 0
otherwise. Clearly,

(4.14) FN (n) =
1

N !

∑
π(N)∈SN

gn(π(N)).

Let SN+1(k) denote the set of all π(N+1) such that π(N+1)(1) = k, k = 1, . . . , N+
1. Each SN+1(k) contains N ! elements and we can define a bijection Fk :
SN+1(k) → SN as follows. Let ψk(m) = m if 1 ≤ m ≤ k− 1 and ψk(m) = m− 1
if k + 1 ≤ m ≤ N + 1, so that ψk is an increasing map from {1, 2, . . . , k − 1, k +
1, . . . , N + 1} to {1, . . . , N}. Put

Fk(π(N+1))(m) = ψk(π(N+1)(m + 1)), m = 1, . . . , N,

for π(N+1) ∈ SN+1(k). Clearly, Fk(π(N+1)) maps {1, . . . , N} into itself and,
since ψk is strictly increasing, Fk(π(N+1)) ∈ SN . Also, Fk : SN+1(k) → SN is
a bijection. Note that if Fk(π(N+1)) has an increasing subsequence of length
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> n, then π(N+1) has an increasing subsequence of length > n, because adding
π(N+1)(1) = k in the beginning can only increase the length of the increasing
subsequence; recall that ψk is strictly increasing. Hence

(4.15) gn(Fk(π(N+1))) ≥ gn(π(N+1)).

From (4.15) we get

1
(N + 1)!

∑
π(N+1)∈SN+1

gn(π(N+1)) =
1

(N + 1)!

N+1∑
k=1

∑
π(N+1)∈SN+1(k)

gn(π(N+1))

≤ 1
(N + 1)!

N+1∑
k=1

∑
π(N+1)∈SN+1(k)

gn(Fk(π(N+1)))

=
1

(N + 1)!

N+1∑
k=1

∑
π(N)∈SN

gn(π(N)),

and hence using (4.14) the lemma is proved. �

Proof of lemma 2.5. Write wN (λ) = λNe−λ/N !. By Stirling’s formula we have

wN (λ) ∼ exp(−λ(
N

λ
log

N

λ
+ 1 − N

λ
))

1√
2πN

.

Put f(x) = x log x + 1 − x. Then

wN (λ) ≤ C exp(−λf(N/λ)).

If 0 ≤ x ≤ 2 it is easy to show that f(x) ≥ (x − 1)2/4, and consequently

(4.16) wN (λ) ≤ C exp(−λ

4
(
N

λ
− 1)2),

if 0 ≤ N ≤ 2λ. Also, f(x) ≥ x/10 if x ≥ 2 and hence

wN (λ) ≤ Ce−N/10,

if N ≥ 2λ. The inequality (4.17) gives∑
N≥2λ

wN (λ) ≤ Ce−λ/5.

From (4.16) we get ∑
N≤λ−3

√
λ log λ

wN (λ) ≤ C

λ2
,
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and ∑
λ+3

√
λ log λ≤N≤2λ

wN (λ) ≤ C

λ2
.

Since 0 ≤ FN (n) ≤ 1, we obtain

(4.18)

∣∣∣∣∣∣
∑

|N−λ|≤3
√

λ log λ

wN (λ)FN (n) − φN (λ)

∣∣∣∣∣∣ ≤
C

λ2
,

for λ sufficiently large and 0 ≤ n ≤ N . Now, since FN (n) is decreasing in N ,

(4.19)
∑

|N−λ|≤3
√

λ log λ

wN (λ)FN (n) ≤ Fν(λ)(n),

where ν(λ) = [λ − 3
√

λ log λ], and

(4.20)
∑

|N−λ|≤3
√

λ log λ

wN (λ)FN (n) ≥ Fµ(λ)(n) − C

λ2
,

where µ(λ) = [λ + 3
√

λ log λ]. If we choose λ = µN , then ν(µN ) ≥ N if N is
sufficiently large, and hence combining (4.18), (4.19) and lemma 2.4 we get the
left inequality in (2.6). If we take λ = νN , then µ(νN ) ≤ N , if N is sufficiently
large. Combining (4.18), (4.20) and lemma 2.4 we get the right inequality in
(2.6). The lemma is proved. �

Proof of lemma 3.2. The function U(z) is analytic in C\T, T the unit circle and
solving equation (3.6) we get

(4.21) U(z) =
1
2
[
ξ

2
(z − 1

z
) + 1 +

√
(
ξ

2
(z +

1
z
) + 1)2 + 2ξc − ξ2],

and

U(z) =
∫ π

−π

u(t)
1 − ze−it

dt,

where u(t) is a probability density given by

u(t) = lim
r→1−

1
2π

Re (2U(reit) − 1).

From (4.21) we get

2U(z) − 1 =
ξ

2
(z − 1

z
) +

√
(
ξ

2
(z +

1
z
) + 1)2 − b2,
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where we have written 2ξc − ξ2 = −b2. If we define w = ξ(z + 1/z)/2 + 1, then√
w2 − b2 must be defined so that 2U(z) − 1 is analytic in C \ T. The image of

T under z → w, [1 − ξ, 1 + ξ] must cover the cut [−b, b] in the w-plane, so b is
real ≥ 0 and

(4.22) [−b, b] ⊆ [1 − ξ, 1 + ξ],

unless b = 0. If ξ ≤ 1, then b = 0 and 2U(z) − 1 = 1 + ξz, which gives
u(t) = (1 + ξ cos t)/2π and c = ξ/2. If ξ > 1 the inlusion (4.22) gives the
inequality b ≤ ξ − 1. Assume that b < ξ − 1. Write

√
w2 − b2 =

√
w + b

√
w − b.

Az z → 0 along the real axis, w → +∞ along the real axis, and since 2U(z) − 1
is bounded and ξ(z − 1/z)/2 → −∞, both roots must be real and ≥ 0 when
w > b. Thus we can take the arguments of w − b and w + b between −π and
π. If z = reiθ and 0 ≤ θ ≤ π, then w approaches [1 − ξ, 1 + ξ] from the
lower half-plane as r → 1−. Since b < ξ − 1 we can choose θ0 in [0, π] so that
1 − ξ < 1 + ξ cos θ0 < −b, and we get

√
w2 − b2 → |(1 + ξ cos θ0)2 − b2|(−i)2,

as r → 1−, which gives u(θ0) < 0 This contradiction shows that b = ξ − 1 if
ξ > 1. Thus 2ξc−ξ2 = −(ξ−1)2, which gives c = 1−1/2ξ and a straightforward
computation gives u(θ). �
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