ON CLASSIFICATION OF DYNAMICAL r-MATRICES

OLIVIER SCHIFFMANN

ABSTRACT. Using the gauge transformations of the Classical Dynamical Yang-Baxter Equation introduced by P. Etingof and A. Varchenko in [EV], we reduce the classification of dynamical r-matrices r on a commutative subalgebra $\mathfrak g$ of a Lie algebra $\mathfrak g$ to a purely algebraic problem, under some assumption on the symmetric part of r. We then describe, for a simple complex Lie algebra $\mathfrak g$, all non skew-symmetric dynamical r-matrices on a commutative subalgebra $\mathfrak l \subset \mathfrak g$ which contains a regular semisimple element. This interpolates results of P. Etingof and A. Varchenko ([EV], when $\mathfrak l$ is a Cartan subalgebra) and results of A. Belavin and V. Drinfeld for constant r-matrices ([BD]). This classification is similar, and in some sense simpler than the Belavin-Drinfeld classification.

1. The classical Yang-Baxter equation

Let \mathfrak{g} be a Lie algebra. The CYBE is the following algebraic equation for an element $r \in \mathfrak{g} \otimes \mathfrak{g}$:

(1)
$$[r^{12}, r^{13}] + [r^{12}, r^{23}] + [r^{13}, r^{23}] = 0.$$

Solutions of this equation are called r-matrices. In the theory of quantum groups, one is mainly interested in r-matrices satisfying

$$(2) r + r^{21} \in (S^2 \mathfrak{g})^{\mathfrak{g}}.$$

See [CP] for the links with the theory of quantum groups, and [Che] for links with Conformal Field Theory and the Wess-Zumino-Witten model on \mathbb{P}^1 . The geometric interpretation of the CYBE was given by Drinfeld in terms of Poisson-Lie groups ([Dr1]).

2. The Belavin-Drinfeld classification

Notations. Let \mathfrak{g} be a simple complex Lie algebra with a nondegenerate invariant form $(\,,\,)$, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra and Δ the root system. For $\alpha \in \Delta$, let \mathfrak{g}_{α} denote the root subspace associated to α . Let W be the Weyl group and s_{α} , $\alpha \in \Delta$ the reflection with respect to α^{\perp} . Finally, let $\Omega \in S^2\mathfrak{g}$ and $\Omega_{\mathfrak{h}} \in S^2\mathfrak{h}$ be the inverse elements to the form $(\,,\,)$. Notice that $(S^2\mathfrak{g})^{\mathfrak{g}} = \mathbb{C}\Omega$.

For any polarization $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$, we denote by Π or $\Pi(\mathfrak{n}_+)$ the corresponding set of simple positive roots, by Δ_+ the set of positive roots and by $\mathfrak{b}_{\pm} = \mathfrak{n}_{\pm} \oplus \mathfrak{h}$ the Borel subalgebras. For $\Gamma \subset \Pi$, set $\langle \Gamma \rangle = \mathbb{Z}\Gamma \cap \Delta$, and let \mathfrak{g}_{Γ} be the subalgebra generated by \mathfrak{g}_{α} , $\alpha \in \langle \Gamma \rangle$. We will write $\mathfrak{g}_{\Gamma} = \mathfrak{n}_+(\Gamma) \oplus \mathfrak{h}(\Gamma) \oplus \mathfrak{n}_-(\Gamma)$

Received June 20, 1997.

for the induced polarization and $W(\Gamma)$ for the subgroup of W generated by s_{α} , $\alpha \in \Gamma$. Let us fix a polarization of \mathfrak{g} .

Definition. A Belavin-Drinfeld triple is a triple $(\Gamma_1, \Gamma_2, \tau)$ where $\Gamma_1, \Gamma_2 \subset \Pi$ and $\tau : \Gamma_1 \xrightarrow{\sim} \Gamma_2$ is a norm-preserving bijection satisfying the following "nilpotency" condition:

"For any $\gamma_1 \in \Gamma_1$, there exists n > 0 such that $\tau^n(\gamma_1) \in \Gamma_2 \backslash \Gamma_1$ ".

Let $(\Gamma_1, \Gamma_2, \tau)$ be a Belavin-Drinfeld triple. For each choice of Chevalley generators $(e_{\alpha}, f_{\alpha}, h_{\alpha})_{\alpha \in \Gamma_i}$, i = 1, 2, the isomorphism τ induces a Lie algebra isomorphism $\mathfrak{g}_{\Gamma_1} \stackrel{\sim}{\to} \mathfrak{g}_{\Gamma_2}$ (by $e_{\alpha} \mapsto e_{\tau(\alpha)}$, $f_{\alpha} \mapsto f_{\tau(\alpha)}$, $h_{\alpha} \mapsto h_{\tau(\alpha)}$). Define a partial order on Δ_+ by setting $\alpha < \beta$ if there exists n > 0 such that $\tau^n(\alpha) = \beta$ (in particular, $\alpha \in \Gamma_1$ and $\beta \in \Gamma_2$).

Definition. A basis $(x_{\alpha})_{\alpha \in \Delta}$ of $\mathfrak{n}_+ \oplus \mathfrak{n}_-$ is called *admissible* if $(x_{\alpha}, x_{-\alpha}) = 1$ and $\tau(x_{\alpha}) = x_{\tau(\alpha)}$ for $\alpha \in \langle \Gamma_1 \rangle$.

Theorem 1 (Belavin-Drinfeld). Let \mathfrak{g} be a simple complex Lie algebra. 1. Let $(\Gamma_1, \Gamma_2, \tau)$ be a Belavin-Drinfeld triple, (x_α) an admissible basis, and let $r_0 \in \mathfrak{h} \otimes \mathfrak{h}$ be such that

$$(3) r_0 + r_0^{21} = \Omega_{\mathfrak{h}},$$

(4)
$$(\tau(\alpha) \otimes 1)r + (1 \otimes \alpha)r = 0 for \alpha \in \Gamma_1.$$

Then

(5)
$$r = r_0 + \sum_{\alpha \in \Delta_+} x_{-\alpha} \otimes x_{\alpha} + \sum_{\alpha, \beta \in \Delta_+, \alpha < \beta} x_{-\alpha} \wedge x_{\beta}$$

is an r-matrix satisfying $r + r^{21} = \Omega$.

2. Any r-matrix satisfying $r + r^{21} = \Omega$ is of the above type for a suitable polarization of \mathfrak{g} .

This theorem is proved in [BD]. For instance, the standard r-matrix for a fixed polarization $r = \frac{\Omega_{\mathfrak{h}}}{2} + \sum_{\alpha \in \Delta_{+}} x_{-\alpha} \otimes x_{\alpha}$ corresponds to $\Gamma_{1} = \Gamma_{2} = \emptyset$.

Remark. Skew-symmetric r-matrices admit a well known interpretation in terms of nondegenerate 2-cocycles on Lie subalgebras of \mathfrak{g} ([Dr1]), but their classification is unavailable since it requires a classification of Lie subalgebras in \mathfrak{g} .

3. The dynamical Yang-Baxter equation

Let $\mathfrak g$ be a Lie algebra over $\mathbb C$ and $\mathfrak l\subset \mathfrak g$ a subalgebra. An element $x\in \mathfrak g\otimes \mathfrak g$ will be called $\mathfrak l$ -invariant if

$$[k \otimes 1 + 1 \otimes k, x] = 0 \qquad (\forall k \in \mathfrak{l}).$$

For $x \in \mathfrak{g}^{\otimes 3}$, we let $\mathrm{Alt}(x) = x^{123} + x^{231} + x^{312}$. Let $D \subset \mathfrak{l}^*$ be any open region. The CDYBE is the following differential equation for a holomorphic \mathfrak{l} -invariant function $r: D \to \mathfrak{g} \otimes \mathfrak{g}$:

(7)
$$\operatorname{Alt}(dr) + [r^{12}, r^{13}] + [r^{12}, r^{23}] + [r^{13}, r^{23}] = 0,$$

where the differential of r is considered as a holomorphic function

$$dr: D \to \mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}, \qquad \lambda \mapsto \sum_{i} x_{i} \otimes \frac{\partial r^{23}}{\partial x_{i}}(\lambda), \qquad (\lambda \in \mathfrak{l}^{*}),$$

for any basis (x_i) of \mathfrak{l} . In this case,

$$Alt(dr) = \sum_{i} x_{i}^{(1)} \frac{\partial r^{23}}{\partial x_{i}} + \sum_{i} x_{i}^{(2)} \frac{\partial r^{31}}{\partial x_{i}} + \sum_{i} x_{i}^{(3)} \frac{\partial r^{12}}{\partial x_{i}}.$$

The solutions to this equation are called *dynamical* r-matrices. Dynamical r-matrices which are relevant to the theory of quantum groups are those satisfying the following condition, analogous to (2):

(8) Generalized unitarity:
$$r(\lambda) + r^{21}(\lambda) \in (S^2\mathfrak{g})^{\mathfrak{g}}$$
.

Remark. The CDYBE was first written down by G. Felder and C. Wiezcerkowski in connection with the Wess-Zumino-Witten model on elliptic curves ([FW]). The relation with elliptic quantum groups is explained in [Fe]. A geometric interpretation of the CDYBE analogous to the theory of Poisson-Lie groups for the CYBE is given in [EV].

4. Gauge transformations

We recall some results from [EV]. We suppose here that \mathfrak{l} is commutative and we let D be the formal polydisc centered at the origin. Let G be a complex Lie group such that $\text{Lie}(G) = \mathfrak{g}$, and let L be the connected subgroup of G such that $\text{Lie}(L) = \mathfrak{l}$. Let G^L be the centralizer of L in G and $\mathfrak{g}^{\mathfrak{l}}$ its Lie algebra. We will denote by $(\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{l}}$ the space of all \mathfrak{l} -invariant elements in $\mathfrak{g} \otimes \mathfrak{g}$.

Let $g: D \to G^L$ be any holomorphic function; the 1-form $\eta = g^{-1}dg$ gives rise to a function $\overline{\eta}: D \to \mathfrak{l} \otimes \mathfrak{g}^{\mathfrak{l}}$. If $r: D \to (\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{l}}$ is an \mathfrak{l} -invariant function satisfying (8), we set

$$r^g = (g \otimes g)(r - \overline{\eta} + \overline{\eta}^{21})(g^{-1} \otimes g^{-1}).$$

Proposition 1. The function r is a dynamical r-matrix if and only if the function r^g is.

Thus the group $\operatorname{Map}(D, G^L)$ is a gauge transformation group for the CDYBE. Notice that this group is not commutative if G^L isn't.

Theorem 2. Let $\rho, r: D \to \mathfrak{g}^{\otimes 2}$ be two dynamical r-matrices satisfying (8) such that $r(0) = \rho(0)$. There exists $g \in \operatorname{Map}(D, G^L)$ such that $\rho = r^g$.

This shows that the space of dynamical r-matrices is, up to gauge equivalence, finite dimensional. Proofs of the above results can be found in [EV].

We will now prove a converse of Theorem 2 which reduces the CDYBE to a purely algebraic equation under some assumption on the symmetric part $\frac{\Omega}{2}$ of r: let $\Omega \in (S^2\mathfrak{g})^{\mathfrak{g}}$, let \mathfrak{g}_{Ω} be the ideal in \mathfrak{g} generated by the components of Ω and denote by $\mathfrak{g}_{\Omega} = \bigoplus_{\lambda} \mathfrak{g}_{\Omega}(\lambda)$ the generalized weight space decomposition of \mathfrak{g}_{Ω} with respect to the adjoint action of \mathfrak{l} . The condition we will need is the following:

(*)
$$\mathfrak{g}^{\mathfrak{l}}$$
 acts semisimply on $\mathfrak{g}_{\Omega}(0)$.

Suppose that (*) is fulfilled and let $z(\mathfrak{g}^{\mathfrak{l}})$ denote the center of $\mathfrak{g}^{\mathfrak{l}}$. Then we have a decomposition $\mathfrak{g}_{\Omega}(0) = z_{0}(\mathfrak{g}^{\mathfrak{l}}) \oplus V$ where $z_{0}(\mathfrak{g}^{\mathfrak{l}}) = z(\mathfrak{g}^{\mathfrak{l}}) \cap \mathfrak{g}_{\Omega}(0)$ and V is the sum of all non-trivial irreducible $\mathfrak{g}^{\mathfrak{l}}$ -modules in $\mathfrak{g}_{\Omega}(0)$. It is clear that $\mathfrak{l} \cap V = \{0\}$. We will say that a complement \mathfrak{l}' of \mathfrak{l} in \mathfrak{g} is admissible if $V \subset \mathfrak{l}'$, and write $\pi : \mathfrak{g} \to \mathfrak{l}$ for the projection along \mathfrak{l}' . Notice that by $\mathfrak{g}^{\mathfrak{l}}$ -invariance of Ω ,

(9)
$$\Omega \in S^2 z_0(\mathfrak{g}^{\mathfrak{l}}) \oplus S^2 V \oplus \bigoplus_{\lambda \neq 0} \mathfrak{g}_{\Omega}(\lambda) \otimes \mathfrak{g}_{\Omega}(-\lambda).$$

We will denote by $CYB: \mathfrak{g}^{\otimes 2} \to \mathfrak{g}^{\otimes 3}$ the map:

$$r \mapsto [r^{12}, r^{13}] + [r^{12}, r^{23}] + [r^{13}, r^{23}].$$

It is more convenient to work with the skew-symmetric part of r. If $r(\lambda) + r^{21}(\lambda) = \Omega \in (S^2(\mathfrak{g}))^{\mathfrak{g}}$, we set $s(\lambda) = r(\lambda) - \frac{\Omega}{2}$. It is easy to see that the CDYBE for r is equivalent to the following equation for s:

(10)
$$\operatorname{Alt}(ds) + CYB(s) + \frac{1}{4}CYB(\Omega) = 0.$$

Recall that as Ω is symmetric and invariant, $CYB(\Omega) = [\Omega_{13}, \Omega_{23}].$

Theorem 3. Let G be a complex Lie group and $L \subset G$ a connected commutative subgroup. Let $\mathfrak{g}, \mathfrak{l}, \mathfrak{g}^{\mathfrak{l}}$ denote the Lie algebras of G, L and G^{L} . Let $\Omega \in (S^{2}\mathfrak{g})^{\mathfrak{g}}$. Then

- 1. Let \mathfrak{l}' be any complement of \mathfrak{l} in \mathfrak{g} . Any dynamical r-matrix $r(\lambda)$ on \mathfrak{l} such that $r(\lambda) + r^{21}(\lambda) = \Omega$ is gauge equivalent to a dynamical r-matrix $\tilde{r}(\lambda)$ such that $\tilde{r}(0) \in \frac{\Omega}{2} + (\Lambda^2(\mathfrak{l}'))^{\mathfrak{l}}$.
- 2. Suppose that condition (*) is true and let l' be any admissible complement of l in \mathfrak{g} . Let $r_0 \in \frac{\Omega}{2} + (\Lambda^2(l'))^l$ satisfy

(11)
$$CYB(r_0) \in Alt(\mathfrak{l} \otimes \mathfrak{g} \otimes \mathfrak{g}),$$

such that $s_0 = r_0 - \frac{\Omega}{2}$ is a regular point of the algebraic manifold

$$M_{\Omega} = \{ s \in (\Lambda^{2}(\mathfrak{l}'))^{\mathfrak{l}} \mid CYB(s + \frac{\Omega}{2}) \in Alt(\mathfrak{l} \otimes \mathfrak{g} \otimes \mathfrak{g}) \}.$$

Then there exists a dynamical r-matrix $r(\lambda): D \to \frac{\Omega}{2} + (\Lambda^2(\mathfrak{l}'))^{\mathfrak{l}}$ such that $r(0) = r_0$.

The condition (*) is satisfied in the following two interesting special cases: when $\Omega = 0$ (triangular case) or when $\mathfrak{g}^{\mathfrak{l}}$ acts semisimply on \mathfrak{g} (for instance, G is reductive and L is contained in a maximal torus of G or more generally, if G^{L} is reductive).

The proof of this theorem will occupy the rest of this section. Let us first prove part 1:

Lemma 1. Any dynamical r-matrix such that $r(\lambda) + r^{21}(\lambda) = \Omega$ is gauge-equivalent to a dynamical r-matrix $\tilde{r}(\lambda)$ such that $\tilde{r}(0) \in \frac{\Omega}{2} + (\Lambda^2(\mathfrak{l}')^{\mathfrak{l}})$.

Proof. Let $\overline{\eta} \in \mathfrak{l} \otimes \mathfrak{g}^{\mathfrak{l}}$ be such that $r(0) - \overline{\eta} + \overline{\eta}^{21} \in \frac{\Omega}{2} + \Lambda^{2}(\mathfrak{l}')$. There exists a function $g: D \to G^{L}$ such that $g^{-1}dg(0) = \eta$ (see [EV], Lemma 1.3). It is easy to see that $\tilde{r} = r^{g}$ satisfies the desired conditions.

Let us now prove part 2. We will interpret the CDYBE (10) as a consistent system of differential equations defined on M_{Ω} .

For $s \in M_{\Omega}$, (10) is equivalent to

$$(\pi \otimes 1 \otimes 1) \operatorname{Alt}(ds) = -(\pi \otimes 1 \otimes 1)(CYB(s) + \frac{1}{4}CYB(\Omega)).$$

This reduces to

(12)
$$ds = -(\pi \otimes 1 \otimes 1)([s^{12}, s^{13}] + \frac{1}{4}CYB(\Omega)),$$

or, in coordinates (x_i) , where (x_i) is a basis of \mathfrak{l} ,

$$\frac{\partial s}{\partial x_i} = -(x_i \otimes 1 \otimes 1)([s^{12}, s^{13}] + \frac{1}{4}CYB(\Omega)).$$

Lemma 2. The system (12) is consistent.

Proof. Set $X: M_{\Omega} \to \mathfrak{l} \otimes \mathfrak{g} \otimes \mathfrak{g}$, $s \mapsto (\pi \otimes 1 \otimes 1)([s^{12}, s^{13}] + \frac{1}{4}CYB(\Omega))$. By definition, the curvature of (12) is given by

$$\sum_{i,j} x_i \otimes x_j \otimes \left(\frac{\partial^2 s}{\partial x_i \partial x_j} - \frac{\partial^2 s}{\partial x_j \partial x_i}\right)$$

$$= (\pi \otimes \pi \otimes 1 \otimes 1) \left(\left\{\left[s^{23}, \left[s^{12}, s^{14}\right]\right] + \left[s^{23}, \frac{1}{4}CYB(\Omega)^{124}\right]\right.\right.$$

$$+ \left[\left[s^{12}, s^{13}\right], s^{24}\right] + \left[\frac{1}{4}CYB(\Omega)^{123}, s^{24}\right]\right\}$$

$$- \left\{\left[s^{13}, \left[s^{21}, s^{24}\right]\right] + \left[s^{13}, \frac{1}{4}CYB(\Omega)^{214}\right]\right.$$

$$+ \left[\left[s^{21}, s^{23}\right], s^{14}\right] + \left[\frac{1}{4}CYB(\Omega)^{213}, s^{14}\right]\right\}$$

$$= (\pi \otimes \pi \otimes 1 \otimes 1) \left(\left\{\left[s^{23}, \left[s^{12}, s^{14}\right]\right]\right.\right.$$

$$+ \left[\left[s^{12}, s^{13}\right], s^{24}\right] - \left[s^{13}, \left[s^{21}, s^{24}\right]\right] - \left[\left[s^{21}, s^{23}\right], s^{14}\right]\right\}$$

$$+ \frac{1}{4} \left\{\left[s^{13} + s^{23}, CYB(\Omega)^{124}\right] - \left[s^{14} + s^{24}, CYB(\Omega)^{123}\right]\right\}\right).$$

By the Jacobi identity,

$$[s^{23}, [s^{12}, s^{14}]] = [[s^{21}, s^{23}], s^{14}], \qquad [[s^{12}, s^{13}], s^{24}] = [s^{13}, [s^{21}, s^{24}]].$$

By \mathfrak{g} -invariance of $CYB(\Omega)$, we have

$$[s^{13} + s^{23}, CYB(\Omega)^{124}] = [s^{34}, CYB(\Omega)^{124}],$$

$$[s^{14} + s^{24}, CYB(\Omega)^{123}] = -[s^{34}, CYB(\Omega)^{123}].$$

Overall, we have the following expression for the curvature of (12):

$$\frac{1}{4}(\pi\otimes\pi\otimes 1\otimes 1)([CYB(\Omega)^{123}+CYB(\Omega)^{124},s^{34}]=\frac{1}{4}[(\pi\otimes\pi\otimes 1)CYB(\Omega),s]$$

But (9) and the fact that \mathfrak{l}' is admissible imply that $(\pi \otimes \pi \otimes 1)CYB(\Omega) = 0$. Thus, (12) is consistent.

Lemma 3. The system (12) is defined on M_{Ω} , i.e the vector fields defined by (12) are tangent to M_{Ω} .

Proof. Let $x^* \in \mathfrak{l}^* \stackrel{\pi^*}{\hookrightarrow} \mathfrak{g}^*$, and set $h = (x^* \otimes 1 \otimes 1)([s^{12}, s^{13}] + \frac{1}{4}CYB(\Omega))$. Since $s \in \Lambda^2(\mathfrak{l}')$ we have $(x^* \otimes 1 \otimes 1)[s^{12}, s^{13}] \in \Lambda^2(\mathfrak{l}')$. Moreover, the admissibility of \mathfrak{l}' and (9) together imply that $(x^* \otimes 1 \otimes 1)(CYB(\Omega)) \in (\Lambda^2\mathfrak{l}')^{\mathfrak{l}}$ since $[\mathfrak{l} \otimes 1, S^2z_0(\mathfrak{g}^{\mathfrak{l}})] = 0$. Thus $h \in \Lambda^2\mathfrak{l}'$.

To conclude the proof of Lemma 3 and Theorem 3, we now show that

(13)
$$[s^{12}, h^{13}] + [s^{12}, h^{23}] + [s^{13}, h^{23}] + [h^{12}, s^{13}] + [h^{12}, s^{23}] + [h^{13}, s^{23}] \in Alt(\mathfrak{l} \otimes \mathfrak{g} \otimes \mathfrak{g}).$$

To make the presentation more clear, we will use the pictorial technique to represent expressions and make computations: we associate to each morphism from a n-tensor to a m-tensor a diagram in the following way: the operation of taking the commutator is represented by

Applying a linear form x^* will be denoted by

$$\mathbf{a} \longrightarrow \mathbf{x}^* \quad \mathbf{x}^* \quad \mathbf{x}$$

Finally, we will represent s and $\frac{\Omega}{2}$, which can be thought of as maps from a 0-tensor to a 2-tensor, by

$$=$$
 $\frac{\Omega}{2}$ $=$

For instance,

Lemma 4. We have $x^{*(3)}[CYB(s+\frac{\Omega}{2})^{123}, s^{34}] \in Alt(\mathfrak{l} \otimes \mathfrak{g} \otimes \mathfrak{g})$ or, in pictures $(modulo\ Alt(\mathfrak{l} \otimes \mathfrak{g} \otimes \mathfrak{g}))$

$$x^*$$
 + x^* + x^* = 0

Proof. Recall that $CYB(s+\frac{\Omega}{2}) \in Alt(\mathfrak{l} \otimes \mathfrak{g} \otimes \mathfrak{g})$. Thus the only part of the above expression which can lie outside of $Alt(\mathfrak{l} \otimes \mathfrak{g} \otimes \mathfrak{g})$ is obtained from the $\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{l}$ -part of CYB(s). But if $y \in \mathfrak{l}$,

$$(x^* \otimes 1)[y \otimes 1, s] = -(x^* \otimes 1)[1 \otimes y, s]$$

by \mathfrak{l} -invariance of s. This last expression is zero since $s \in (\Lambda^2(\mathfrak{l}'))^{\mathfrak{l}}$. Lemma 4 is proved.

It is clear how to generalize Lemma 4 to other expressions of the form

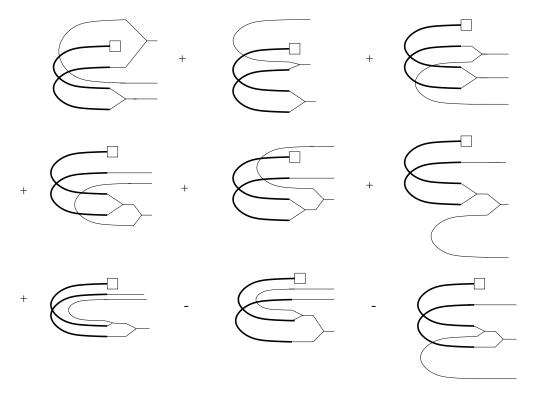
$$x^{*(k)}[CYB(s+\frac{\Omega}{2})^{123},s^{k4}].$$

Now, (13) can be drawn as

but by Lemma (4) we have, modulo $Alt(\mathfrak{l} \otimes \mathfrak{g} \otimes \mathfrak{g})$,

It is easy to check that the sum of the terms of type [CYB(s), s] in this last expression is zero by the Jacobi identity. Moreover, by \mathfrak{g} -invariance of Ω , we have

Thus, modulo $Alt(\mathfrak{l} \otimes \mathfrak{g} \otimes \mathfrak{g})$, (13) reduces to



The sums of terms in each column is zero by Jacobi Identity. This concludes the proof of Theorem 3.

5. Classification of dynamical r-matrices

Let \mathfrak{g} be a simple Lie algebra and let $\Omega \in (S^2\mathfrak{g})^{\mathfrak{g}}$ be the Casimir element. In that case, (8) becomes

(14)
$$r(\lambda) + r^{21}(\lambda) = \epsilon \Omega.$$

We will classify all solutions of equations (6,7,14) when $\epsilon \neq 0$ and when \mathfrak{l} contains a semisimple regular element. In particular, in this case, the centralizer \mathfrak{h} of \mathfrak{l} is the unique Cartan subalgebra containing \mathfrak{l} . Notice that we can assume that $\epsilon = 1$ (since the assignment $r(\lambda) \to \epsilon r(\epsilon \lambda)$ is a gauge transformation of (7)). We can also assume that the restriction of $(\ ,\)$ to \mathfrak{l} is nondegenerate. Indeed, for any dynamical r-matrix, we can replace \mathfrak{l} by the largest subspace of \mathfrak{h} for which r is invariant, and such a subspace is real. Let \mathfrak{h}_0 be the orthogonal complement of \mathfrak{l} in \mathfrak{h} and let $i:\mathfrak{l} \hookrightarrow \mathfrak{h}$ be the inclusion map. We will also write $(\ ,\)$ for the induced bracket on \mathfrak{l}^* . Let $\Omega_{\mathfrak{h}_0}$ denote the Casimir element of the restriction of $(\ ,\)$ to \mathfrak{h}_0 .

5.1. Statement of the theorem. Let $\mathfrak{g} = \mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-$ be a polarization of \mathfrak{g} .

Definition. A generalized Belavin-Drinfeld triple is a triple $(\Gamma_1, \Gamma_2, \tau)$ where $\Gamma_1, \Gamma_2 \subset \Pi$, and $\tau : \Gamma_1 \xrightarrow{\sim} \Gamma_2$ is a norm-preserving bijection.

In other terms, in a generalized Belavin-Drinfeld triple, we drop the nilpotency condition. We will say that a generalized Belavin-Drinfeld triple is \mathfrak{l} -graded if τ preserves the decomposition of \mathfrak{g} in \mathfrak{l} -weight spaces. If $(\Gamma_1, \Gamma_2, \tau)$ is a generalized Belavin-Drinfeld triple, we will denote by Γ_3 the largest subset of $\Gamma_1 \cap \Gamma_2$ which is stable under τ , and $\tilde{\Gamma}_1 = \Gamma_1 \backslash \Gamma_3$, $\tilde{\Gamma}_2 = \Gamma_2 \backslash \Gamma_3$. It is clear that $(\tilde{\Gamma}_1, \tilde{\Gamma}_2, \tau)$ is a Belavin-Drinfeld triple. As before, for each choice of Chevalley generators $(e_{\alpha}, f_{\alpha}, h_{\alpha})_{\alpha \in \Gamma_i}$, the map τ induces isomorphisms $\mathfrak{g}_{\tilde{\Gamma}_1} \to \mathfrak{g}_{\tilde{\Gamma}_2}$ and $\tau : \mathfrak{g}_{\Gamma_3} \to \mathfrak{g}_{\Gamma_3}$. For $\lambda \in \mathfrak{l}^*$, consider the map:

$$\begin{split} K(\lambda) : \mathfrak{n}_+(\Gamma_1) &\to \mathfrak{n}_+(\Gamma_2) \\ e_\alpha &\mapsto \frac{1}{2} e_\alpha + e^{-(\alpha,\lambda)} \frac{\tau}{1 - e^{-(\alpha,\lambda)}\tau}(e_\alpha). \end{split}$$

Notice that we have

$$K(\lambda)(e_{\alpha}) = \frac{1}{2}e_{\alpha} + \sum_{n>0} e^{-n(\alpha,\lambda)} \tau^{n}(e_{\alpha}).$$

This sum is finite for $\alpha \notin \langle \Gamma_3 \rangle$.

Theorem 4. Let \mathfrak{g} be a simple Lie algebra with nondegenerate invariant bilinear form $(\,,\,)$, $\mathfrak{l} \subset \mathfrak{g}$ a commutative subalgebra containing a regular semisimple element on which $(\,,\,)$ is nondegenerate, \mathfrak{h} the Cartan subalgebra containing \mathfrak{l} and \mathfrak{h}_0 the orthogonal complement of \mathfrak{l} in \mathfrak{h} . Then

1. Any dynamical r-matrix is gauge-equivalent to a dynamical r-matrix \tilde{r} such that

(15)
$$\tilde{r}(\lambda) - \tilde{r}(\lambda)^{21} \in (\mathfrak{l}^{\perp})^{\otimes 2} = (\bigoplus_{\alpha \neq 0} \mathfrak{g}_{\alpha} \oplus \mathfrak{h}_{0})^{\otimes 2}.$$

2. Let $(\Gamma_1, \Gamma_2, \tau)$ be an \mathfrak{l} -graded generalized Belavin-Drinfeld triple and let $(e_{\alpha}, f_{\alpha}, h_{\alpha})_{\Gamma_i}$ be a choice of Chevalley generators. Let $r_{\mathfrak{h}_0, \mathfrak{h}_0} \in \mathfrak{h}_0 \otimes \mathfrak{h}_0$ satisfy the equation

(16)
$$(\tau(\alpha) \otimes 1) r_{\mathfrak{h}_0,\mathfrak{h}_0} + (1 \otimes \alpha) r_{\mathfrak{h}_0,\mathfrak{h}_0} = \frac{1}{2} ((\alpha + \tau(\alpha)) \otimes 1) \Omega_{\mathfrak{h}_0}.$$

Then

$$r(\lambda) = \frac{1}{2}\Omega + r_{\mathfrak{h}_0,\mathfrak{h}_0} + \sum_{\alpha \in \langle \Gamma_1 \rangle \cap \Delta_+} K(\lambda)(e_\alpha) \wedge e_{-\alpha} + \sum_{\alpha \in \Delta_+,\, \alpha \not\in \langle \Gamma_1 \rangle} \frac{1}{2} e_\alpha \wedge e_{-\alpha}$$

is a solution the CDYBE satisfying (15).

3. Any solution of the CDYBE satisfying (15) is of the above type for a suitable polarization of \mathfrak{g} .

The proof of this theorem will occupy the rest of this section. Our methods are greatly inspired by the paper [BD]. Notice that 1. follows from Theorem 3, but we will describe the gauge transformations explicitly in this case.

Notations. Let $\Delta \subset \mathfrak{h}^*$ be the root system of \mathfrak{g} with respect to \mathfrak{h} and set $\Delta_{\mathfrak{l}} = i^*(\Delta) \subset \mathfrak{l}^*$. We will denote by $\mathfrak{g}_{\bar{\alpha}}$ the weight subspace associated to $\bar{\alpha} = i^*(\alpha) \in \Delta_{\mathfrak{l}}$, and we set $\mathfrak{g}_{\overline{0}} = \mathfrak{h}_0$. It is clear that

$$\mathfrak{g}_{\overline{\alpha}} = \bigoplus_{eta \in \Delta, \ i^*(eta) = \overline{\alpha}} \mathfrak{g}_{eta}$$

In particular, (,) is a pairing $\mathfrak{g}_{\overline{\alpha}} \times \mathfrak{g}_{-\overline{\alpha}} \to \mathbb{C}$.

A vector space $V \subset \mathfrak{g}$ will be called \mathfrak{h} -graded (resp. \mathfrak{l} -graded) if it is an \mathfrak{h} -submodule (resp. \mathfrak{l} -submodule) of \mathfrak{g} . Finally, let $\Omega' \in (\mathfrak{l}^{\perp})^{\otimes 2}$ denote the Casimir (inverse element) of the restriction of (,) to $\mathfrak{l}^{\perp} = \mathfrak{h}_0 \bigoplus \mathfrak{g}_{\overline{\alpha}}$.

Now let $r: \mathfrak{l}^* \supset D \to (\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{l}}$ be a formal power series satisfying (14) (with $\epsilon = 1$). By (6), we can write

(17)
$$r(\lambda) = \frac{1}{2}\Omega + r_{\mathfrak{l},\mathfrak{l}}(\lambda) + r_{\mathfrak{l},\mathfrak{h}_0}(\lambda) + r_{\mathfrak{h}_0,\mathfrak{l}}(\lambda) + (\varphi(\lambda) \otimes 1)\Omega',$$

where $r_{\mathfrak{l},\mathfrak{l}}(\lambda) \in \mathfrak{l} \otimes \mathfrak{l}$, $r_{\mathfrak{l},\mathfrak{h}_0}(\lambda) \in \mathfrak{l} \otimes \mathfrak{h}_0$, $r_{\mathfrak{h}_0,\mathfrak{l}}(\lambda) \in \mathfrak{h}_0 \otimes \mathfrak{l}$ and where $\varphi(\lambda) \in \operatorname{End}\left(\mathfrak{h}_0 \bigoplus \mathfrak{g}_{\overline{\alpha}}\right)$ is a sum of maps $\varphi_{\overline{\alpha}}(\lambda) \in \operatorname{End}\left(\mathfrak{g}_{\overline{\alpha}}\right)$. By the unitarity condition, $r_{\mathfrak{l},\mathfrak{l}}(\lambda) \in \Lambda^2\mathfrak{l}$, $r_{\mathfrak{l},\mathfrak{h}_0}(\lambda) = -r_{\mathfrak{h}_0,\mathfrak{l}}^{21}(\lambda)$ and $\varphi_{-\overline{\alpha}}(\lambda) = -\varphi_{\overline{\alpha}}^*(\lambda)$.

With these notations, the CDYBE splits into 4 components: the $\mathfrak{l} \otimes \mathfrak{l} \otimes \mathfrak{l}$ -part, the $\mathfrak{l} \otimes \mathfrak{l} \otimes \mathfrak{h}_0$ -part, the $\mathfrak{l} \otimes \mathfrak{g}_{\bar{\alpha}} \otimes \mathfrak{g}_{-\bar{\alpha}}$ -part and the $\mathfrak{g}_{\bar{\alpha}} \otimes \mathfrak{g}_{\bar{\beta}} \otimes \mathfrak{g}_{\bar{\gamma}}$ -part where $\bar{\alpha} + \bar{\beta} + \bar{\gamma} = 0$.

• The $l \otimes l \otimes l$ -part: let us set $r_{l,l} = \sum_{i,j} C_{i,j}(\lambda) x_i \otimes x_j$. This part of the CDYBE can then be written:

(18)
$$\frac{\partial C_{j,k}}{\partial x_i} + \frac{\partial C_{k,i}}{\partial x_j} + \frac{\partial C_{i,j}}{\partial x_k} = 0 \qquad \forall i, j, k$$

and says that $\sum_{i,j} C_{i,j} dx_i \wedge dx_j$ is a closed 2-form.

• The $\mathfrak{l} \otimes \mathfrak{l} \otimes \mathfrak{h}_0$ -part: let us set $r_{\mathfrak{l},\mathfrak{h}_0} = \sum_{i,j} D_{i,j}(\lambda) x_i \otimes y_j$ for some basis (y_j) of \mathfrak{h}_0 . This part of the CDYBE is

(19)
$$\frac{\partial D_{i,j}}{\partial x_k} = \frac{\partial D_{k,j}}{\partial x_i} \qquad \forall i, k, j$$

and says that for any j, $\sum_{i} D_{i,j}(\lambda) dx_i$ is a closed 1-form.

Since r is defined on a polydisc, the above forms are exact. Let $f: D \to \mathfrak{h}_0$ be such that $df(\lambda) = \sum_i D_{i,j}(\lambda) dx_i \otimes y_j$ and let ξ be a 1-form on D such that $d\xi = \sum_{i,j} C_{i,j} dx_i \wedge dx_j$. Then ξ defines a function $\overline{\xi}: D \to \mathfrak{l}$. The gauge transformation which should be applied to r to make it satisfy (15) is easily seen to be the following: $r(\lambda) \mapsto r(\lambda)^g = \frac{1}{2}\Omega + (e^{-ad\ f(\lambda)}\varphi(\lambda)e^{ad\ f(\lambda)}\otimes 1)\Omega'$ where $g(\lambda) = e^{f(\lambda)}e^{-\overline{\xi}(\lambda)}$.

Thus, we can assume that $r_{\mathfrak{l},\mathfrak{l}}=r_{\mathfrak{l},\mathfrak{h}_0}=0$, in which case the remaining components of the CDYBE can be written in the following way:

• The $\mathfrak{l} \otimes \mathfrak{g}_{\bar{\alpha}} \otimes \mathfrak{g}_{-\bar{\alpha}}$ -part:

(20)
$$d\varphi_{\bar{\alpha}} + (\varphi_{\bar{\alpha}}^2 - \frac{1}{4})dh_{\bar{\alpha}} = 0.$$

In particular, $r_{\mathfrak{h}_0,\mathfrak{h}_0} \in \Lambda^2 \mathfrak{h}_0$ is constant.

• The $\mathfrak{g}_{\bar{\alpha}} \otimes \mathfrak{g}_{\bar{\beta}} \otimes \mathfrak{g}_{\bar{\gamma}}$ -part where $\bar{\alpha} + \bar{\beta} + \bar{\gamma} = 0$:

(21)
$$\Lambda(\varphi_{\bar{\alpha}} \otimes \varphi_{\bar{\beta}} \otimes 1 + \varphi_{\bar{\alpha}} \otimes 1 \otimes \varphi_{\bar{\gamma}} + 1 \otimes \varphi_{\bar{\beta}} \otimes \varphi_{\bar{\gamma}} + \frac{1}{4}Id) = 0$$

where
$$\Lambda: \ \mathfrak{g}_{\bar{\alpha}} \otimes \mathfrak{g}_{\bar{\beta}} \otimes \mathfrak{g}_{\bar{\gamma}} \to \mathbb{C}, \ x \otimes y \otimes z \mapsto ([x,y],z).$$

This set of equations is sufficient by skew-symmetry of the CDYBE.

5.2. The Cayley transform. Let us set $A_{\pm} = \operatorname{Im}(\varphi(\lambda) \pm \frac{1}{2})$, $I_{\pm} = \operatorname{Ker}(\varphi(\lambda) \mp \frac{1}{2})$. Notice that, by (20), A_{\pm} and I_{\pm} are indeed independent of λ . Furthermore, A_{\pm} , I_{\pm} are \mathfrak{l} -graded by the weight-zero condition, $I_{\pm} \subset A_{\pm}$ and $A_{\pm} = I_{\pm}^{\perp}$ by the unitarity condition. Notice also that $A_{+} + A_{-} \oplus \mathfrak{l} = \mathfrak{g}$. Now consider

$$\psi(\lambda) = \frac{\varphi - \frac{1}{2}}{\varphi + \frac{1}{2}} : A_{+}/I_{+} \to A_{-}/I_{-}.$$

Extend $\psi(\lambda)$ to $\psi(\lambda): \mathfrak{l} \oplus A_+/I_+ \to \mathfrak{l} \oplus A_-/I_-$ by setting $\psi_{|\mathfrak{l}} = Id$. It is clear that ψ is a well-defined linear isomorphism. The following proposition is crucial:

Proposition 2. The maps $\varphi_{\bar{\alpha}}$ satisfy (20, 21) if and only if the following hold:

- (i) $A_{\pm} \oplus \mathfrak{l}$ is a subalgebra of \mathfrak{g} and $I_{\pm} \oplus \mathfrak{l}$ is an ideal of $A_{\pm} \oplus \mathfrak{l}$.
- (ii) there exists a (constant) map ψ_0 : $\mathfrak{l} \oplus A_+/I_+ \to \mathfrak{l} \oplus A_-/I_-$ such that $\psi(\lambda)_{|\mathfrak{g}_{\bar{\alpha}}} = e^{-(\bar{\alpha},\lambda)}\psi_{0|\mathfrak{g}_{\bar{\alpha}}}$.
- (iii) The map ψ_0 is a Lie algebra map:

$$[\psi_0(x), \psi_0(y)] = \psi_0[x, y].$$

Proof. Assume that φ satisfies (20,21) and let $a \in \mathfrak{g}_{\bar{\alpha}}$, $b \in \mathfrak{g}_{\bar{\beta}}$, $c \in \mathfrak{g}_{\bar{\gamma}}$ with $\bar{\alpha} + \bar{\beta} + \bar{\gamma} = 0$. From (21), we have

$$([(\varphi_{\bar{\alpha}} + \frac{1}{2})a, (\varphi_{\bar{\beta}} + \frac{1}{2})b], c) + ([a, (\varphi_{\bar{\beta}} + \frac{1}{2})b], (\varphi_{\bar{\gamma}} - \frac{1}{2})c) + ([(\varphi_{\bar{\alpha}} - \frac{1}{2})a, b], (\varphi_{\bar{\gamma}} - \frac{1}{2})c) = 0.$$

Since $\varphi_{\bar{\gamma}} = -\varphi_{-\bar{\gamma}}^*$, and (,) is a nondegenerate pairing $\mathfrak{g}_{\bar{\gamma}} \otimes \mathfrak{g}_{-\bar{\gamma}} \to \mathbb{C}$, this implies that $A_+ \oplus \mathfrak{l}$ is a Lie subalgebra of \mathfrak{g} . Note that the term in \mathfrak{l} is necessary here

since $[\mathfrak{g}_{\bar{\alpha}},\mathfrak{g}_{-\bar{\alpha}}] \not\subset \mathfrak{g}_{\bar{0}} = \mathfrak{h}_0$, but is not consequential as A_+ is \mathfrak{l} -graded. The second claim of (i) follows from the relation

$$\left([(\varphi_{\bar{\alpha}} - \frac{1}{2})a, (\varphi_{\bar{\beta}} - \frac{1}{2})b], c \right) + \left([a, (\varphi_{\bar{\beta}} + \frac{1}{2})b], (\varphi_{\bar{\gamma}} + \frac{1}{2})c \right) + \left([(\varphi_{\bar{\alpha}} - \frac{1}{2})a, b], (\varphi_{\bar{\gamma}} + \frac{1}{2})c \right) = 0.$$

The proof is the same for A_{-} and I_{-} . The equivalence of (ii) and (20) follows from the equality

$$\begin{split} d\psi_{|\mathfrak{g}_{\bar{\alpha}}} &= \frac{d\varphi_{\alpha}(\varphi_{\alpha} + \frac{1}{2}) - (\varphi_{\alpha} - \frac{1}{2})d\varphi_{\alpha}}{(\varphi_{\alpha} + \frac{1}{2})^2} \\ &= -\frac{(\varphi_{\alpha}^2 - \frac{1}{4})}{(\varphi_{\alpha} + \frac{1}{2})^2}dh_{\bar{\alpha}} \\ &= -(\bar{\alpha}, \lambda)\psi_{|\mathfrak{g}_{\bar{\alpha}}}. \end{split}$$

where we used (20). Finally it follows from (21) that

$$(\varphi_{\overline{\alpha+\beta}}-\frac{1}{2})\big([(\varphi_{\bar{\alpha}}+\frac{1}{2})a,(\varphi_{\bar{\beta}}+\frac{1}{2})b]\big)=(\varphi_{\overline{\alpha+\beta}}+\frac{1}{2})\big([(\varphi_{\bar{\alpha}}-\frac{1}{2})a,(\varphi_{\bar{\beta}}-\frac{1}{2})b]\big).$$

This implies (iii).

Conversely, if (i-iii) are satisfied then for any $x \in \mathfrak{g}_{\bar{\alpha}}, y \in \mathfrak{g}_{\bar{\beta}}$ ($\bar{\alpha} + \bar{\beta} \neq 0$) there exist $z \in \mathfrak{g}_{\overline{\alpha}+\beta}$ such that $[(\varphi_{\bar{\alpha}} - \frac{1}{2})x, (\varphi_{\bar{\beta}} - \frac{1}{2})y] = (\varphi_{\overline{\alpha}+\beta} - \frac{1}{2})z$. Since ψ is a Lie algebra map, $[(\varphi_{\bar{\alpha}} + \frac{1}{2})x, (\varphi_{\bar{\beta}} + \frac{1}{2})y] - (\varphi_{\overline{\alpha}+\beta} + \frac{1}{2})z \in \text{Ker}(\varphi_{\overline{\alpha}+\beta} - \frac{1}{2})$. Subtracting, we obtain $[(\varphi_{\bar{\alpha}} + \frac{1}{2})x, y] + [x, (\varphi_{\bar{\beta}} + \frac{1}{2})y] - [x, y] - z \in \text{Ker}(\varphi_{\overline{\alpha}+\beta} - \frac{1}{2})$. Applying $(\varphi - \frac{1}{2})$ and dropping the indices, we have

$$(\varphi - \frac{1}{2})\Big([(\varphi + \frac{1}{2})x, y] + [x, (\varphi + \frac{1}{2})y] - [x, y]\Big) = [(\varphi - \frac{1}{2})x, (\varphi - \frac{1}{2})y].$$

Thus,

$$[(\varphi + \frac{1}{2})x, (\varphi + \frac{1}{2})y] - (\varphi + \frac{1}{2})\Big([(\varphi - \frac{1}{2})x, y] + [x, (\varphi + \frac{1}{2})y]\Big) = 0.$$

which is equivalent to (21).

We will call the triple (A_+, A_-, ψ_0) the Cayley transform of φ . We are now reduced to the classification of all triples satisfying (i-iii) and which arise as a Cayley transform (Cayley triples).

5.3. Classification of Cayley triples. Let (A_+, A_-, ψ_0) be a Cayley triple. If $\mathfrak{g} = \mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-$ is a polarization of \mathfrak{g} and $\Gamma \subset \Pi(\mathfrak{n}_+)$ we will denote by \mathfrak{q}_{Γ}^+ (resp. \mathfrak{q}_{Γ}^-) the subalgebra generated by \mathfrak{n}_+ and $\mathfrak{g}_{-\alpha}$, $\alpha \in \Gamma$ (resp. generated by \mathfrak{n}_- and \mathfrak{g}_{α} , $\alpha \in \Gamma$). We denote by $\mathfrak{p}_{\Gamma}^{\pm} = \mathfrak{h} + \mathfrak{q}_{\Gamma}^{\pm}$ the parabolic subalgebras associated to Γ .

Proposition 3. There exists a polarization $\mathfrak{g} = \mathfrak{n}_+^1 \oplus \mathfrak{h} \oplus \mathfrak{n}_-^1$, two subsets $\Gamma_+, \Gamma_- \subset \Pi(\mathfrak{n}_+^1)$ and two vector spaces $V_+, V_- \subset \mathfrak{h}$ with $V_{\pm}^{\perp} \subset V_{\pm}$ such that

$$\mathfrak{l} \oplus A_{+} = \mathfrak{q}_{\Gamma_{-}}^{+} \oplus V_{+}, \qquad \mathfrak{l} \oplus A_{-} = \mathfrak{q}_{\Gamma_{-}}^{-} \oplus V_{-}.$$

Proof. Notice that $(\mathfrak{l} \oplus A_+)^{\perp} = I_+ \subset \mathfrak{l} \oplus A_+$. It is known, (c.f [Bou, chap.VIII,§10, Thm. 1] or [BD]), that this implies that $\mathfrak{l} \oplus A_+ = \tilde{\mathfrak{q}}_{\Gamma}^+ \oplus \tilde{V}_+$ for some polarization $\mathfrak{g} = \mathfrak{n}'_+ \oplus \mathfrak{h}' \oplus \mathfrak{n}'_-$. Similarly, $\mathfrak{l} \oplus A_- = \tilde{\mathfrak{q}}_{\Gamma'}^- \oplus \tilde{V}_-$ for some polarization $\mathfrak{g} = \mathfrak{n}''_+ \oplus \mathfrak{h}'' \oplus \mathfrak{n}''_-$. Moreover, \mathfrak{l} acts semisimply on A_\pm so $\mathfrak{l} \subset \mathfrak{h}'$, $\mathfrak{l} \subset \mathfrak{h}''$. But \mathfrak{l} contains a regular element, thus $\mathfrak{l} = \mathfrak{h}' = \mathfrak{h}''$. Proposition 3 is now an easy consequence of the following lemma:

Lemma 5. Let \mathfrak{g} be a simple Lie algebra and \mathfrak{h} a Cartan subalgebra. Let \mathfrak{a}_1 and \mathfrak{a}_2 be two parabolic subalgebras containing \mathfrak{h} such that $\mathfrak{a}_1 + \mathfrak{a}_2 = \mathfrak{g}$. Then there exists a polarization $\mathfrak{g} = \mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-$ and $\Gamma_+, \Gamma_- \subset \Pi$ such that $\mathfrak{a}_1 = \mathfrak{p}_{\Gamma_+}^+$ and $\mathfrak{a}_2 = \mathfrak{p}_{\Gamma_-}^-$.

Proof. Let $\mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-$ be a polarization of \mathfrak{g} such that $\mathfrak{b}_+ \subset \mathfrak{a}_1$ and for which $\dim (\mathfrak{n}_+ \cap \mathfrak{a}_2)$ is minimal. We claim that $\mathfrak{b}_- \subset \mathfrak{a}_2$. Suppose on the contrary that there exists a simple root $\alpha \in \Pi$ such that $\mathfrak{g}_{-\alpha} \not\subset \mathfrak{a}_2$. Then $\mathfrak{g}_{-\alpha} \subset \mathfrak{a}_1$ since $\mathfrak{a}_1 + \mathfrak{a}_2 = \mathfrak{g}$ and $\mathfrak{g}_{\alpha} \subset \mathfrak{a}_2$ since \mathfrak{a}_2 is parabolic. But then $s_{\alpha}\mathfrak{n}_+ \oplus \mathfrak{h} \oplus s_{\alpha}\mathfrak{n}_-$ is a polarization of \mathfrak{g} for which $s_{\alpha}\mathfrak{b}_+ \subset \mathfrak{a}_1$ and $\dim (s_{\alpha}\mathfrak{n}_+ \cap \mathfrak{a}_2) < \dim (\mathfrak{n}_+ \cap \mathfrak{a}_2)$. Contradiction.

In particular, A_{\pm} , I_{\pm} are all \mathfrak{h} -graded and

$$I_{+} = (\mathfrak{q}_{\Gamma_{+}}^{+} \oplus V_{+})^{\perp} = \bigoplus_{\alpha \in \Delta_{+} \setminus \langle \Gamma_{+} \rangle} \mathfrak{g}_{\alpha} \oplus (V_{+}^{\perp} \cap \mathfrak{h}_{0}),$$

$$I_{-} = (\mathfrak{q}_{\Gamma_{-}}^{-} \oplus V_{-})^{\perp} = \bigoplus_{\alpha \in \Delta_{-} \setminus \langle \Gamma_{-} \rangle} \mathfrak{g}_{\alpha} \oplus (V_{-}^{\perp} \cap \mathfrak{h}_{0}).$$

Thus $A_+/I_+ = \mathfrak{g}_{\Gamma_+} \oplus V_1$ and $A_-/I_- = \mathfrak{g}_{\Gamma_-} \oplus V_2$ for some suitable $V_1, V_2 \subset \mathfrak{h}_0$. Let $L_{\pm\frac{1}{2}}(\lambda)$ be the generalized eigenspace of $\varphi(\lambda)$ associated to $\pm\frac{1}{2}$. Since φ is a solution of an ordinary differential equation with stationary points at $\frac{1}{2}, -\frac{1}{2}, L_{\pm\frac{1}{2}}(\lambda)$ is independent of λ and we will simply denote it by $L_{\pm\frac{1}{2}}$. Similarly, let L' be the sum of all other generalized eigenspaces so that $\mathfrak{g} = \mathfrak{l} \oplus L_{\frac{1}{2}} \oplus L' \oplus L_{-\frac{1}{2}}$.

Proposition 4. There exists a polarization $\mathfrak{g} = \overline{\mathfrak{n}}_+ \oplus \mathfrak{h} \oplus \overline{\mathfrak{n}}_-$ and a subset $\Gamma_3 \subset \Pi(\overline{\mathfrak{n}}_+)$ such that $L_{\pm\frac{1}{2}} \subset \overline{\mathfrak{b}}_{\pm}$, $L' \subset \mathfrak{g}_{\Gamma_3} + \mathfrak{h}$ and $\varphi(\overline{\mathfrak{n}}_+) \subset \overline{\mathfrak{n}}_+$.

Proof. We will construct a polarization satisfying the above conditions in several steps.

Lemma 6. We have:

- (i) $\mathfrak{l} \oplus L_{\pm \frac{1}{2}}$ is an \mathfrak{h} -graded solvable subalgebra,
- (ii) $\mathfrak{l} \oplus L'$ is an \mathfrak{h} -graded subalgebra,
- (iii) we have $[L_{\pm \frac{1}{2}}, L'] \subset \mathfrak{l} \oplus L_{\pm \frac{1}{2}}$.

Proof. This follows from the proofs of Lemma 12.3 and Theorem 12.6 in [BD].

Notice that $L_{\pm\frac{1}{2}} \not\subset \mathfrak{b}_{\pm}^1$ in general. We first construct a polarization $\mathfrak{g} = \mathfrak{n}_+^2 \oplus \mathfrak{h} \oplus \mathfrak{n}_-^2$ such that $L_{\pm\frac{1}{2}} \subset \mathfrak{b}_{\pm}^2$. We have $I_{\pm} \subset L_{\pm\frac{1}{2}}$. Notice that $L_{\frac{1}{2}} \cap \mathfrak{n}_-^1 \subset \mathfrak{g}_{\Gamma_+} \cap \mathfrak{g}_{\Gamma_-} = \mathfrak{g}_{\Gamma_+ \cap \Gamma_-}$ since $\mathfrak{n}_-^1 \subset (\mathfrak{g}_{\Gamma_-} \oplus I_-)$ and $L_{\frac{1}{2}}$ is solvable. Similarly, $L_{-\frac{1}{2}} \cap \mathfrak{n}_+^1 \subset \mathfrak{g}_{\Gamma_+ \cap \Gamma_-}$. Moreover, by Lemma 6, $\mathfrak{l} \oplus (L_{\frac{1}{2}} \cap \mathfrak{g}_{\Gamma_+ \cap \Gamma_-})$ and $\mathfrak{l} \oplus (L_{-\frac{1}{2}} \cap \mathfrak{g}_{\Gamma_+ \cap \Gamma_-})$ are disjoint, solvable, \mathfrak{h} -graded subalgebras. By lemma 5 it follows that there exists an element s of the group $W_{\Gamma_+ \cap \Gamma_-}$ such that $\mathfrak{l} \oplus (L_{\pm\frac{1}{2}} \cap \mathfrak{g}_{\Gamma_+ \cap \Gamma_-}) \subset s\mathfrak{b}_{\pm}^1$. Notice that s permutes elements of $\Delta^+ \setminus \langle \Gamma_+ \cap \Gamma_- \rangle$, leaving it globally unchanged. Thus, $\mathfrak{l} \oplus L_{\pm\frac{1}{3}} \subset s\mathfrak{b}_{\pm}^1$. Set $\mathfrak{n}_{\pm}^2 = s\mathfrak{n}_{\pm}^1$.

Now we construct a polarization of \mathfrak{g} satisfying the other conditions of proposition 4. Recall that $\mathfrak{l} \oplus L \subset \mathfrak{g}_{\Gamma_+ \cap \Gamma_-} + (V_1 \cap V_2)$. Thus $(L' \cap \mathfrak{n}_+^2) \oplus (L_{\frac{1}{2}} \cap \mathfrak{n}_+^2 (\Gamma_+ \cap \Gamma_-)) = \mathfrak{n}_+^2 (\Gamma_+ \cap \Gamma_-)$.

Since $[L', L_{\frac{1}{2}}] \subset \mathfrak{l} \oplus L_{\frac{1}{2}}$ by Lemma 6,(iii), $L_{\frac{1}{2}} \cap \mathfrak{n}_{+}^{2}(\Gamma_{+} \cap \Gamma_{-})$ is an ideal of $\mathfrak{n}_{+}^{2}(\Gamma_{+} \cap \Gamma_{-})$. But $L' \cap \mathfrak{n}_{+}^{2}$ is a subalgebra. It is easy to see that this implies that $L' \cap \mathfrak{n}_{+}^{2}$ is generated by a set of simple root subspaces of $\mathfrak{n}_{+}^{2}(\Gamma_{+} \cap \Gamma_{-})$, i.e $L' \cap \mathfrak{n}_{+}^{2} = \mathfrak{n}_{+}^{2}(\Gamma)$ for some $\Gamma \subset \Pi(\mathfrak{n}_{+}^{2})$. Moreover, the restriction of (,) to L' is nondegenerate, hence $L' \cap \mathfrak{n}_{-}^{2} = \mathfrak{n}_{-}^{2}(-\Gamma)$. Thus $\mathfrak{l} \oplus \mathfrak{g}_{\Gamma} \subset \mathfrak{l} \oplus L' \subset \mathfrak{l} \oplus \mathfrak{g}_{\Gamma} + (V_{1} \cap V_{2})$.

Since $\varphi(\lambda) + \frac{1}{2}$ is invertible in L', $\psi(\lambda)$ is a well-defined operator $L' \to L'$, satisfying (22), and $\psi(\lambda)(\mathfrak{h}_0 \cap L') \subset \mathfrak{h}_0 \cap L'$. Now, \mathfrak{l} contains a regular element. Thus there exists a polarization of \mathfrak{g} compatible with the \mathfrak{l} -weight decomposition. This induces a polarization of \mathfrak{g}_{Γ} , compatible with the \mathfrak{l} -weight decomposition of \mathfrak{g}_{Γ} . Hence, there exists $s' \in W_{\Gamma} \subset W$ such that $\psi_{0|\mathfrak{g}_{\Gamma}}$ is compatible with the polarization $s'\mathfrak{n}_+^2 \oplus \mathfrak{h} \oplus s'\mathfrak{n}_-^2$. Since s' leaves $\Delta_+ \setminus \langle \Gamma \rangle$ globally unchanged, the polarization $\mathfrak{g} = \overline{\mathfrak{n}}_+ \oplus \mathfrak{h} \oplus \overline{\mathfrak{n}}_-$ with $\overline{\mathfrak{n}}_{\pm} = s'\mathfrak{n}_{\pm}^2$ and $\Gamma_3 = s'\Gamma$ satisfies the requirements of proposition 4.

To sum up, we have shown that there exists a polarization $\mathfrak{g} = \overline{\mathfrak{n}}_+ \oplus \mathfrak{h} \oplus \overline{\mathfrak{n}}_-$, compatible with φ , subsets $\Gamma_1 = s's\Gamma_+$, $\Gamma_2 = s's\Gamma_-$ and $\Gamma_3 \subset \underline{\Pi}(\overline{\mathfrak{n}}_+)$ such that $(A_+/I_+) \cap \mathfrak{n}_+ = \overline{\mathfrak{n}}_+(\Gamma_1)$, $A_- \cap \mathfrak{n}_+ = \overline{\mathfrak{n}}_+(\Gamma_2)$ and $L' \cap \mathfrak{n}_+ = \overline{\mathfrak{n}}_+(\overline{\Gamma_3})$.

The map ψ_0 now restricts to a Lie algebra isomorphism $\overline{\mathfrak{n}}_+(\Gamma_1) \to \overline{\mathfrak{n}}_+(\Gamma_2)$. This isomorphism maps weight spaces to weight spaces as ψ_0 preserves \mathfrak{h}_0 and φ is \mathfrak{l} -invariant. Define $\tau:\Gamma_1\to\Gamma_2$ by $\psi_0(\mathfrak{g}_\alpha)=\mathfrak{g}_{\tau(\alpha)}$. It is a norm-preserving bijection. Thus $(\Gamma_1,\Gamma_2,\Gamma_3)$ is a generalized Belavin-Drinfeld triple. It is clear that Γ_3 is the largest subset of $\Gamma_1\cap\Gamma_2$ stable under τ , and that $\psi_0:\overline{\mathfrak{n}}_+(\Gamma_3)\to\overline{\mathfrak{n}}_+(\Gamma_3)$ is a Lie algebra isomorphism. Finally, it is easy to see that the map φ is obtained from this data by formulas

$$\varphi(\lambda)(e_{\alpha}) = \frac{1}{2}e_{\alpha} \qquad (\alpha \notin \langle \Gamma_{1} \rangle)$$

$$\varphi(\lambda)(e_{\alpha}) = \frac{1}{2}e_{\alpha} + \frac{\psi_{0}}{1 - e^{(\alpha, \lambda)}\psi_{0}}(e_{\alpha}) \qquad (\alpha \in \langle \Gamma_{1} \rangle)$$

Conversely, it is clear how to construct from a generalized Belavin-Drinfeld triple $(\Gamma_1, \Gamma_2, \tau)$ the subalgebras $\mathfrak{n}_+(\Gamma_1)$, $\mathfrak{n}_+(\Gamma_2)$, $\mathfrak{n}_+(\Gamma_3)$ and, for each choice of

Chevalley generators, a Lie algebra isomorphism $\psi_0 : \mathfrak{n}_+(\Gamma_1) \to \mathfrak{n}_+(\Gamma_2)$, and the map $\varphi(\lambda)$. Condition (16) on the $\mathfrak{h}_0 \otimes \mathfrak{h}_0$ -part comes from (21)-see [BD].

6. Examples

6.1. Constant r-matrices. Our results imply the following:

Corollary 1. A dynamical r-matrix associated to a generalized Belavin-Drinfeld triple $(\Gamma_1, \Gamma_2, \tau)$ is gauge equivalent to a constant r-matrix if and only if $\Gamma_3 = \emptyset$.

6.2. \mathfrak{h} -invariant dynamical r-matrices. When $\mathfrak{l}=\mathfrak{h}$, our classification coincides with that given in [EV]: the only \mathfrak{h} -graded generalized Belavin-Drinfeld triple is of the form $(\Gamma, \Gamma, \tau = Id)$. The dynamical r-matrices obtained are then (up to gauge transformations and choice of Chevalley generators):

$$r(\lambda) = \frac{\Omega}{2} + \sum_{\alpha \in \Delta_+, \, \alpha \not\in \langle \Gamma \rangle} \frac{1}{2} e_\alpha \wedge e_{-\alpha} + \sum_{\alpha \in \langle \Gamma \rangle \cap \Delta_+} \frac{1}{2} \coth(\frac{1}{2}(\alpha, \lambda) e_\alpha \wedge e_{-\alpha})$$

6.3. Example for \mathfrak{sl}_3 and \mathfrak{sl}_n . The first nontrivial example is for $\mathfrak{g} = \mathfrak{sl}_3$: fix a polarization $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\gamma \in \Delta} \mathfrak{g}_{\gamma}$ where $\Delta^+ = \{\alpha, \beta, \alpha + \beta\}$ and set $\mathfrak{l} = \mathbb{C}h_{\rho}$. Consider the generalized Belavin-Drinfeld triple with $\Gamma_1 = \Gamma_2 = \{\alpha, \beta\}$ and $\tau : \alpha \mapsto \beta, \beta \mapsto \alpha$. In this case, we can choose the map ψ_0 to be the following

$$\begin{array}{lll} e_{\alpha}\mapsto e_{\beta}, & h_{\alpha}\mapsto h_{\beta}, & e_{-\alpha}\mapsto e_{-\beta} \\ e_{\beta}\mapsto e_{\alpha}, & h_{\beta}\mapsto h_{\alpha}, & e_{-\beta}\mapsto e_{-\alpha} \\ e_{\alpha+\beta}\mapsto -e_{\alpha+\beta}, & e_{-\alpha-\beta}\mapsto -e_{-\alpha-\beta}. \end{array}$$

The corresponding dynamical r-matrix is given by:

(23)
$$r(\lambda) = \frac{\Omega}{2} + r_{\mathfrak{h}_{0},\mathfrak{h}_{0}} + \frac{1}{2} \coth(\alpha,\lambda) e_{\alpha} \wedge e_{-\alpha} + \frac{1}{2} \coth(\beta,\lambda) e_{\beta} \wedge e_{-\beta} + \frac{1}{2} \coth(\alpha,\lambda) e_{\alpha+\beta} \wedge e_{-\alpha-\beta} + \frac{1}{2 \sinh(\alpha,\lambda)} e_{\beta} \wedge e_{-\alpha} + \frac{1}{2 \sinh(\alpha,\lambda)} e_{\alpha} \wedge e_{-\beta}.$$

This dynamical r-matrix is gauge-equivalent to the dynamical r-matrix

(24)
$$\tilde{r}(\lambda) = \frac{\Omega}{2} + r_{\mathfrak{h}_{0},\mathfrak{h}_{0}} + r_{\mathfrak{l},\mathfrak{h}_{0}} - r_{\mathfrak{l},\mathfrak{h}_{0}}^{21} + \frac{1}{2}\coth(\alpha,\lambda)e_{\alpha} \wedge e_{-\alpha} + \frac{1}{2}\coth(\beta,\lambda)e_{\beta} \wedge e_{-\beta} + \frac{1}{2}\operatorname{th}(\alpha+\beta,\lambda)e_{\alpha+\beta} \wedge e_{-\alpha-\beta} + \frac{e^{(\alpha,\lambda)}}{2\sinh(\alpha,\lambda)}e_{\beta} \wedge e_{-\alpha} + \frac{e^{-(\alpha,\lambda)}}{2\sinh(\alpha,\lambda)}e_{\alpha} \wedge e_{-\beta}.$$

when

$$(\alpha \otimes 1 + 1 \otimes \tau(\alpha)) (r_{\mathfrak{h}_0,\mathfrak{h}_0} + r_{\mathfrak{l},\mathfrak{h}_0} - r_{\mathfrak{l},\mathfrak{h}_0}^{21}) = \frac{1}{2} (\alpha + \tau(\alpha)) \Omega_{\mathfrak{h}}.$$

In particular, $\tilde{r}(\lambda)$ interpolates the constant r-matrix obtained from the Belavin-Drinfeld triple $(\Gamma_1 = \alpha, \Gamma_2 = \beta, \tau : \alpha \mapsto \beta)$ at $(\alpha, \lambda) \to \infty$ and the r-matrix obtained from $(\Gamma_1 = \beta, \Gamma_2 = \alpha, \tau : \beta \mapsto \alpha)$ at $(\alpha, \lambda) \to -\infty$.

Remark. The generalization of this example to $\mathfrak{g} = \mathfrak{sl}_{2n+1}$ is the following. Fix a polarization and let $\mathfrak{l} = \mathbb{C}h_{\rho}$. Denote by Δ the root system and by $\Pi = (\alpha_1, \dots \alpha_{2n})$ the set of positive simple roots. Let $i : \alpha_k \mapsto \alpha_{2n+1-k}$ be the involution of the Dynkin diagram. The dynamical r-matrix obtained from the generalized Belavin-Drinfeld triple $(\Gamma_1 = \Gamma_2 = \Pi, \tau = i)$ interpolates the constant r-matrices obtained from the Belavin-Drinfeld triples $(\Gamma_1 = (\alpha_1, \dots \alpha_n), \Gamma_2 = (\alpha_{n+1}, \dots \alpha_{2n}), \tau = i)$ and $(\Gamma_1 = (\alpha_{n+1}, \dots \alpha_{2n}), \Gamma_2 = (\alpha_1, \dots \alpha_n), \tau = i^{-1})$.

6.4. Permutation dynamical r-matrices. Consider $\mathfrak{g} = \mathfrak{sl}_{2n}$, and let $\Pi = (\alpha_1, \dots \alpha_{2n-1})$ denote a system of simple roots. For any $\sigma \in S_n$, we can construct a generalized Belavin-Drinfeld triple by setting $\Gamma_1 = \Gamma_2 = (\alpha_1, \alpha_3, \dots \alpha_{2n-1})$ and $\tau : \alpha_{2k-1} \mapsto \alpha_{2\sigma(k)-1}$.

Acknowledgements

I heartily thank Pavel Etingof for his encouragements, constant help and for his communicative enthousiasm for mathematics. I also thank A. Varchenko and P. Etingof for sharing their work with me before publication, and Hung Yean Loke and Vadik Vologodsky for interesting discussions.

References

- [BD] A. A. Belavin and V. G. Drinfeld, Triangle equation and simple Lie algebras, Soviet Sci. Reviews, Sect C 4 (1984), 93–165.
- [Bou] N. Bourbaki, Groupes et algèbres de Lie, Masson (1981).
- [CP] V. Chari and A. Pressley, A guide to quantum groups, Cambridge Univ. Press (1994).
- [Che] I. V. Cherednik, Generalized braid groups and local r-matrix systems, Soviet Math. Dok. 307 (1990), 43–47.
- [Dr1] V. G. Drinfeld, Quantum groups, Proc. Internat. Congr. Math. (Berkeley 1986) 1 (1987), Amer. Math. Soc., 798–820.
- [EV] P. Etingof and A. Varchenko, Geometry and classification of solutions of the dynamical Yang Baxter equation, q-alg/9703040, Comm. Math. Phys. (to appear).
- [Fe] G. Felder, Elliptic quantum groups, hepth/9412207, to appear in the Proc. ICMP, Paris 1994.
- [FW] G. Felder G. and C. Wierzcerkowski, Conformal Blocks on elliptic curves and the Knizhnik-Zamolodchikov-Bernard equations, Comm. Math. Phys. 176 (1996), 133.

HARVARD UNIVERSITY AND ENS PARIS, 45 RUE D'ULM, 75 005 PARIS $E\text{-}mail\ address:}$ schiffma@clipper.ens.fr