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ON CLASSIFICATION OF DYNAMICAL »-MATRICES

OLIVIER SCHIFFMANN

ABSTRACT. Using the gauge transformations of the Classical Dynamical Yang-
Baxter Equation introduced by P. Etingof and A. Varchenko in [EV], we reduce
the classification of dynamical r-matrices r on a commutative subalgebra | of
a Lie algebra g to a purely algebraic problem, under some assumption on the
symmetric part of 7. We then describe, for a simple complex Lie algebra g, all non
skew-symmetric dynamical r-matrices on a commutative subalgebra 1 C g which
contains a regular semisimple element. This interpolates results of P. Etingof and
A. Varchenko ([EV], when I is a Cartan subalgebra) and results of A. Belavin and
V. Drinfeld for constant r-matrices ([BD]). This classification is similar, and in
some sense simpler than the Belavin-Drinfeld classification.

1. The classical Yang-Baxter equation

Let g be a Lie algebra. The CYBE is the following algebraic equation for an
element r € g® g:

(1) [7‘12,7“13] + [7‘12, T23] + [7”13,7’23] =0.

Solutions of this equation are called r-matrices. In the theory of quantum groups,
one is mainly interested in r-matrices satisfying

(2) r+ 12 e (8%g)0.

See [CP] for the links with the theory of quantum groups, and [Che| for links
with Conformal Field Theory and the Wess-Zumino-Witten model on P!. The
geometric interpretation of the CYBE was given by Drinfeld in terms of Poisson-
Lie groups ([Drl]).

2. The Belavin-Drinfeld classification

Notations. Let g be a simple complex Lie algebra with a nondegenerate invari-
ant form (, ), h C g a Cartan subalgebra and A the root system. For a € A| let
g denote the root subspace associated to a. Let W be the Weyl group and s,
a € A the reflection with respect to a. Finally, let Q € S%g and Qy € S?h be
the inverse elements to the form (, ). Notice that (S%g)¢ = CQ.

For any polarization g = n_ @ h @ ny, we denote by II or II(n,) the cor-
responding set of simple positive roots, by Ay the set of positive roots and by
b = ny®h the Borel subalgebras. For I' C II, set (I') = ZI'NA, and let gr be the
subalgebra generated by g,, o € (I'). We will write gr = ny(I') @ h(T') & n_(T)
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for the induced polarization and W (T") for the subgroup of W generated by s,
a € I'. Let us fix a polarization of g.

Definition. A Belavin-Drinfeld tripleis a triple (I'1, 'y, 7) where I';, 'y C IT and
7:T1 5 I'y is a norm-preserving bijection satisfying the following “nilpotency”
condition:

“For any 1 € I'y, there exists n > 0 such that 7 (y1) € I';\I'1”.

Let (I'1,T'2,7) be a Belavin-Drinfeld triple. For each choice of Chevalley
generators (€q, fo,Pa)acr;, ¢ = 1,2, the isomorphism 7 induces a Lie algebra
isomorphism gr, — gr, (by eq — er(a)s fa 7 fr(a)s Pa = hr(a)). Define a
partial order on A, by setting o < 3 if there exists n > 0 such that 7" (a) =
(in particular, « € I';y and § € T').

Definition. A basis (z4)aea of ny @ n_ is called admissible if (zq,2_4) =1
and 7(ro) = 2,(q) for a € (I'y).

Theorem 1 (Belavin-Drinfeld). Let g be a simple complex Lie algebra.
1. Let (I'1,T2,7) be a Belavin-Drinfeld triple, (o) an admissible basis, and let
ro € h® b be such that

(3) ro + 7"(2)1 = Qh7

(4) (Tla)@)r+(1®@a)r=0 for a €T.

Then

(5) r=ro+ Z$—a®$a+ Z T_ o NTg
a€AL a,BEAL a3

is an r-matriz satisfying r + r2* = Q.
2. Any r-matriz satisfying v + r?* = Q is of the above type for a suitable polar-
ization of g.

This theorem is proved in [BD]. For instance, the standard r-matrix for a
fixed polarization r = % + Za€A+ T_o @ Tq corresponds to I'y = 'y = ().

Remark. Skew-symmetric r-matrices admit a well known interpretation in terms
of nondegenerate 2-cocycles on Lie subalgebras of g ([Drl]), but their classifica-
tion is unavailable since it requires a classification of Lie subalgebras in g.

3. The dynamical Yang-Baxter equation

Let g be a Lie algebra over C and [ C g a subalgebra. An element z € g® g
will be called [-invariant if

(6) E@l+1@ka] =0 Ve,
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For x € g®3, we let Alt(x) = 2'23 + 2231 + 2312, Let D C [* be any open region.
The CDYBE is the following differential equation for a holomorphic l-invariant
functionr: D — g® g:

(7) Alt(dr) + [r' 2,72 + P20 + P13, 0% = 0,

where the differential of r is considered as a holomorphic function

823
dr:D—gogeg  A—Y @®a—0N), (Ael),

for any basis (z;) of . In this case,

Alt(dr) Z (1) Z <2> Z <3>

The solutions to this equation are called dynamical r-matrices. Dynamical r-
matrices which are relevant to the theory of quantum groups are those satisfying
the following condition, analogous to (2):

(8) Generalized unitarity: r(\) 4+ 721(\) € (S%g)®.

Remark. The CDYBE was first written down by G. Felder and C. Wiezcerkowski
in connection with the Wess-Zumino-Witten model on elliptic curves ([FW]).
The relation with elliptic quantum groups is explained in [Fe]. A geometric
interpretation of the CDYBE analogous to the theory of Poisson-Lie groups for
the CYBE is given in [EV].

4. Gauge transformations

We recall some results from [EV]. We suppose here that [ is commutative
and we let D be the formal polydisc centered at the origin. Let G be a complex
Lie group such that Lie(G) = g, and let L be the connected subgroup of G such
that Lie(L) = . Let G be the centralizer of L in G and g' its Lie algebra.We
will denote by (g ® g)' the space of all [-invariant elements in g ® g.

Let g : D — G' be any holomorphic function; the 1-form 1 = g~ 'dg gives
rise to a function 7 : D — [®g". If r: D — (g ® g)' is an [-invariant function
satisfying (8), we set

M =(geg)r—-n+7")(g ' 0g ).

Proposition 1. The function r is a dynamical r-matriz if and only if the func-
tion 9 1is.

Thus the group Map(D, G¥) is a gauge transformation group for the CDYBE.
Notice that this group is not commutative if G¥ isn’t.

Theorem 2. Let p,r : D — g®2 be two dynamical r-matrices satisfying (8) such
that 7(0) = p(0). There exists g € Map(D,GF) such that p = 19.
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This shows that the space of dynamical r-matrices is, up to gauge equivalence,
finite dimensional. Proofs of the above results can be found in [EV].

We will now prove a converse of Theorem 2 which reduces the CDYBE to a
purely algebraic equation under some assumption on the symmetric part % of
r: let Q € (S%g)?, let g be the ideal in g generated by the components of
and denote by go = €, ga(\) the generalized weight space decomposition of
gn with respect to the adjoint action of [. The condition we will need is the
following;:

(%) g' acts semisimply on go (0).

Suppose that (*) is fulfilled and let z(g') denote the center of g'. Then we
have a decomposition go(0) = 2(g") & V where 2(g") = 2(g") N ga(0) and V
is the sum of all non-trivial irreducible g'-modules in gqo(0). It is clear that
[NV = {0}. We will say that a complement ' of [ in g is admissible if V" C ',
and write 7 : g — [ for the projection along I’. Notice that by g'-invariance of
Q7

9) Qe 52(g) © S*V & P ea(N) ® ga(-N).
A#0

We will denote by CY B : g®2 — g®3 the map:
r [,r_12’,r13] + [7“12,7‘23] + [7"13,7‘23].

It is more convenient to work with the skew-symmetric part of r. If r(\) +
r?L(\) = Q € (5?(g))?, we set s(\) = r(\) — % It is easy to see that the CDYBE
for r is equivalent to the following equation for s:

(10) <Mﬂ®)+CYB®)+iCYBKD:O

Recall that as Q is symmetric and invariant, CY B(§2) = [Q13, Qa3].

Theorem 3. Let G be a complex Lie group and L C G a connected commutative
subgroup. Let g,1,g" denote the Lie algebras of G, L and G*. Let Q € (S%g)®.
Then

1. Let ' be any complement of U in g. Any dynamical r-matriz r(X) on | such
that 7(\) + r21(\) = Q is gauge equivalent to a dynamical r-matriz #(\) such
that 7(0) € £ + (A%(I'))".
2. Suppose that condition (

) is true and let I be any admissible complement of
Ling. Let rg € £ + (A%(V))"

satisfy
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(11) CYB(ro) € Alt(I® g ® g),

such that so =19 — % is a regular point of the algebraic manifold
2! Q
Mo = {s € (N*()'|CYB(s + 5) € Alt(l® g © 9)}.

Then there exists a dynamical r-matriz v(X) : D — 2 + (A*())" such that
r(0) = 7o.

The condition (*) is satisfied in the following two interesting special cases:
when ) = 0 (triangular case) or when g' acts semisimply on g (for instance, G
is reductive and L is contained in a maximal torus of G' or more generally, if G
is reductive).

The proof of this theorem will occupy the rest of this section. Let us first
prove part 1:

Lemma 1. Any dynamical r-matriz such that r(\) + r21(\) = Q is gauge-
equivalent to a dynamical r-matriz #(\) such that 7(0) € £ + (A2(I")".

Proof. Let 7 € [® g' be such that r(0) — 7 +7°* € £ + A%(I'). There exists a
function g : D — G such that g=1dg(0) = n (see [EV], Lemma 1.3). It is easy
to see that 7 = 19 satisfies the desired conditions. O

Let us now prove part 2. We will interpret the CDYBE (10) as a consistent
system of differential equations defined on M.
For s € Mg, (10) is equivalent to

(T®1®1)Alt(ds) = —(mr®1®1)(CYB(s) + iC’YB(Q)).
This reduces to
(12) ds = —(r @1 ® 1)([s'2, 5" + ECYB(Q)),

or, in coordinates (x;), where (z;) is a basis of [,

0s
83@

= (e © 10 1)([s,57] + OV B).

Lemma 2. The system (12) is consistent.
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Proof. Set X : Mg — [®g®g, s — (n®1®1)([s'? 5] + 1CYB(Q)). By
definition, the curvature of (12) is given by

Z ® 828 828 )
n @@ (5 vi0x;  Ow;0m;

Lov B2y

=(rerelel)({[s* s "]+ [s*, 1

4 [[812, 813], 824] + [iCYB(Q)HB’ 324]}
_ {[813, [3217 824]] 4+ [813, ECYB(Q)214]

T [s7,5%, 54 + [10YB<9>213,S14]}>

(7r®7r®1®1)({[ 3 [s'2, 8]
+ [[812 ] s 4] _ [813, [821,524]] _ [[821,523],514}}
+

1
1"+ 5%, CYB(Q)™] - [s" + 5™, CY B(Q)']}).
By the Jacobi identity,
[8237 [8127 814]] = [[8217 823]7 814]7 [[8127 813]7 824] = [8137 [8217 824]]

By g-invariance of C'Y B(2), we have
[813 4 823, CYB(Q)124] [ 34 CYB(Q)124]
[s'* 4+ 5°*, CYB(Q)'*°] = —[**, CY B()"*%].

Overall, we have the following expression for the curvature of (12):

i(ﬂ @1®1e 1) ([CYB(Q)'? 4+ CYB(Q)'*, s3] = —[(r@71® 1)CYB(Q), 5]

—~ )Jk|}—‘

But (9) and the fact that [" is admissible imply that (7 @ 7 ® 1)CY B(Q2) =
Thus, (12) is consistent. O

Lemma 3. The system (12) is defined on Mg, i.e the vector fields defined
by (12) are tangent to M.

Proof. Let z* € * & g%, and set h = (2 ® 1@ 1)([s12, s'3] + 1CY B(Q)). Since
s € A*(I') we have (z* ® 1 ® 1)[s'?, s3] € A%(I'). Moreover, the admissibility of
[ and (9) together imply that (z* ® 1 ® 1)(CY B(Q)) € (A2l')" since
[[®1,592%2(g")] = 0. Thus h € A2l'.

To conclude the proof of Lemma 3 and Theorem 3, we now show that

[812, h13] 4 [312’ h23] + [8137 h23]

13
) + [0, ]+ (012,57 + [P, 5] € Alt(Il@ g @ g).
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To make the presentation more clear, we will use the pictorial technique to
represent expressions and make computations: we associate to each morphism
from a n-tensor to a m-tensor a diagram in the following way: the operation of
taking the commutator is represented by

a

[a,b]
b

Applying a linear form x* will be denoted by

a X| X (a)

Finally, we will represent s and %, which can be thought of as maps from a

0-tensor to a 2-tensor, by

For instance,

Sie

e

Lemma 4. We have 2*®)[CY B(s —|— )12, 5% € Alt(I® g ® g) or, in pictures
(modulo Alt(I® g ® g))

%_

Proof. Recall that CY B(s —|— ) € Alt( ® g ® g). Thus the only part of the
above expression which can he outside of Alt(l ® g ® g) is obtained from the
g ® g ® lpart of CYB(s). But if y € [,

(" @ Dy®1,s]=—-(2" 1)1y,
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by [-invariance of s. This last expression is zero since s € (A%(I'))". Lemma 4 is
proved. O

It is clear how to generalize Lemma 4 to other expressions of the form
«(k) Q193 k4
"W [CYB(s + 5) , 7.

Now, (13) can be drawn as

= &«
E-£8
€ e e
E &
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& e e
S e = =
= e &

It is easy to check that the sum of the terms of type [C'Y B(s), s] in this last
expression is zero by the Jacobi identity. Moreover, by g-invariance of €2, we
have

=
= - <
=€
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Thus, modulo Alt(I® g ® g), (13) reduces to

@MW@

c e €
€ €&
e & &

The sums of terms in each column is zero by Jacobi Identity. This concludes the
proof of Theorem 3. O

5. Classification of dynamical r-matrices

Let g be a simple Lie algebra and let 2 € (S?g)¢ be the Casimir element. In
that case, (8) becomes

(14) r(\) + 2 (\) = Q.

We will classify all solutions of equations (6,7,14) when € # 0 and when [
contains a semisimple regular element. In particular, in this case, the centralizer
b of [ is the unique Cartan subalgebra containing [. Notice that we can assume
that e = 1 ( since the assignement r(\) — er(el) is a gauge transformation
of (7)). We can also assume that the restriction of (, ) to [ is nondegenerate.
Indeed, for any dynamical r-matrix, we can replace [ by the largest subspace of
b for which r is invariant, and such a subspace is real. Let hg be the orthogonal
complement of [ in h and let ¢ : [ < h be the inclusion map. We will also write
(, ) for the induced bracket on [*. Let Qp, denote the Casimir element of the
restriction of (, ) to ho.
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5.1. Statement of the theorem. Let g =n, &S n_ be a polarization of g.

Definition. A generalized Belavin-Drinfeld triple is a triple (I'y, 'y, 7) where
',y CII, and 7 : T’y = I'y is a norm-preserving bijection.

In other terms, in a generalized Belavin-Drinfeld triple, we drop the nilpotency
condition. We will say that a generalized Belavin-Drinfeld triple is [-graded if 7
preserves the decomposition of g in [-weight spaces. If (I'1, 'y, 7) is a generalized
Belavin-Drinfeld triple, we will denote by I's the largest subset of I'y NI'y which
is stable under 7, and I'; = '\Is, [y = [o\I's. It is clear that (f‘l,f‘Q,T)
is a Belavin-Drinfeld triple. As before, for each choice of Chevalley generators
(éas fas ha)aer;, the map 7 induces isomorphisms 9, — 9, and 7 @ gr; — gr,-

For A € I*, consider the map:

K(A) :ng (T1) — 0y (T2)

T

1
— _(av)‘)i
€o 26a+e 1_67(01)\)7_(606).

Notice that we have

1
K(M)(ea) = Sea + D e N (e,).
n>0

This sum is finite for a ¢ (I's).

Theorem 4. Let g be a simple Lie algebra with nondegenerate invariant bilin-
ear form (, ), | C g a commutative subalgebra containing a regular semisimple
element on which (, ) is nondegenerate, bt the Cartan subalgebra containing [
and Ho the orthogonal complement of [ in ). Then

1. Any dynamical r-matriz is gauge-equivalent to a dynamical r-matrix 7 such
that

(15) F(A) =7V € (1M)%? = (D ga @ 50)**.
a#0

2. Let (I'1,I'2,7) be an l-graded generalized Belavin-Drinfeld triple and let
(s fasha)r, be a choice of Chevalley generators. Let ry,p, € ho @ ho satisfy
the equation

1
(16) (T(Oé) ® 1)“)0;‘]0 + (1 ® O‘)rbo,ho = 5((04 + T(a)) ® 1)Qf)0'
Then
1 1
M= 20t Y KO Aeat Y seahel
ace(T'1)NAL acA, ag(ly)

is a solution the CDYBE satisfying (15).
3. Any solution of the CDYBE satisfying (15) is of the above type for a suitable
polarization of g.
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The proof of this theorem will occupy the rest of this section. Our methods
are greatly inspired by the paper [BD]. Notice that 1. follows from Theorem 3,
but we will describe the gauge transformations explicitely in this case.

Notations. Let A C h* be the root system of g with respect to h and set
Ar = i*(A) C I*. We will denote by gs the weight subspace associated to
a =1i"(a) € Ay, and we set g5 = ho. It is clear that

9a = @ 9p

BEA, i*(B)=a

In particular, (, ) is a pairing gg X g_g — C.

A vector space V' C g will be called h-graded (resp. l-graded) if it is an b-
submodule (resp. [-submodule) of g. Finally, let Q' € (I+)®2 denote the Casimir
(inverse element) of the restriction of (, ) to [+ = ho @ ga-

Now let 7 : [* D D — (g ® g)" be a formal power series satisfying (14) (with
e =1). By (6), we can write

A7) r) = 504 i) i () + oo N) + (o) @ 1S,

where 7 {(A) € [®, 7 p,(A) € [® ho, Ty, 1(A) € ho @ [ and where ¢(N) €
End (ho @ gz) is a sum of maps ¢z(A) € End (gz). By the unitarity condition,
rii(A) € AL rp, (A) = =gl (A) and @ z(N) = —@E(N).

With these notations, the CDYBE splits into 4 components: the [ ® [ ® [-
part, the [® [® ho-part, the [® g5 ® g—s-part and the g5 ® g5 ® gy-part where
a+pB+5=0.

e The [® [® [-part: let us set ri; = Z” Ci,j(N)x; ® xj. This part of the
CDYBE can then be written:

oC; 1, N OCk,i n oC; ;

81‘1’ 83:]- al‘k

(18) =0 Vi jk
and says that Z” C; jdx; N\ dxj is a closed 2-form.
e The [® [® ho-part: let us set rip, = >, . D; j(A)x; ® y; for some basis
(yj) of bo. This part of the CDYBE is
IDi; _ 0Dy,

(19) 8—$‘k = a:pl \V/Z,k,j

and says that for any j, >, D; j(A)dz; is a closed 1-form.

Since r is defined on a polydisc, the above forms are exact. Let f: D — hg
be such that df (A\) = >, D; j(A\)dz; ® y; and let € be a 1-form on D such that
dé¢ = Z” C;jdz; A dxj. Then £ defines a function £ : D — [. The gauge
transformation which should be applied to r to make it satisfy (15) is easily seen
to be the following: r(A) — r(A)? = 2Q + (e72 /M p(N)erd FN) @ 1)) where

g(A) = ef V) =€)



ON CLASSIFICATION OF DYNAMICAL r-MATRICES 25

Thus, we can assume that r; = r p, = 0, in which case the remaining
components of the CDYBE can be written in the following way:

o The [® ga ® g_a-part:

1
(20) Ao + (¢ = J)dha = 0.

In particular, ry, 5, € A%py is constant.
e The g5 ® g3 ® g5-part where a + 5+ 7 = 0:
1
(21) Apa®@9ps®@1+¢s@10ps+10 95095+ 1d) =0

where A : g@®gg®gﬁ_)(C7$®y®ZH([$7y]?Z)‘

This set of equations is sufficient by skew-symmetry of the CDYBE.

5.2. The Cayley transform. Let usset Ay = Im (¢(A\)£3), I+ = Ker (o(A)F
%) Notice that, by (20), A1 and I1 are indeed independent of A. Furthermore,
Ay, It are [-graded by the weight-zero condition, I+ C A4 and Ay = Ii by
the unitarity condition. Notice also that Ay + A_ & [ = g. Now consider

N[—=

W) =2 AT, AT
-+

N[—=

Extend () to ¥(\) : L@ Ay /Iy — 1@ A_/I_ by setting ¢ = Id. It is clear
that ¢ is a well-defined linear isomorphism. The following proposition is crucial:

Proposition 2. The maps ps satisfy (20,21) if and only if the following hold:

(i) Ay @1 is a subalgebra of g and Iy ® 1 is an ideal of Ay @ L.
(i) there exists a (constant) map vy : (& Ay /I — [® A_/I_ such that

V(N)jge = e_(a’A)wolg&-
(iii) The map g is a Lie algebra map:

(22) [Yo(), %0 (y)] = Yoz, y].

Proof. Assume that ¢ satisfies (20,21) and let a € ga, b € g3, ¢ € g5 with
a+ B +74 = 0. From (21), we have

([(‘po—z + —)CL, (SOB + _)b]7 C)+([a’7 (()DB + )b]7 ((p’Y )C)
2 2 2
1
+([(pa = 5)a, b, (95 = 5)c) =0
2 2
Since @5 = —¢* 5, and (, ) is a nondegenerate pairing gy ® g_5 — C, this implies

that AL & [is a Lie subalgebra of g. Note that the term in [ is necessary here
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since [ga, 9—a] € g5 = bo, but is not consequential as A is [-graded. The second
claim of (i) follows from the relation
1 1 1 1
(I(pa — 3)a. (05— )8 ) + (fa, (93 + ), (05 + 5))
1 1
+ (s~ 3)asb), (o5 + 5)e) =0

The proof is the same for A_ and I_. The equivalence of (ii) and (20) follows
from the equality

doa(pa +3) — (o — 3)d0a

dwlga = (Pa + %)2
1
o e
—(a, )\)w‘%.
where we used (20). Finally it follows from (21) that
1 1 1 1 1 1

(@m - 5)([(@& + 5)‘% (05 + 5)5]) = (‘Pm+ 5)([(%7 - 5)6% (05— 5)5])-
This implies (iii). B

Conversely, if (i-iii) are satisfied then for any = € ga, ¥y € g3 (@ + 3 # 0)
there exist z € gg77 such that [(pa — 3)z, (o5 — 3yl = (eaq7 — 1)z. Since ¢
is a Lie algebra map, [(va + 3)z, (95 + 3)y] — (paq5 + 1)z € Ker (p—5— 3).
Subtracting, we obtain [(¢s+3), Y]+ [z, (¢z+3)y]— [z, y] — 2 € Ker ( i 1).
Applying (¢ — —) and dropping the indices, we have

(¢~ 5) (o + a5 + 2. (0 + )31~ [:3]) = [0 — 5)z. (9~ )l
Thus,

o+ ), (o + 3l — (o + ) ([0 — )] + [, (0 + 5)3]) =0.
which is equivalent to (21). O

We will call the triple (A4, A_, 1) the Cayley transform of ¢. We are now
reduced to the classification of all triples satisfying (i-iii) and which arise as a
Cayley transform (Cayley triples).

5.3. Classification of Cayley triples. Let (A4, A_, 1) be a Cayley triple.
If g=ny ©hdn_ is a polarization of g and I' C II(n}) we will denote by q;F
(resp. qp ) the subalgebra generated by ny and g_,, @ € I' (resp. generated
by n_ and g,, @ € I'). We denote by pljf =bh+ quf the parabolic subalgebras
associated to I
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Proposition 3. There exists a polarization g = nfr @ bh @ nl, two subsets
r,,r_c H(ni_) and two vector spaces Vi, V_ C b with Vi C Vi such that

(© AL =qf, OV, (GA_=qp @ V_.
Proof. Notice that (I®A, )t = I, C [@A,. It is known, (c.f [Bou, chap.VIIL§10,

Thm. 1] or [BD]), that this implies that [ A, = g @ V. for some polarization
g=n, &b ®&n’. Similarly, [® A_ = q, ® V_ for some polarization g =
n’l @ h” @ n’. Moreover, [ acts semisimply on A4 so [ C b, [ C h”. But [
contains a regular element, thus [ = b’ = h”. Proposition 3 is now an easy

consequence of the following lemmas:

Lemma 5. Let g be a simple Lie algebra and b a Cartan subalgebra. Let a; and
as be two parabolic subalgebras containing b such that a; + as = g. Then there
exists a polarization g =ny ®hdn_ and I'y,I'_ C Il such that a1 = pl'f+ and

g = ]JI:_

Proof. Let ny @& bh @ n_ be a polarization of g such that b, C a; and for which
dim (n4 N ag) is minimal. We claim that b_ C as. Suppose on the contrary
that there exists a simple root « € Il such that g_, ¢ as. Then g_, C a1 since
a1 +as = g and g, C as since ay is parabolic. But then s,ny @ h & son_ is
a polarization of g for which s,by C a; and dim (sony Naz) < dim (ng N ag).
Contradiction. O

In particular, Ay, I+ are all h-graded and

L= eVi)" = P gaaVEnh),
a€A L \(T)

I =@ _eV) = @ eaVnh).
aEA_\(T_)

Thus Ay /I =gr, ®Viand A_/I_ = gr_ @ V5 for some suitable V1, V5 C byo.
Let L1 (A) be the generalized eigenspace of ¢(A) associated to +4. Since ¢

is a solution of an ordinary differential equation with stationary points at %, —%,

Lis (A) is independent of A and we will simply denote it by L, 1. Similarly, let
L' be the sum of all other generalized eigenspaces so that g = [ L 1 oL ®L_ 1.

Proposition 4. There exists a polarization g =0 @ h@n_ and a subset I's C
II(ny) such that Lyy C by, L' C gr, +b and p(ny) C 0y

Proof. We will construct a polarization satisfying the above conditions in several
steps.

Lemma 6. We have:

(i) [® Ly1 is an h-graded solvable subalgebra,
:EZ
(ii) (@ L' is an h-graded subalgebra,
(iii) we have [Lyi, L' ] C 1@ Ly1.
2 2
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Proof. This follows from the proofs of Lemma 12.3 and Theorem 12.6 in [BD].
Notice that L, 1 ¢ bl in general. We first construct a polarization g =
n3 @ bh @ n? such that Ly C b3. We have I C Ly, . Notice that L1 N nt C
gr, Ngr_ = gr, nr_ since n®. C (gr_ ©7_) and Ly is solvable. Similarly, L_; N
n# C gr,nr_. Moreover, by Lemma 6, [@(L% Ngr nr_) and [EB(L,% Ngr nr_)
are disjoint, solvable, h-graded subalgebras. By lemma 5 it follows that there
exists an element s of the group Wr_ nr_ such that [ @ (Li% N 9F+mr,) C

sbl. Notice that s permutes elements of AT\ (I'y NT'_), leaving it globally
unchanged. Thus, [& L,1 C sbl. Set n% = snl.

Now we construct a polarization of g satisfying the other conditions of propo-
sition 4. Recall that &L C gr,ar_ +(ViNVa). Thus (L'NnZ) @ (Ly N3 (04N
o)) =n2(TyNTo).

Since [L’,L%] C [® Ly by Lemma 6,(iii), Ly N n?(Cy NT_) is an ideal of
n? (4 NT_). But L' Nn? is a subalgebra. It is easy to see that this implies
that L' N ni is generated by a set of simple root subspaces of ni Ty NTo), ie
L'Nn3 =n3 (D) for some I' C II(n?). Moreover, the restriction of (, ) to L' is
nondegenerate, hence L’ n? = n2 (-T). Thus [©gr C [®L' C [@gr+(ViNs).

Since p(\) + 3 is invertible in L', 1()) is a well-defined operator L' — L/,
satisfying (22), and ¥(\)(ho N L") C ho N L. Now, [ contains a regular element.
Thus there exists a polarization of g compatible with the [-weight decomposition.
This induces a polarization of gr, compatible with the [-weight decomposition
of gr. Hence, there exists s’ € Wr C W such that vy, is compatible with
the polarization s'n% @ h @ s'n?. Since s’ leaves A\ (') globally unchanged,
the polarization g = n. @ h @ n_ with iy = s'n% and I's = s'T satisfies the
requirements of proposition 4. O

To sum up, we have shown that there exists a polarization g=n, $hdn_,
compatible with ¢, subsets I'y = §'sT"y, I'y = §/sI'_ and I's C II(ny) such that
(Ap/I)Nng =0 (T1), A Ny =03 (T2) and L' Ny =11y (Ty).

The map 1y now restricts to a Lie algebra isomorphism ny (I'y) — 0y (T'2).
This isomorphism maps weight spaces to weight spaces as ¥y preserves by and
¢ is -invariant. Define 7 : 'y — I'y by ¥0(ga) = 87(a)- It is a norm-preserving
bijection. Thus (I'1,T'3,I'3) is a generalized Belavin-Drinfeld triple. It is clear
that I's is the largest subset of I'y N I’y stable under 7, and that ¢y : 0y (I's) —
n(T'3) is a Lie algebra isomorphism. Finally, it is easy to see that the map ¢ is
obtained from this data by formulas

P()(ea) = 3ea (0 g (1))

o) (ea) = 2eat — (ea)  (a€ ()

2 1 — e(a’)‘)wo

Conversely, it is clear how to construct from a generalized Belavin-Drinfeld
triple (I'1, T'g, 7) the subalgebras ny (I'1), ny(I'2), ny(I's) and, for each choice of
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Chevalley generators, a Lie algebra isomorphism v : n4(I'y) — ny ('), and the
map (A). Condition (16) on the hy ® ho-part comes from (21)-see [BD].

6. Examples

6.1. Constant r-matrices. Our results imply the following:

Corollary 1. A dynamical r-matriz associated to a generalized Belavin-Drinfeld
triple (I'1, T2, T) is gauge equivalent to a constant r-matriz if and only if T's = ().

6.2. bh-invariant dynamical r-matrices. When [ = h, our classification co-
incides with that given in [EV]: the only h-graded generalized Belavin-Drinfeld
triple is of the form (I',I', 7 = Id). The dynamical r-matrices obtained are then
(up to gauge transformations and choice of Chevalley generators):
r(A) = % + Z %ea ANe_q+ Z %coth(%(a, Neg N e_q.
acAy, ag(T) ae(YNAL

6.3. Example for sl3 and sl,,. The first nontrivial example is for g = sl3: fix
a polarization g = h & @, g, where AT = {a, 3, + B} and set [ = Ch,,.
Consider the generalized Belavin-Drinfeld triple with I'y = I's = {a, 8} and
T:a+— [, f+— «. In this case, we can choose the map 1y to be the following

€a H €3, he = hg, e_q > e_p
€3 — €q, hg — hq, e_gre_q
€a+p = —Ca+p, €C—aq-p = —€_a-p-

The corresponding dynamical r-matrix is given by:

Q 1 1
r(A) = 3 + 7,50 + 3 coth(a, Neq Ne_q + 3 coth(5, Neg N e_g

1
(23) + 5 th(a + 8, N)earp Ae—a—p+ egNe_q

1
2sinh(a, )

— —  eaNe_g.
+2sinh(a,)\)e e

This dynamical r-matrix is gauge-equivalent to the dynamical r-matrix

_ Q 1
7(A) =3 + Tho.bo + by — 7“[2})0 + 5 coth(a, Neq Ae_qy

1 1
(24) + 3 coth(B3, N)eg Ne_g + 5 th(a+ B, Nears Ae_a_p
+ e(a’)‘) /\ + 6_(a7>‘) /\
————————egNe_qg+ —————ey Ne_g.
2sinh(a, ) # 2sinh(a, A) g

when

1
(@a®14+1@7()(rhobe + TLho — Tip,) = 5 (@ +7(a))%.
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In particular, 7(\) interpolates the constant r-matrix obtained from the Belavin-
Drinfeld triple (I'y = a,T'y = 8,7 : @ — f) at (o, \) — oo and the r-matrix
obtained from (I'y = 3, Ty = a,7: f+— «) at (a, ) — —o0.

Remark. The generalization of this example to g = slo,41 is the following.
Fix a polarization and let [ = Ch,. Denote by A the root system and by
IT = (aq, .. . ag,) the set of positive simple roots. Let i : ay — aap41-k be the in-
volution of the Dynkin diagram. The dynamical r-matrix obtained from the gen-
eralized Belavin-Drinfeld triple (I'y = I'y = II, 7 = ) interpolates the constant
r-matrices obtained from the Belavin-Drinfeld triples (I'y = (a1,...a,), 2 =
01n+1,...&2n),73: ﬂ and,(Flzz 01n+1,...02n),ré ::(al,...an),7'::i’1)

6.4. Permutation dynamical r-matrices. Consider g = sly,, and let II =
(aq,...a9,—1) denote a system of simple roots. For any o € S,,, we can construct
a generalized Belavin-Drinfeld triple by setting I'y = I's = (a1, @, ... agp—1) and
T Q21 F7 Qog(k)—1-
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