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ON CLASSIFICATION OF DYNAMICAL r-MATRICES

Olivier Schiffmann

Abstract. Using the gauge transformations of the Classical Dynamical Yang-
Baxter Equation introduced by P. Etingof and A. Varchenko in [EV], we reduce
the classification of dynamical r-matrices r on a commutative subalgebra l of
a Lie algebra g to a purely algebraic problem, under some assumption on the
symmetric part of r. We then describe, for a simple complex Lie algebra g, all non
skew-symmetric dynamical r-matrices on a commutative subalgebra l ⊂ g which
contains a regular semisimple element. This interpolates results of P. Etingof and
A. Varchenko ([EV], when l is a Cartan subalgebra) and results of A. Belavin and
V. Drinfeld for constant r-matrices ([BD]). This classification is similar, and in
some sense simpler than the Belavin-Drinfeld classification.

1. The classical Yang-Baxter equation

Let g be a Lie algebra. The CYBE is the following algebraic equation for an
element r ∈ g ⊗ g:

[r12, r13] + [r12, r23] + [r13, r23] = 0.(1)

Solutions of this equation are called r-matrices. In the theory of quantum groups,
one is mainly interested in r-matrices satisfying

r + r21 ∈ (S2g)g.(2)

See [CP] for the links with the theory of quantum groups, and [Che] for links
with Conformal Field Theory and the Wess-Zumino-Witten model on P

1. The
geometric interpretation of the CYBE was given by Drinfeld in terms of Poisson-
Lie groups ([Dr1]).

2. The Belavin-Drinfeld classification

Notations. Let g be a simple complex Lie algebra with a nondegenerate invari-
ant form ( , ), h ⊂ g a Cartan subalgebra and ∆ the root system. For α ∈ ∆, let
gα denote the root subspace associated to α. Let W be the Weyl group and sα,
α ∈ ∆ the reflection with respect to α⊥. Finally, let Ω ∈ S2g and Ωh ∈ S2h be
the inverse elements to the form ( , ). Notice that (S2g)g = CΩ.

For any polarization g = n− ⊕ h ⊕ n+, we denote by Π or Π(n+) the cor-
responding set of simple positive roots, by ∆+ the set of positive roots and by
b± = n±⊕h the Borel subalgebras. For Γ ⊂ Π, set 〈Γ〉 = ZΓ∩∆, and let gΓ be the
subalgebra generated by gα, α ∈ 〈Γ〉. We will write gΓ = n+(Γ) ⊕ h(Γ) ⊕ n−(Γ)
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for the induced polarization and W (Γ) for the subgroup of W generated by sα,
α ∈ Γ. Let us fix a polarization of g.

Definition. A Belavin-Drinfeld triple is a triple (Γ1, Γ2, τ) where Γ1, Γ2 ⊂ Π and
τ : Γ1

∼→ Γ2 is a norm-preserving bijection satisfying the following “nilpotency”
condition:

“For any γ1 ∈ Γ1, there exists n > 0 such that τn(γ1) ∈ Γ2\Γ1”.
Let (Γ1,Γ2, τ) be a Belavin-Drinfeld triple. For each choice of Chevalley

generators (eα, fα, hα)α∈Γi , i = 1, 2, the isomorphism τ induces a Lie algebra
isomorphism gΓ1

∼→ gΓ2 (by eα 
→ eτ(α), fα 
→ fτ(α), hα 
→ hτ(α)). Define a
partial order on ∆+ by setting α < β if there exists n > 0 such that τn(α) = β
(in particular, α ∈ Γ1 and β ∈ Γ2).

Definition. A basis (xα)α∈∆ of n+ ⊕ n− is called admissible if (xα, x−α) = 1
and τ(xα) = xτ(α) for α ∈ 〈Γ1〉.

Theorem 1 (Belavin-Drinfeld). Let g be a simple complex Lie algebra.
1. Let (Γ1,Γ2, τ) be a Belavin-Drinfeld triple, (xα) an admissible basis, and let
r0 ∈ h ⊗ h be such that

r0 + r21
0 = Ωh,(3)

(τ(α) ⊗ 1)r + (1 ⊗ α)r = 0 for α ∈ Γ1.(4)

Then

r = r0 +
∑

α∈∆+

x−α ⊗ xα +
∑

α,β∈∆+,α<β

x−α ∧ xβ(5)

is an r-matrix satisfying r + r21 = Ω.
2. Any r-matrix satisfying r + r21 = Ω is of the above type for a suitable polar-
ization of g.

This theorem is proved in [BD]. For instance, the standard r-matrix for a
fixed polarization r = Ωh

2 +
∑

α∈∆+
x−α ⊗ xα corresponds to Γ1 = Γ2 = ∅.

Remark. Skew-symmetric r-matrices admit a well known interpretation in terms
of nondegenerate 2-cocycles on Lie subalgebras of g ([Dr1]), but their classifica-
tion is unavailable since it requires a classification of Lie subalgebras in g.

3. The dynamical Yang-Baxter equation

Let g be a Lie algebra over C and l ⊂ g a subalgebra. An element x ∈ g ⊗ g

will be called l-invariant if

[k ⊗ 1 + 1 ⊗ k, x] = 0 (∀ k ∈ l).(6)
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For x ∈ g⊗3, we let Alt(x) = x123 + x231 + x312. Let D ⊂ l∗ be any open region.
The CDYBE is the following differential equation for a holomorphic l-invariant

function r : D → g ⊗ g:

Alt(dr) + [r12, r13] + [r12, r23] + [r13, r23] = 0,(7)

where the differential of r is considered as a holomorphic function

dr : D → g ⊗ g ⊗ g, λ 
→
∑

i

xi ⊗ ∂r23

∂xi
(λ), (λ ∈ l∗),

for any basis (xi) of l. In this case,

Alt(dr) =
∑

i

x
(1)
i

∂r23

∂xi
+

∑
i

x
(2)
i

∂r31

∂xi
+

∑
i

x
(3)
i

∂r12

∂xi
.

The solutions to this equation are called dynamical r-matrices. Dynamical r-
matrices which are relevant to the theory of quantum groups are those satisfying
the following condition, analogous to (2):

Generalized unitarity: r(λ) + r21(λ) ∈ (S2g)g.(8)

Remark. The CDYBE was first written down by G. Felder and C. Wiezcerkowski
in connection with the Wess-Zumino-Witten model on elliptic curves ([FW]).
The relation with elliptic quantum groups is explained in [Fe]. A geometric
interpretation of the CDYBE analogous to the theory of Poisson-Lie groups for
the CYBE is given in [EV].

4. Gauge transformations

We recall some results from [EV]. We suppose here that l is commutative
and we let D be the formal polydisc centered at the origin. Let G be a complex
Lie group such that Lie(G) = g, and let L be the connected subgroup of G such
that Lie(L) = l. Let GL be the centralizer of L in G and gl its Lie algebra.We
will denote by (g ⊗ g)l the space of all l-invariant elements in g ⊗ g.

Let g : D → GL be any holomorphic function; the 1-form η = g−1dg gives
rise to a function η : D → l ⊗ gl. If r : D → (g ⊗ g)l is an l-invariant function
satisfying (8), we set

rg = (g ⊗ g)(r − η + η21)(g−1 ⊗ g−1).

Proposition 1. The function r is a dynamical r-matrix if and only if the func-
tion rg is.

Thus the group Map(D, GL) is a gauge transformation group for the CDYBE.
Notice that this group is not commutative if GL isn’t.

Theorem 2. Let ρ, r : D → g⊗2 be two dynamical r-matrices satisfying (8) such
that r(0) = ρ(0). There exists g ∈ Map(D, GL) such that ρ = rg.



16 OLIVIER SCHIFFMANN

This shows that the space of dynamical r-matrices is, up to gauge equivalence,
finite dimensional. Proofs of the above results can be found in [EV].

We will now prove a converse of Theorem 2 which reduces the CDYBE to a
purely algebraic equation under some assumption on the symmetric part Ω

2 of
r: let Ω ∈ (S2g)g, let gΩ be the ideal in g generated by the components of Ω
and denote by gΩ =

⊕
λ gΩ(λ) the generalized weight space decomposition of

gΩ with respect to the adjoint action of l. The condition we will need is the
following:

gl acts semisimply on gΩ(0).(*)

Suppose that (*) is fulfilled and let z(gl) denote the center of gl. Then we
have a decomposition gΩ(0) = z0(gl) ⊕ V where z0(gl) = z(gl) ∩ gΩ(0) and V
is the sum of all non-trivial irreducible gl-modules in gΩ(0). It is clear that
l ∩ V = {0}. We will say that a complement l′ of l in g is admissible if V ⊂ l′,
and write π : g → l for the projection along l′. Notice that by gl-invariance of
Ω,

Ω ∈ S2z0(gl) ⊕ S2V ⊕
⊕
λ	=0

gΩ(λ) ⊗ gΩ(−λ).(9)

We will denote by CY B : g⊗2 → g⊗3 the map:

r 
→ [r12, r13] + [r12, r23] + [r13, r23].

It is more convenient to work with the skew-symmetric part of r. If r(λ) +
r21(λ) = Ω ∈ (S2(g))g, we set s(λ) = r(λ)− Ω

2 . It is easy to see that the CDYBE
for r is equivalent to the following equation for s:

Alt(ds) + CY B(s) +
1
4
CY B(Ω) = 0.(10)

Recall that as Ω is symmetric and invariant, CY B(Ω) = [Ω13,Ω23].

Theorem 3. Let G be a complex Lie group and L ⊂ G a connected commutative
subgroup. Let g, l, gl denote the Lie algebras of G, L and GL. Let Ω ∈ (S2g)g.
Then
1. Let l′ be any complement of l in g. Any dynamical r-matrix r(λ) on l such
that r(λ) + r21(λ) = Ω is gauge equivalent to a dynamical r-matrix r̃(λ) such
that r̃(0) ∈ Ω

2 + (Λ2(l′))l.
2. Suppose that condition (∗) is true and let l′ be any admissible complement of
l in g. Let r0 ∈ Ω

2 + (Λ2(l′))l satisfy
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CY B(r0) ∈ Alt(l ⊗ g ⊗ g),(11)

such that s0 = r0 − Ω
2 is a regular point of the algebraic manifold

MΩ = {s ∈ (Λ2(l′))l |CY B(s +
Ω
2

) ∈ Alt(l ⊗ g ⊗ g)}.

Then there exists a dynamical r-matrix r(λ) : D → Ω
2 + (Λ2(l′))l such that

r(0) = r0.

The condition (*) is satisfied in the following two interesting special cases:
when Ω = 0 (triangular case) or when gl acts semisimply on g (for instance, G
is reductive and L is contained in a maximal torus of G or more generally, if GL

is reductive).
The proof of this theorem will occupy the rest of this section. Let us first

prove part 1:

Lemma 1. Any dynamical r-matrix such that r(λ) + r21(λ) = Ω is gauge-
equivalent to a dynamical r-matrix r̃(λ) such that r̃(0) ∈ Ω

2 + (Λ2(l′)l.

Proof. Let η ∈ l ⊗ gl be such that r(0) − η + η21 ∈ Ω
2 + Λ2(l′). There exists a

function g : D → GL such that g−1dg(0) = η (see [EV], Lemma 1.3). It is easy
to see that r̃ = rg satisfies the desired conditions.

Let us now prove part 2. We will interpret the CDYBE (10) as a consistent
system of differential equations defined on MΩ.

For s ∈ MΩ, (10) is equivalent to

(π ⊗ 1 ⊗ 1) Alt(ds) = −(π ⊗ 1 ⊗ 1)(CY B(s) +
1
4
CY B(Ω)).

This reduces to

ds = −(π ⊗ 1 ⊗ 1)([s12, s13] +
1
4
CY B(Ω)),(12)

or, in coordinates (xi), where (xi) is a basis of l,

∂s

∂xi
= −(xi ⊗ 1 ⊗ 1)([s12, s13] +

1
4
CY B(Ω)).

Lemma 2. The system (12) is consistent.
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Proof. Set X : MΩ → l ⊗ g ⊗ g, s 
→ (π ⊗ 1 ⊗ 1)([s12, s13] + 1
4CY B(Ω)). By

definition, the curvature of (12) is given by

∑
i,j

xi ⊗ xj ⊗
( ∂2s

∂xi∂xj
− ∂2s

∂xj∂xi

)

= (π ⊗ π ⊗ 1 ⊗ 1)
({

[s23, [s12, s14]] + [s23,
1
4
CY B(Ω)124]

+ [[s12, s13], s24] + [
1
4
CY B(Ω)123, s24]

}

− {
[s13, [s21, s24]] + [s13,

1
4
CY B(Ω)214]

+ [[s21, s23], s14] + [
1
4
CY B(Ω)213, s14]

})

= (π ⊗ π ⊗ 1 ⊗ 1)
({

[s23, [s12, s14]]

+ [[s12, s13], s24] − [s13, [s21, s24]] − [[s21, s23], s14]
}

+
1
4
{
[s13 + s23, CY B(Ω)124] − [s14 + s24, CY B(Ω)123]

})
.

By the Jacobi identity,

[s23, [s12, s14]] = [[s21, s23], s14], [[s12, s13], s24] = [s13, [s21, s24]].

By g-invariance of CY B(Ω), we have

[s13 + s23, CY B(Ω)124] = [s34, CY B(Ω)124],

[s14 + s24, CY B(Ω)123] = −[s34, CY B(Ω)123].

Overall, we have the following expression for the curvature of (12):

1
4
(π ⊗ π ⊗ 1 ⊗ 1)([CY B(Ω)123 + CY B(Ω)124, s34] =

1
4
[(π ⊗ π ⊗ 1)CY B(Ω), s]

But (9) and the fact that l′ is admissible imply that (π ⊗ π ⊗ 1)CY B(Ω) = 0.
Thus, (12) is consistent.

Lemma 3. The system (12) is defined on MΩ, i.e the vector fields defined
by (12) are tangent to MΩ.

Proof. Let x∗ ∈ l∗
π∗
↪→ g∗, and set h = (x∗ ⊗ 1⊗ 1)([s12, s13] + 1

4CY B(Ω)). Since
s ∈ Λ2(l′) we have (x∗ ⊗ 1 ⊗ 1)[s12, s13] ∈ Λ2(l′). Moreover, the admissibility of
l′ and (9) together imply that (x∗ ⊗ 1 ⊗ 1)(CY B(Ω)) ∈ (Λ2l′)l since
[l ⊗ 1, S2z0(gl)] = 0. Thus h ∈ Λ2l′.

To conclude the proof of Lemma 3 and Theorem 3, we now show that

[s12, h13] + [s12, h23] + [s13, h23]

+ [h12, s13] + [h12, s23] + [h13, s23] ∈ Alt(l ⊗ g ⊗ g).
(13)



ON CLASSIFICATION OF DYNAMICAL r-MATRICES 19

To make the presentation more clear, we will use the pictorial technique to
represent expressions and make computations: we associate to each morphism
from a n-tensor to a m-tensor a diagram in the following way: the operation of
taking the commutator is represented by

a

b
[a,b]

Applying a linear form x∗ will be denoted by

x*a x  (a)*

Finally, we will represent s and Ω
2 , which can be thought of as maps from a

0-tensor to a 2-tensor, by

Ω      =
2

    =  

For instance,

CYB(s)    = + +

Lemma 4. We have x∗(3)[CY B(s + Ω
2 )123, s34] ∈ Alt(l ⊗ g ⊗ g) or, in pictures

(modulo Alt(l ⊗ g ⊗ g))

+ + + = 0
x * x *

x * x *

Proof. Recall that CY B(s + Ω
2 ) ∈ Alt(l ⊗ g ⊗ g). Thus the only part of the

above expression which can lie outside of Alt(l ⊗ g ⊗ g) is obtained from the
g ⊗ g ⊗ l-part of CY B(s). But if y ∈ l,

(x∗ ⊗ 1)[y ⊗ 1, s] = −(x∗ ⊗ 1)[1 ⊗ y, s]
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by l-invariance of s. This last expression is zero since s ∈ (Λ2(l′))l. Lemma 4 is
proved.

It is clear how to generalize Lemma 4 to other expressions of the form

x∗(k)[CY B(s +
Ω
2

)123, sk4].

Now, (13) can be drawn as

+

+

+

+

++

+ ++

+

+
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but by Lemma (4) we have, modulo Alt(l ⊗ g ⊗ g),

+ =

=

=+

+

-

+

+

-

It is easy to check that the sum of the terms of type [CY B(s), s] in this last
expression is zero by the Jacobi identity. Moreover, by g-invariance of Ω, we
have

-

=

=

=
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Thus, modulo Alt(l ⊗ g ⊗ g), (13) reduces to

+

+ + +

+

+ - -

The sums of terms in each column is zero by Jacobi Identity. This concludes the
proof of Theorem 3.

5. Classification of dynamical r-matrices

Let g be a simple Lie algebra and let Ω ∈ (S2g)g be the Casimir element. In
that case, (8) becomes

r(λ) + r21(λ) = εΩ.(14)

We will classify all solutions of equations (6,7,14) when ε �= 0 and when l

contains a semisimple regular element. In particular, in this case, the centralizer
h of l is the unique Cartan subalgebra containing l. Notice that we can assume
that ε = 1 ( since the assignement r(λ) → εr(ελ) is a gauge transformation
of (7)). We can also assume that the restriction of ( , ) to l is nondegenerate.
Indeed, for any dynamical r-matrix, we can replace l by the largest subspace of
h for which r is invariant, and such a subspace is real. Let h0 be the orthogonal
complement of l in h and let i : l ↪→ h be the inclusion map. We will also write
( , ) for the induced bracket on l∗. Let Ωh0 denote the Casimir element of the
restriction of ( , ) to h0.
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5.1. Statement of the theorem. Let g = n+ ⊕ h⊕ n− be a polarization of g.

Definition. A generalized Belavin-Drinfeld triple is a triple (Γ1,Γ2, τ) where
Γ1,Γ2 ⊂ Π, and τ : Γ1

∼→ Γ2 is a norm-preserving bijection.

In other terms, in a generalized Belavin-Drinfeld triple, we drop the nilpotency
condition. We will say that a generalized Belavin-Drinfeld triple is l-graded if τ
preserves the decomposition of g in l-weight spaces. If (Γ1,Γ2, τ) is a generalized
Belavin-Drinfeld triple, we will denote by Γ3 the largest subset of Γ1 ∩Γ2 which
is stable under τ , and Γ̃1 = Γ1\Γ3, Γ̃2 = Γ2\Γ3. It is clear that (Γ̃1, Γ̃2, τ)
is a Belavin-Drinfeld triple. As before, for each choice of Chevalley generators
(eα, fα, hα)α∈Γi , the map τ induces isomorphisms gΓ̃1

→ gΓ̃2
and τ : gΓ3 → gΓ3 .

For λ ∈ l∗, consider the map:

K(λ) : n+(Γ1) → n+(Γ2)

eα 
→ 1
2
eα + e−(α,λ) τ

1 − e−(α,λ)τ
(eα).

Notice that we have

K(λ)(eα) =
1
2
eα +

∑
n>0

e−n(α,λ)τn(eα).

This sum is finite for α �∈ 〈Γ3〉.
Theorem 4. Let g be a simple Lie algebra with nondegenerate invariant bilin-
ear form ( , ), l ⊂ g a commutative subalgebra containing a regular semisimple
element on which ( , ) is nondegenerate, h the Cartan subalgebra containing l

and h0 the orthogonal complement of l in h. Then
1. Any dynamical r-matrix is gauge-equivalent to a dynamical r-matrix r̃ such
that

r̃(λ) − r̃(λ)21 ∈ (l⊥)⊗2 = (
⊕
α	=0

gα ⊕ h0)⊗2.(15)

2. Let (Γ1,Γ2, τ) be an l-graded generalized Belavin-Drinfeld triple and let
(eα, fα, hα)Γi be a choice of Chevalley generators. Let rh0,h0 ∈ h0 ⊗ h0 satisfy
the equation

(τ(α) ⊗ 1)rh0,h0 + (1 ⊗ α)rh0,h0 =
1
2
((α + τ(α)) ⊗ 1)Ωh0 .(16)

Then

r(λ) =
1
2
Ω + rh0,h0 +

∑
α∈〈Γ1〉∩∆+

K(λ)(eα) ∧ e−α +
∑

α∈∆+, α	∈〈Γ1〉

1
2
eα ∧ e−α

is a solution the CDYBE satisfying (15).
3. Any solution of the CDYBE satisfying (15) is of the above type for a suitable
polarization of g.
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The proof of this theorem will occupy the rest of this section. Our methods
are greatly inspired by the paper [BD]. Notice that 1. follows from Theorem 3,
but we will describe the gauge transformations explicitely in this case.

Notations. Let ∆ ⊂ h∗ be the root system of g with respect to h and set
∆l = i∗(∆) ⊂ l∗. We will denote by gᾱ the weight subspace associated to
ᾱ = i∗(α) ∈ ∆l, and we set g0 = h0. It is clear that

gα =
⊕

β∈∆, i∗(β)=α

gβ

In particular, ( , ) is a pairing gα × g−α → C.
A vector space V ⊂ g will be called h-graded (resp. l-graded) if it is an h-

submodule (resp. l-submodule) of g. Finally, let Ω′ ∈ (l⊥)⊗2 denote the Casimir
(inverse element) of the restriction of ( , ) to l⊥ = h0

⊕
gα.

Now let r : l∗ ⊃ D → (g ⊗ g)l be a formal power series satisfying (14) (with
ε = 1). By (6), we can write

r(λ) =
1
2
Ω + rl,l(λ) + rl,h0(λ) + rh0,l(λ) + (ϕ(λ) ⊗ 1)Ω′,(17)

where rl,l(λ) ∈ l ⊗ l, rl,h0(λ) ∈ l ⊗ h0, rh0,l(λ) ∈ h0 ⊗ l and where ϕ(λ) ∈
End

(
h0

⊕
gα

)
is a sum of maps ϕα(λ) ∈ End (gα). By the unitarity condition,

rl,l(λ) ∈ Λ2l, rl,h0(λ) = −r21
h0,l(λ) and ϕ−α(λ) = −ϕ∗

α(λ).
With these notations, the CDYBE splits into 4 components: the l ⊗ l ⊗ l-

part, the l⊗ l⊗ h0-part, the l⊗ gᾱ ⊗ g−ᾱ-part and the gᾱ ⊗ gβ̄ ⊗ gγ̄-part where
ᾱ + β̄ + γ̄ = 0.

• The l ⊗ l ⊗ l-part: let us set rl,l =
∑

i,j Ci,j(λ)xi ⊗ xj . This part of the
CDYBE can then be written:

∂Cj,k

∂xi
+

∂Ck,i

∂xj
+

∂Ci,j

∂xk
= 0 ∀ i, j, k(18)

and says that
∑

i,j Ci,jdxi ∧ dxj is a closed 2-form.
• The l ⊗ l ⊗ h0-part: let us set rl,h0 =

∑
i,j Di,j(λ)xi ⊗ yj for some basis

(yj) of h0. This part of the CDYBE is

∂Di,j

∂xk
=

∂Dk,j

∂xi
∀ i, k, j(19)

and says that for any j,
∑

i Di,j(λ)dxi is a closed 1-form.

Since r is defined on a polydisc, the above forms are exact. Let f : D → h0

be such that df(λ) =
∑

i Di,j(λ)dxi ⊗ yj and let ξ be a 1-form on D such that
dξ =

∑
i,j Ci,jdxi ∧ dxj . Then ξ defines a function ξ : D → l. The gauge

transformation which should be applied to r to make it satisfy (15) is easily seen
to be the following: r(λ) 
→ r(λ)g = 1

2Ω + (e−ad f(λ)ϕ(λ)ead f(λ) ⊗ 1)Ω′ where
g(λ) = ef(λ)e−ξ(λ).
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Thus, we can assume that rl,l = rl,h0 = 0, in which case the remaining
components of the CDYBE can be written in the following way:

• The l ⊗ gᾱ ⊗ g−ᾱ-part:

dϕᾱ + (ϕ2
ᾱ − 1

4
)dhᾱ = 0.(20)

In particular, rh0,h0 ∈ Λ2h0 is constant.
• The gᾱ ⊗ gβ̄ ⊗ gγ̄-part where ᾱ + β̄ + γ̄ = 0:

Λ
(
ϕᾱ ⊗ ϕβ̄ ⊗ 1 + ϕᾱ ⊗ 1 ⊗ ϕγ̄ + 1 ⊗ ϕβ̄ ⊗ ϕγ̄ +

1
4
Id

)
= 0(21)

where Λ : gᾱ ⊗ gβ̄ ⊗ gγ̄ → C, x ⊗ y ⊗ z 
→ ([x, y], z).

This set of equations is sufficient by skew-symmetry of the CDYBE.

5.2. The Cayley transform. Let us set A± = Im (ϕ(λ)± 1
2 ), I± = Ker (ϕ(λ)∓

1
2 ). Notice that, by (20), A± and I± are indeed independent of λ. Furthermore,
A±, I± are l-graded by the weight-zero condition, I± ⊂ A± and A± = I⊥± by
the unitarity condition. Notice also that A+ + A− ⊕ l = g. Now consider

ψ(λ) =
ϕ − 1

2

ϕ + 1
2

: A+/I+ → A−/I−.

Extend ψ(λ) to ψ(λ) : l ⊕ A+/I+ → l ⊕ A−/I− by setting ψ|l = Id. It is clear
that ψ is a well-defined linear isomorphism. The following proposition is crucial:

Proposition 2. The maps ϕᾱ satisfy (20, 21) if and only if the following hold :

(i) A± ⊕ l is a subalgebra of g and I± ⊕ l is an ideal of A± ⊕ l.
(ii) there exists a (constant) map ψ0 : l ⊕ A+/I+ → l ⊕ A−/I− such that

ψ(λ)|gᾱ
= e−(ᾱ,λ)ψ0|gᾱ

.
(iii) The map ψ0 is a Lie algebra map :

[ψ0(x), ψ0(y)] = ψ0[x, y].(22)

Proof. Assume that ϕ satisfies (20,21) and let a ∈ gᾱ, b ∈ gβ̄ , c ∈ gγ̄ with
ᾱ + β̄ + γ̄ = 0. From (21), we have

(
[(ϕᾱ +

1
2
)a, (ϕβ̄ +

1
2
)b], c

)
+

(
[a, (ϕβ̄ +

1
2
)b], (ϕγ̄ − 1

2
)c

)

+
(
[(ϕᾱ − 1

2
)a, b], (ϕγ̄ − 1

2
)c

)
= 0.

Since ϕγ̄ = −ϕ∗
−γ̄ , and ( , ) is a nondegenerate pairing gγ̄⊗g−γ̄ → C, this implies

that A+ ⊕ l is a Lie subalgebra of g. Note that the term in l is necessary here
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since [gᾱ, g−ᾱ] �⊂ g0 = h0, but is not consequential as A+ is l-graded. The second
claim of (i) follows from the relation

(
[(ϕᾱ − 1

2
)a, (ϕβ̄ − 1

2
)b], c

)
+

(
[a, (ϕβ̄ +

1
2
)b], (ϕγ̄ +

1
2
)c

)

+
(
[(ϕᾱ − 1

2
)a, b], (ϕγ̄ +

1
2
)c

)
= 0.

The proof is the same for A− and I−. The equivalence of (ii) and (20) follows
from the equality

dψ|gᾱ
=

dϕα(ϕα + 1
2 ) − (ϕα − 1

2 )dϕα

(ϕα + 1
2 )2

= − (ϕ2
α − 1

4 )
(ϕα + 1

2 )2
dhᾱ

= −(ᾱ, λ)ψ|gᾱ
.

where we used (20). Finally it follows from (21) that

(ϕα+β − 1
2
)
(
[(ϕᾱ +

1
2
)a, (ϕβ̄ +

1
2
)b]

)
= (ϕα+β +

1
2
)
(
[(ϕᾱ − 1

2
)a, (ϕβ̄ − 1

2
)b]

)
.

This implies (iii).
Conversely, if (i-iii) are satisfied then for any x ∈ gᾱ, y ∈ gβ̄ (ᾱ + β̄ �= 0)

there exist z ∈ gα+β such that [(ϕᾱ − 1
2 )x, (ϕβ̄ − 1

2 )y] = (ϕα+β − 1
2 )z. Since ψ

is a Lie algebra map, [(ϕᾱ + 1
2 )x, (ϕβ̄ + 1

2 )y] − (ϕα+β + 1
2 )z ∈ Ker (ϕα+β − 1

2 ).
Subtracting, we obtain [(ϕᾱ+ 1

2 )x, y]+[x, (ϕβ̄ + 1
2 )y]−[x, y]−z ∈ Ker (ϕα+β− 1

2 ).
Applying (ϕ − 1

2 ) and dropping the indices, we have

(ϕ − 1
2
)
(
[(ϕ +

1
2
)x, y] + [x, (ϕ +

1
2
)y] − [x, y]

)
= [(ϕ − 1

2
)x, (ϕ − 1

2
)y].

Thus,

[(ϕ +
1
2
)x, (ϕ +

1
2
)y] − (ϕ +

1
2
)
(
[(ϕ − 1

2
)x, y] + [x, (ϕ +

1
2
)y]

)
= 0.

which is equivalent to (21).

We will call the triple (A+, A−, ψ0) the Cayley transform of ϕ. We are now
reduced to the classification of all triples satisfying (i-iii) and which arise as a
Cayley transform (Cayley triples).

5.3. Classification of Cayley triples. Let (A+, A−, ψ0) be a Cayley triple.
If g = n+ ⊕ h ⊕ n− is a polarization of g and Γ ⊂ Π(n+) we will denote by q+

Γ

(resp. q−Γ ) the subalgebra generated by n+ and g−α, α ∈ Γ (resp. generated
by n− and gα, α ∈ Γ). We denote by p±Γ = h + q±Γ the parabolic subalgebras
associated to Γ.
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Proposition 3. There exists a polarization g = n1
+ ⊕ h ⊕ n1

−, two subsets
Γ+,Γ− ⊂ Π(n1

+) and two vector spaces V+, V− ⊂ h with V ⊥
± ⊂ V± such that

l ⊕ A+ = q+
Γ+

⊕ V+, l ⊕ A− = q−Γ− ⊕ V−.

Proof. Notice that (l⊕A+)⊥ = I+ ⊂ l⊕A+. It is known, (c.f [Bou, chap.VIII,§10,
Thm. 1] or [BD]), that this implies that l⊕A+ = q̃+

Γ ⊕ Ṽ+ for some polarization
g = n′

+ ⊕ h′ ⊕ n′
−. Similarly, l ⊕ A− = q̃−Γ′ ⊕ Ṽ− for some polarization g =

n′′
+ ⊕ h′′ ⊕ n′′

−. Moreover, l acts semisimply on A± so l ⊂ h′, l ⊂ h′′. But l

contains a regular element, thus l = h′ = h′′. Proposition 3 is now an easy
consequence of the following lemma:

Lemma 5. Let g be a simple Lie algebra and h a Cartan subalgebra. Let a1 and
a2 be two parabolic subalgebras containing h such that a1 + a2 = g. Then there
exists a polarization g = n+ ⊕ h ⊕ n− and Γ+,Γ− ⊂ Π such that a1 = p+

Γ+
and

a2 = p−Γ− .

Proof. Let n+ ⊕ h ⊕ n− be a polarization of g such that b+ ⊂ a1 and for which
dim (n+ ∩ a2) is minimal. We claim that b− ⊂ a2. Suppose on the contrary
that there exists a simple root α ∈ Π such that g−α �⊂ a2. Then g−α ⊂ a1 since
a1 + a2 = g and gα ⊂ a2 since a2 is parabolic. But then sαn+ ⊕ h ⊕ sαn− is
a polarization of g for which sαb+ ⊂ a1 and dim (sαn+ ∩ a2) < dim (n+ ∩ a2).
Contradiction.

In particular, A±, I± are all h-graded and

I+ = (q+
Γ+

⊕ V+)⊥ =
⊕

α∈∆+\〈Γ+〉
gα ⊕ (V ⊥

+ ∩ h0),

I− = (q−Γ− ⊕ V−)⊥ =
⊕

α∈∆−\〈Γ−〉
gα ⊕ (V ⊥

− ∩ h0).

Thus A+/I+ = gΓ+ ⊕ V1 and A−/I− = gΓ− ⊕ V2 for some suitable V1, V2 ⊂ h0.
Let L± 1

2
(λ) be the generalized eigenspace of ϕ(λ) associated to ± 1

2 . Since ϕ

is a solution of an ordinary differential equation with stationary points at 1
2 ,− 1

2 ,
L± 1

2
(λ) is independent of λ and we will simply denote it by L± 1

2
. Similarly, let

L′ be the sum of all other generalized eigenspaces so that g = l⊕L 1
2
⊕L′⊕L− 1

2
.

Proposition 4. There exists a polarization g = n+ ⊕ h⊕ n− and a subset Γ3 ⊂
Π(n+) such that L± 1

2
⊂ b±, L′ ⊂ gΓ3 + h and ϕ(n+) ⊂ n+.

Proof. We will construct a polarization satisfying the above conditions in several
steps.

Lemma 6. We have :
(i) l ⊕ L± 1

2
is an h-graded solvable subalgebra,

(ii) l ⊕ L′ is an h-graded subalgebra,
(iii) we have [L± 1

2
, L′] ⊂ l ⊕ L± 1

2
.
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Proof. This follows from the proofs of Lemma 12.3 and Theorem 12.6 in [BD].
Notice that L± 1

2
�⊂ b1

± in general. We first construct a polarization g =
n2
+ ⊕ h ⊕ n2

− such that L± 1
2
⊂ b2

±. We have I± ⊂ L± 1
2
. Notice that L 1

2
∩ n1

− ⊂
gΓ+ ∩gΓ− = gΓ+∩Γ− since n1

− ⊂ (gΓ− ⊕ I−) and L 1
2

is solvable. Similarly, L− 1
2
∩

n1
+ ⊂ gΓ+∩Γ− . Moreover, by Lemma 6, l⊕(L 1

2
∩gΓ+∩Γ−) and l⊕(L− 1

2
∩gΓ+∩Γ−)

are disjoint, solvable, h-graded subalgebras. By lemma 5 it follows that there
exists an element s of the group WΓ+∩Γ− such that l ⊕ (L± 1

2
∩ gΓ+∩Γ−) ⊂

sb1
±. Notice that s permutes elements of ∆+\ 〈Γ+ ∩ Γ−〉, leaving it globally

unchanged. Thus, l ⊕ L± 1
2
⊂ sb1

±. Set n2
± = sn1

±.
Now we construct a polarization of g satisfying the other conditions of propo-

sition 4. Recall that l⊕L ⊂ gΓ+∩Γ− +(V1∩V2). Thus
(
L′∩n2

+

)⊕(
L 1

2
∩n2

+(Γ+∩
Γ−)

)
= n2

+(Γ+ ∩ Γ−).
Since [L′, L 1

2
] ⊂ l ⊕ L 1

2
by Lemma 6,(iii), L 1

2
∩ n2

+(Γ+ ∩ Γ−) is an ideal of
n2
+(Γ+ ∩ Γ−). But L′ ∩ n2

+ is a subalgebra. It is easy to see that this implies
that L′ ∩ n2

+ is generated by a set of simple root subspaces of n2
+(Γ+ ∩ Γ−), i.e

L′ ∩ n2
+ = n2

+(Γ) for some Γ ⊂ Π(n2
+). Moreover, the restriction of ( , ) to L′ is

nondegenerate, hence L′∩n2
− = n2

−(−Γ). Thus l⊕gΓ ⊂ l⊕L′ ⊂ l⊕gΓ+(V1∩V2).
Since ϕ(λ) + 1

2 is invertible in L′, ψ(λ) is a well-defined operator L′ → L′,
satisfying (22), and ψ(λ)(h0 ∩ L′) ⊂ h0 ∩ L′. Now, l contains a regular element.
Thus there exists a polarization of g compatible with the l-weight decomposition.
This induces a polarization of gΓ, compatible with the l-weight decomposition
of gΓ. Hence, there exists s′ ∈ WΓ ⊂ W such that ψ0|gΓ is compatible with
the polarization s′n2

+ ⊕ h ⊕ s′n2
−. Since s′ leaves ∆+\ 〈Γ〉 globally unchanged,

the polarization g = n+ ⊕ h ⊕ n− with n± = s′n2
± and Γ3 = s′Γ satisfies the

requirements of proposition 4.

To sum up, we have shown that there exists a polarization g = n+ ⊕ h ⊕ n−,
compatible with ϕ, subsets Γ1 = s′sΓ+, Γ2 = s′sΓ− and Γ3 ⊂ Π(n+) such that
(A+/I+) ∩ n+ = n+(Γ1), A− ∩ n+ = n+(Γ2) and L′ ∩ n+ = n+(Γ3).

The map ψ0 now restricts to a Lie algebra isomorphism n+(Γ1) → n+(Γ2).
This isomorphism maps weight spaces to weight spaces as ψ0 preserves h0 and
ϕ is l-invariant. Define τ : Γ1 → Γ2 by ψ0(gα) = gτ(α). It is a norm-preserving
bijection. Thus (Γ1,Γ2,Γ3) is a generalized Belavin-Drinfeld triple. It is clear
that Γ3 is the largest subset of Γ1 ∩ Γ2 stable under τ , and that ψ0 : n+(Γ3) →
n+(Γ3) is a Lie algebra isomorphism. Finally, it is easy to see that the map ϕ is
obtained from this data by formulas

ϕ(λ)(eα) =
1
2
eα (α �∈ 〈Γ1〉)

ϕ(λ)(eα) =
1
2
eα +

ψ0

1 − e(α,λ)ψ0
(eα) (α ∈ 〈Γ1〉)

Conversely, it is clear how to construct from a generalized Belavin-Drinfeld
triple (Γ1,Γ2, τ) the subalgebras n+(Γ1), n+(Γ2), n+(Γ3) and, for each choice of
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Chevalley generators, a Lie algebra isomorphism ψ0 : n+(Γ1) → n+(Γ2), and the
map ϕ(λ). Condition (16) on the h0 ⊗ h0-part comes from (21)-see [BD].

6. Examples

6.1. Constant r-matrices. Our results imply the following:

Corollary 1. A dynamical r-matrix associated to a generalized Belavin-Drinfeld
triple (Γ1,Γ2, τ) is gauge equivalent to a constant r-matrix if and only if Γ3 = ∅.
6.2. h-invariant dynamical r-matrices. When l = h, our classification co-
incides with that given in [EV]: the only h-graded generalized Belavin-Drinfeld
triple is of the form (Γ,Γ, τ = Id). The dynamical r-matrices obtained are then
(up to gauge transformations and choice of Chevalley generators):

r(λ) =
Ω
2

+
∑

α∈∆+, α	∈〈Γ〉

1
2
eα ∧ e−α +

∑
α∈〈Γ〉∩∆+

1
2

coth(
1
2
(α, λ)eα ∧ e−α.

6.3. Example for sl3 and sln. The first nontrivial example is for g = sl3: fix
a polarization g = h ⊕ ⊕

γ∈∆ gγ where ∆+ = {α, β, α + β} and set l = Chρ.
Consider the generalized Belavin-Drinfeld triple with Γ1 = Γ2 = {α, β} and
τ : α 
→ β, β 
→ α. In this case, we can choose the map ψ0 to be the following

eα 
→ eβ , hα 
→ hβ , e−α 
→ e−β

eβ 
→ eα, hβ 
→ hα, e−β 
→ e−α

eα+β 
→ −eα+β , e−α−β 
→ −e−α−β .

The corresponding dynamical r-matrix is given by:

r(λ) =
Ω
2

+ rh0,h0 +
1
2

coth(α, λ)eα ∧ e−α +
1
2

coth(β, λ)eβ ∧ e−β

+
1
2

th(α + β, λ)eα+β ∧ e−α−β +
1

2 sinh(α, λ)
eβ ∧ e−α

+
1

2 sinh(α, λ)
eα ∧ e−β .

(23)

This dynamical r-matrix is gauge-equivalent to the dynamical r-matrix

r̃(λ) =
Ω
2

+ rh0,h0 + rl,h0 − r21
l,h0

+
1
2

coth(α, λ)eα ∧ e−α

+
1
2

coth(β, λ)eβ ∧ e−β +
1
2

th(α + β, λ)eα+β ∧ e−α−β

+
e(α,λ)

2 sinh(α, λ)
eβ ∧ e−α +

e−(α,λ)

2 sinh(α, λ)
eα ∧ e−β .

(24)

when
(α ⊗ 1 + 1 ⊗ τ(α))

(
rh0,h0 + rl,h0 − r21

l,h0

)
=

1
2
(α + τ(α))Ωh.
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In particular, r̃(λ) interpolates the constant r-matrix obtained from the Belavin-
Drinfeld triple (Γ1 = α,Γ2 = β, τ : α 
→ β) at (α, λ) → ∞ and the r-matrix
obtained from (Γ1 = β,Γ2 = α, τ : β 
→ α) at (α, λ) → −∞.

Remark. The generalization of this example to g = sl2n+1 is the following.
Fix a polarization and let l = Chρ. Denote by ∆ the root system and by
Π = (α1, . . . α2n) the set of positive simple roots. Let i : αk 
→ α2n+1−k be the in-
volution of the Dynkin diagram. The dynamical r-matrix obtained from the gen-
eralized Belavin-Drinfeld triple (Γ1 = Γ2 = Π, τ = i) interpolates the constant
r-matrices obtained from the Belavin-Drinfeld triples (Γ1 = (α1, . . . αn),Γ2 =
(αn+1, . . . α2n), τ = i) and (Γ1 = (αn+1, . . . α2n),Γ2 = (α1, . . . αn), τ = i−1).

6.4. Permutation dynamical r-matrices. Consider g = sl2n, and let Π =
(α1, . . . α2n−1) denote a system of simple roots. For any σ ∈ Sn, we can construct
a generalized Belavin-Drinfeld triple by setting Γ1 = Γ2 = (α1, α3, . . . α2n−1) and
τ : α2k−1 
→ α2σ(k)−1.
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