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SCALAR CURVATURE AND THE THURSTON NORM

P. B. Kronheimer and T. S. Mrowka

1. Introduction

Let Y be a closed, oriented 3-manifold with b1 �= 0, and suppose that Y
contains no non-separating 2-spheres or tori. For such a Y , the dual Thurston
norm can be defined on H2(Y ; R) by the formula

|α| = sup
Σ

〈α, [Σ]〉/(2g(Σ) − 2),

the supremum being taken over all connected, oriented surfaces Σ embedded in
Y whose genus g is at least 2 [8]. If Y contains spheres or non-separating tori,
the definition is extended by declaring that α has infinite norm if it has non-zero
pairing with any sphere or torus. It has been noted by various authors that
there is a connection between the genus of embedded surfaces and solutions of
the Seiberg-Witten monopole equations. In the present context, the result can
be phrased as follows. The monopole equations depend on the choice of a metric
h on Y and a Spinc structure c, to which we can associate the class c1(c), the
first Chern class of the associated spin bundle. The result then states that, if
the dual Thurston norm of c1(c) is greater than 1, then there exists a metric h
on Y for which the corresponding monopole equations admit no solution.

A fact that lies rather deeper is that the connection between the Thurston
norm and the monopole equations is sharp, in the following sense, at least in
the case that Y is irreducible (that is, every sphere bounds a ball in Y ). Let us
say that a cohomology class α ∈ H2(Y ; R) is a monopole class if there is a Spinc

structure c, with c1(c) = α over the reals, such that the corresponding monopole
equations have a solution for all Riemannian metrics h on Y . Then we have:

Theorem 1. If Y is a closed, oriented, irreducible 3-manifold, then the convex
hull of the monopole classes is precisely the unit ball for the dual Thurston norm
on H2(Y ; R).

(The unit ball is understood to be a convex polytope lying in the linear subspace
on which the norm is finite. Note also that zero is always a monopole class,
because there is always a trivial solution of the equations.)

This theorem is implicit, though not stated, in the content of [4]. On the
topological side, the theorem rests on Gabai’s characterization of the Thurston
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norm in terms of taut foliations [2], together with the relationship between fo-
liations and contact structures described in [1]. On the gauge theory side, the
ingredients are drawn from Taubes’ work on symplectic 4-manifolds in [6, 7], as
adapted to the setting of 4-manifolds with contact boundary in [4].

One purpose of the present paper is to make explicit the proof of Theorem 1.
We shall also draw the following corollary, which characterizes the dual Thurston
norm in terms which make no mention of the monopole equations. For each met-
ric h, one obtains a norm ‖α‖h on H2(X; R) from the L2 norm of the harmonic
representative. Since 2-forms scale in the same way as curvature, we can di-
vide ‖α‖h by the L2 norm of the scalar curvature sh to obtain a scale-invariant
quantity:

‖α‖h

/‖sh‖h.

Our result states that the unit ball of the dual Thurston norm consists of the
classes α whose L2 norm is no larger than the L2 norm of sh/4π for all metrics
h:

Theorem 2. Let Y be a closed, oriented, irreducible 3-manifold. Then the dual
Thurston norm of α ∈ H2(Y ; R) is given by

|α| = 4π sup
h

‖α‖h

/‖sh‖h,

the supremum being taken over all Riemannian metrics on Y .

In this theorem, it is quite easy to see that the right-hand side is at least as
large the left-hand side; but the authors have no proof that it is not strictly
larger, other than to appeal to the previous theorem and all the machinery that
it contains. The same theorem is true if one replaces the L2 norms with C0

norms. Other corollaries in a similar spirit are given at the end of this paper.
Some of these can be proved without the Seiberg-Witten monopole equations,
using minimal surfaces. It seems very likely that the hypothesis of irreducibility
can be removed from both theorems.

Although no such sharp results are available in four dimensions, there is some-
thing to be gained from looking at existing four-dimensional results and rephras-
ing their proofs so as to isolate the role of the scalar curvature. A companion
paper [3] follows this line, obtaining new bounds for the genus of embedded
surfaces in 4-manifolds of the form S1 × Y .

2. Proofs of the two theorems

Let c be a Spinc structure on a closed, oriented 3-manifold Y . Given a Rie-
mannian metric h, one has the associated spin bundle W or Wc, a hermitian
2-plane bundle. Differential forms act as endomorphisms of W through Clif-
ford multiplication ρ. The monopole equations are then the following equations
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for a section Φ of Wc and a spin connection A (a spin connection is a unitary
connection in W which makes ρ covariant constant):

ρ(FÂ) − 1
2
{Φ ⊗ Φ∗} = 0

DAΦ = 0.
(1)

Here Â is the induced connection in the line bundle det(W ), and DA is the
Dirac operator coupled to A. The curly brackets indicate the trace-free part of
the endomorphism. Our conventions follow [4].

The following argument goes back to [10]. If (A,Φ) is solution to (1), then
by applying D∗

A to the second equation and using the Weitzenbock formula for
the Dirac operator, one obtains

∇∗
A∇AΦ +

s

4
Φ +

1
2
ρ(FÂ)Φ = 0,

where s = sh is the scalar curvature. After using the first equation, pairing the
equation with Φ and integrating by parts, one obtains

∫
|∇AΦ|2 +

∫
s

4
|Φ|2 +

∫
1
8
|Φ|4 = 0,

and hence ∫
|Φ|4 ≤ 4

∫
s2

by Cauchy-Schwartz if Φ is not identically zero. The first equation implies that
|Φ|2 = 4|FÂ|, so we arrive at an inequality between L2 norms:

‖FÂ‖ ≤ ‖s‖/2.

The 2-form FÂ represents the class (2π/i)α, where α = c1(c). The har-
monic representative cannot have larger norm, so recalling that α is said to be
a monopole class if a solution exists for all metrics h, we deduce

Lemma 3. If α ∈ H2(Y ; R) is a monopole class, then

‖α‖h ≤ 1
4π

‖s‖h

for all metrics h.

The next lemma is elementary. It is the easy half of Theorem 2.

Lemma 4. The dual Thurston norm satisfies

|α| ≤ sup
h

4π‖α‖h

/‖sh‖h.
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Proof. Let Σ be an oriented embedded surface of genus 2 or more. Let h1 be
a Riemannian metric on Y such that some neighborhood of Y is isometric to a
product Σ× [0, 1], with Σ having constant negative curvature and unit area. Let
hr be a metric which contains a product region Σ × [0, r] and is isometric to h1

outside that region. Then

‖sh‖h = 4πr1/2(2g − 2) + O(1)

as r → ∞, while any 2-form ω representing a class α must satisfy

‖ω‖h ≥ r1/2〈α, [Σ]〉.
Thus

〈α, [Σ]〉/(2g − 2) ≤ sup
h

4π‖α‖h

/‖sh‖h.

This is the desired result if α has zero pairing with all spheres and tori in Y .
If α has non-trivial pairing with a torus (and a fortiori if α has a non-trivial

pairing with a sphere, since one may add a handle to a sphere), a similar stretch-
ing argument shows that the supremum on the right hand side is infinite: one
simply introduces a long cylinder T 2 × [0, r] with zero scalar curvature.

The next proposition is the last leg of the argument:

Proposition 5. For a closed, oriented, irreducible 3-manifold Y , the unit ball
of the dual Thurston norm lies inside the convex hull of the monopole classes.

Proof. Given an oriented surface Σ embedded in Y , having least possible genus
in its homology class, Gabai proves [2] the existence of a taut foliation F having
Σ as a compact leaf. (A foliation of a 3-manifold by 2-dimensional leaves is taut
if every leaf is met by a closed curve transverse to the leaves.) Because Σ is a
leaf, the euler class of the tangent distribution of the foliation satisfies

〈e(F), [Σ]〉 = 2g − 2,

after adjusting the orientation. The convex hull of the euler classes of these
taut foliations is the unit ball for the dual Thurston norm. If Σ is a torus, the
theorem only guarantees a C0 foliation, but in all other cases it can be made
smooth. Except in the trivial case that the tori provide a basis for the homology,
we can discard the non-smooth foliations, and still have a spanning set for the
unit ball. We shall show that if F is a smooth, taut foliation, then e(F) is a
monopole class.

When F is any smooth, oriented foliation of Y , it is shown in [1] that there are
contact structures on Y defined by oriented 2-plane fields ξ+ and ξ−, compatible
with the given orientation of Y and the opposite orientation respectively. These
2-plane fields uniformly approximate the tangent distribution of the foliation.
In the case that the foliation is taut, there is in addition a symplectic form ω
on the 4-manifold X = [0, 1] × Y which is compatible with these two contact
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structures on the boundary components {1}×Y and {0}× Ȳ . The compatibility
condition is that ω is positive on the oriented 2-planes of the contact structure.

In [4], an invariant is defined for 4-manifolds with contact boundary, using
the Seiberg-Witten equations. According to Theorem 1.1 of [4], the existence of
the symplectic structure ω on X ensures that the invariant is non-trivial for this
particular 4-manifold. What this means is that a variant of the 4-dimensional
Seiberg-Witten equations has a non-empty space of solutions on a complete
Riemannian 4-manifold X+ obtained from X by adding open cones to the two
boundary components. The Spinc structure on X+ which supports these solu-
tions has first Chern class equal to e(F). Furthermore, the non-empty solution
space persists under any compactly-supported deformation of the Riemannian
metric.

In particular, given any metric h on Y , we can equip X+ with a metric which
contains an isometric copy of a cylinder, [−R, R]×(Y, h). Letting R increase, we
deduce in the limit the existence of a solution to the 3-dimensional equations on
(Y, h), supported by a Spinc structure with first Chern class e(F), as required.
The details of this argument are contained in Proposition 5.6 and Lemma 5.7 of
[4], in the absence of the perturbing term µ which appears there. Note that the
second hypothesis of Proposition 5.6 is not relevant to part (a) of its conclusions,
which is all that we are using.

Proof.[Proof of the theorems] Lemmas 3 and 4 show that the convex hull of the
monopole classes is contained in the unit ball of the (possibly infinite) norm

4π sup
h

‖α‖h

/‖sh‖h

which in turn is contained in the unit ball of the dual Thurston norm. Proposi-
tion 5 says that the last of these polytopes is contained in the first, so all three
coincide. This proves the two theorems.

3. Further comments

Floer homology. Our definition of ‘monopole class’ made the exposition rather
straightforward, but is probably not generally useful. A more intelligent defi-
nition would be based on the non-vanishing of a corresponding Floer homology
theory – the homology defined by the Morse theory in which the critical points
are the solutions of the monopole equations on Y . In the case that c1(c) is non-
zero (which is really the only case that interests us here), the construction of this
Floer homology is presumably straightforward. It is clear that the argument of
Proposition 5 should prove a stronger statement, namely that this Floer homol-
ogy is non-trivial for Spinc structures arising from taut foliations. The material
in [4] takes a small step in this direction, without defining the Floer homology.

Note that the integer obtained by counting solutions algebraically (the euler
characteristic of the Floer homology) is not a strong enough invariant, and the
convex hull of the classes for which this invariant is non-zero is in general strictly
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smaller. For a 3-manifold obtained by zero-surgery on a knot, the difference is
the difference between the genus of the knot and the degree of its Alexander
polynomial.

Reducible 3-manifolds. If Y is reducible, it can be decomposed as a con-
nected sum of manifolds Yi, each of which is either irreducible or S1 × S2. If
each of the pieces Yi admits a smooth, taut foliation then Proposition 5 still
holds. To see this, note first that the unit ball of the dual Thurston norm is the
product of the unit balls of the summands. Although one cannot take a con-
nected sum of foliations, one can make a connected sum of contact structures [9].
Indeed, one can form a boundary connect sum X of the cylinders Xi = [0, 1]×Yi

at their boundary components {1} × Yi, and so form a symplectic 4-manifold
having a contact 3-manifold Y as one boundary component. The argument of
Proposition 5 can now be used.

Thus our two theorems hold in all cases, except where one of the summands
has an entirely degenerate Thurston norm and may not have a smooth, taut
foliation. In fact, a foliation is not needed, except to provide a contact structure
compatible with a symplectic form on some bounding 4-manifold: some sum-
mands which do not have taut foliations (spherical space forms, for example)
can be dealt with by exhibiting the contact structure directly.

A typical 3-manifold for which we do not have a proof of Proposition 5 is a
connected sum in which one summand is obtained by zero surgery on a knot
of genus one. The taut foliation on the summand may not be smooth. In such
cases, it seems likely that the theorems can be recovered by considering the Floer
homology formulation, and analyzing the Floer homology of a connected sum.

Other norms. For a given Riemannian metric h, the L2 norm of the harmonic
representative for α can also be described as the infimum of the L2 norms of all
de Rham representatives. Let us define a C0 norm on H2(Y ; R) by taking the
infimum of the C0 norms of the de Rham representatives. This still depends on
a choice of h. Lemmas 3 and 4 can both be proved using this C0 norm on H2

and replacing the L2 norm of the scalar curvature by the supremum of −sh. For
the first lemma, one uses the maximum principle to obtain

|Φ|2 ≤ 2 sup(−s)

and hence

|FÂ| ≤ sup(−s/2),

by a standard argument. For the second lemma, one must change the geometry
a little to obtain the inequality. Rather than using a cylindrical metric, one
should equip Σ × [0, r] with a metric which slowly shrinks to a narrow neck in
the middle, so that the scalar curvature is at its maximum at the narrowest
point, where the geometry approximates the cylinder.
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Area of embedded surfaces. A simple consequence of Theorem 2 in its C0-
norm version is a lower bound for the area of embedded surfaces. Let Y be
irreducible and suppose for simplicity that Y contains no non-separating tori.
The Thurston norm |σ| of a class σ ∈ H2(Y ; Z) is then defined as the minimum
of −χ(S) over all surfaces S (not necessarily connected) which represent σ and
which contain no spheres. There exists a class α ∈ H2(Y ) with dual Thurston
norm 1 satisfying

〈α, σ〉 = |σ|,
and according to the theorem, for any metric h, we can represent α by a form a
with

sup(−sh)/4π ≥ ‖a‖C0,h.

Integrating this inequality over the surface, one obtains

Area(Σ) ≥ 4π|σ|/‖sh‖C0 .

In other words, the area of any embedded surface is bounded below, in terms of
the Thurston norm of the homology class it represents and the scalar curvature.
The lower bound is achieved if Σ realizes the Thurston norm and the geometry
of the 3-manifold is cylindrical, with constant scalar curvature. The same result
can be obtained using the existence of a stable, immersed minimal surface and
the second variation inequality, see [5].
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