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1. Introduction

Let M be a smooth compact manifold without boundary, dimM = d and let
A and B be pseudodifferential operators (PsDO) acting in the space L2(M) of
half-densities on M . We assume that A is a positive elliptic PsDO of order 1
and that B is a PsDO of order 0. Denote by a(x, ξ) and b(x, ξ), (x, ξ) ∈ T ∗M\0,
the principal symbols of the operators A and B respectively. The spectrum of
A is discrete and therefore its spectral projection Pλ, λ � 0, is an operator of a
finite rank. Let

(1) Va(x, ξ) =
d∑

j=1

∂a

∂ξj

∂

∂xj
− ∂a

∂xj

∂

∂ξj
, (x, ξ) ∈ T ∗M\0,

be the bicharacteristic vector field on T ∗M\0 associated with a. A point (x, ξ) ∈
T ∗M\0 is called periodic with a period t if exp(tVa)(x, ξ) = (x, ξ).

Guillemin and Okikiolu [GO] have recently announced the following result:

Theorem 1. Let a(x, ξ) = a(x,−ξ) and the subprincipal symbol of A is equal
to zero . Suppose that for any t > 0 the set of t-periodic points is of measure
zero with respect to the invariant measure dx dξ on the cotangent bundle T ∗M\0.
Then

(2) Tr(PλBPλ)k = TrPλBkPλ − λd−1(2π)−dγk(A, B) + o(λd−1), k � 2,

where

(3) γk(A, B) =
d

8π

k−1∑
m=1

k

m(k − m)
×

∫
a<1

∫ ∞

−∞

(
bm
t (x, ξ) − bm(x, ξ)

)
(bk−m

t (x, ξ) − bk−m(x, ξ)
)

t2
dt dx dξ,
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and where bt(x, ξ) = (exp(tVa))∗b(x, ξ) = b(exp(tVa)(x, ξ)).

Obviously this result can be reformulated for the trace TrQk(PλBPλ), where
Qk is an arbitrary polynomial of degree k and such that Qk(0) = 0. Moreover,
under certain conditions on the pseudodifferential operator B the paper [GO]
also contains a corresponding asymptotic formula for Tr log(PλBPλ).

The purpose of this paper is to extend Theorem 1 to the case where instead
of Qk (or log) one deals with an arbitrary function ψ ∈ C2(R1).

2. The main result

Let

(4) K := ∪
0�t�1

t σ(B) ⊂ R
1 ,

where σ(B) is the spectrum of the operator B. Clearly, K is a closed bounded
interval. In order to formulate our main result we introduce the transformation

(5) Wψ(t, s) =
∫ t

s

∫ t

s

ψ′(u) − ψ′(v)
u − v

du dv, ψ ∈ C2(K) , t, s ∈ K .

One can easily see that W is a linear continuous map from C2(K) into C1(K×K)
such that |Wψ(t, s)| � ‖ψ′′‖C(K)|t − s|2. The kernel of the map W consists of
the first degree polynomials.

Theorem 2. Let ψ ∈ C2(K) and B be a selfadjoint PsDO of order 0. Then
under the conditions of Theorem 1

(6) TrPλψ(PλBPλ)Pλ = TrPλψ(B)Pλ − λd−1(2π)−dγψ(A, B) + o(λd−1),

where

γψ(A, B) =
d

8π

∫
a<1

∫ ∞

−∞

Wψ (bt(x, ξ), b(x, ξ))
t2

dt dxdξ .

From the properties of the map W it follows that

γψ0(A, B) min
u∈K

ψ′′(u) � γψ(A, B) � γψ0(A, B) max
u∈K

ψ′′(u) ,

where ψ0(u) = u2/2 and

γψ0(A, B) =
d

8π

∫
a<1

∫ ∞

−∞

(
bt(x, ξ) − b(x, ξ)

t

)2

dt dxdξ .

This implies that γψ(A, B) is a linear continuous functional on the space C2(K).
If ψ ∈ C∞(K), then ψ(B) is a PsDO of order 0. Its principal symbol coincides

with ψ (b(x, ξ)), and subprincipal symbol is given by

subψ(B)(x, ξ) = ψ′ (b(x, ξ)) subB(x, ξ).
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By the methods of [DG] one can prove that under the conditions of Theorem 1

(7) TrPλψ(B)Pλ

= (2π)−d

∫
a<1

(
λdψ(b(x, ξ)) + λd−1 subψ(B)(x, ξ)

)
dx dξ + o(λd−1) .

This result can be deduced from (4.2.6) in [SV] in the same way as the two-
term asymptotic formula for the counting function N(λ). It also follows from
Proposition 29.1.2 in [H] (Hörmander’s formula contains an extra term which is,
as was pointed out by D. Vassiliev, actually equal to zero).

Combining Theorem 2 with (7) we obtain

Corollary 3. Let ψ ∈ C∞(R1). Then under the conditions of Theorem 2

(8) TrPλψ(PλBPλ)Pλ = (2π)−d
[
λd

∫
a<1

ψ(b(x, ξ)) dxdξ

− λd−1
(
γψ(A, B) −

∫
a<1

subψ(B)(x, ξ) dxdξ
)]

+ o(λd−1).

3. Auxiliary statements

The proof of Theorem 2 is based on a version of an abstract result obtained
in [LS1] (see also [LS2]). Let B be a bounded selfadjoint operator, P be an
orthogonal projection in a Hilbert space H, and K be the compact set defined by
(4). Denote by S1 and S2 respectively the trace class and the Hilbert-Schmidt
class of operators in H.

Proposition 4. Let PB ∈ S2. Then for any function ψ whose second derivative
lies in L∞(K) we have

Pψ(B)P − Pψ(PBP )P ∈ S1

and

(9)
∣∣∣ Tr

(
Pψ(B)P − Pψ(PBP )P

)∣∣∣ � 1
2
‖ψ′′‖L∞(K)‖PB(I − P )‖2

S2
.

The next statement concerns the map W defined in (5).

Proposition 5. For an arbitrary polynomial

Qk(x) =
k∑

m=0

amxm,

we have

(10) WQk(t, s) =
k∑

m=2

am

m−1∑
n=1

m

n(m − n)
(tn − sn)(tm−n − sm−n).
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Proof. It is sufficient to check (10) for Qk(x) = xk, k � 2. In this case

WQk(t, s) = k

∫ t

s

∫ t

s

uk−1 − vk−1

u − v
du dv

= k

∫ t

s

∫ t

s

(k−1∑
n=1

un−1vk−1−n
)

du dv = k
k−1∑
n=1

1
n(k − n)

(tn − sn)(tk−n − sk−n).

The proof is complete.

4. The proof of Theorem 2

Let {Qj}∞j=1 be a sequence of polynomials approximating ψ in C2(K). Given
ε > 0 we choose k0 such that that ‖ψ −Qk‖C2(K) � ε for all k � k0. Obviously

Tr
(
Pλψ(B)Pλ − Pλψ(PλBPλ)Pλ

)
= T1 + T2,

where

(11) T1(λ, A, B) := Tr
(
PλQk(B)Pλ − PλQk(PλBPλ)Pλ

)

and

T2(λ, A, B) := Tr
(
Pλ(ψ −Qk)(B)Pλ − Pλ(ψ −Qk)(PλBPλ)Pλ

)
.

From Proposition 4 we obtain

|T2(λ, A, B)| � 1
2
‖ψ −Qk‖C2(K)‖PλB(I − Pλ)‖2

S2
� ε

2
‖PλB(I − Pλ)‖2

S2
.

The well known asymptotic properties of the spectrum of the operator A (see
for example [LS2, Section 2]) imply the estimate

‖PλB(I − Pλ)‖2
S2

= O(λd−1)

and, therefore, there exists a constant C independent of ε, such that

lim sup
λ→∞

λ1−d |T2(λ, A, B)| � ε C.

Applying Theorem 1 to the trace (11) and taking into account Proposition 5 we
obtain

lim
λ→∞

λ1−d T1(λ, A, B) = (2π)−dγQk
(A, B)

and thus

(12)
lim sup

λ→∞
|λ1−d Tr

(
Pλψ(B)Pλ − Pλψ(PλBPλ)Pλ

)

− (2π)−dγQk
(A, B)| � ε C .

Since γψ(A, B) is a continuous linear functional on C2(K), (12) implies that

lim sup
λ→∞

|λ1−d Tr
(
Pλψ(B)Pλ − Pλψ(PλBPλ)Pλ

)
− (2π)−dγψ(A, B)| � 2ε C

for sufficiently large k. Since ε can be chosen arbitrarily small, this completes
the proof of Theorem 2.
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