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GROMOV-FLOER THEORY AND DISJUNCTION

ENERGY OF COMPACT LAGRANGIAN EMBEDDINGS

Yong-Geun Oh

Abstract. In this paper, we give a new simple proof of Chekanov’s positivity
theorem of the disjunction energy of compact Lagrangian submanifolds in tame
symplectic manifolds. As a consequence, it also gives rise to a simple proof of
nondegeneracy of Hofer’s norm on the group of Hamiltonian diffeomorphisms on
any tame symplectic manifolds.

1. Introduction

To put the method we use in the present paper in perspective, we first sum-
marize the history of previous works related to this paper.

In [H2], Hofer introduced a bi-invariant norm on the group of Hamiltonian
diffeomorphisms on symplectic manifold (P, ω): For compactly supported Hamil-
tonian diffeomorphism H : P × [0, 1] → R, Hofer’s norm of ‖H‖ is defined to
be

(1.1) ‖H‖ =
∫ 1

0

(max Ht − minHt)dt

and for a Hamiltonian diffeomorphism φ, its norm is defined to be

(1.2) ‖φ‖ = inf
H �→φ

‖H‖

where H �→ φ means that φ = φ1
H . Here φ1

H denotes the time-one map of the
flow of the Hamilton’s equation

ż = XH(z).

While invariance and triangle inequality are immediate consequences from its
definition and from some simple calculations in Hamiltonian dynamics (see [H2]),
nondegeneracy of the norm is a highly nontrivial fact which encodes the C0-
rigidity in symplectic geometry in a remarkable way. In the same paper, Hofer
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proved the nondegeneracy on C
n, with a delicate variational theory of Hamil-

tonian systems, by comparing the disjunction energy with a symplectic capacity
of the Euclidean ball in C

n.
A symplectic manifold (P, ω) is called tame if it allows an almost complex

structure J0 such that the bilinear form ω(·, J0·) defines a complete Riemannian
metric on P with bounded curvature and with injectivity radius bounded away
from zero. In this case, we also call tame the triple (P, ω, J0) or the almost
complex structure J0. As usual, when we do our estimates which are implicit
mostly in this paper, we will use various norms always in terms of a fixed such
metric.

In [P], Polterovich proved the nondegeneracy on any tame rational symplectic
manifolds by studying disjunction energy of Lagrangian submanifolds via Gro-
mov’s theory of pseudo-holomorphic curves : For a given Lagrangian submanifold
L ⊂ (P, ω), its disjunction energy is defined by

(1.3) E(L : P, ω) = inf
H
{‖H‖ | L ∩ φ1

H(L) = ∅}

In the same paper [P], Polterovich proved that

(1.4) E(L : P, ω) ≥ 1
2
Γ(L:P,ω) > 0

where Γ(L:P,ω) is the (positive) generator of the subgroup

{ω(B) | B ∈ π2(P, L)} ⊂ R

for any rational Lagrangian submanifold: L ⊂ (P, ω) is called rational if this
subgroup of R is discrete. It is an easy consequence from this to obtain nonde-
generacy of the norm in (1.2) for tame rational symplectic manifolds (see [P] for
details). Via a version of the Floer homology theory, Chekanov [C1] improved
this result by removing the factor “1

2” in (1.4) and also by giving an estimate of
the number of intersections L ∩ φ1

H(L) in relation to Arnold’s conjecture.
In [LM], Lalonde-McDuff studied again the disjunction energy of symplectic

balls as in [H2] and proved the non-degeneracy on arbitrary symplectic manifolds.
In this paper, they used elaborate techniques of pseudo-holomorphic curves to-
gether with an ingenious “wrapping” construction of symplectic embedding of
balls and proved that non-degeneracy of the norm is equivalent to non-squeezing
theorem in arbitrary symplectic manifolds which they also proved in [LM].

Generalizing the results from [P] and [C1], Chekanov [C2] proved a positivity
theorem of disjunction energy of any compact Lagrangian embeddings in tame
symplectic manifolds by an even more delicate version of Floer homology theory
than the one in [C1].

The main purpose of this paper is to give a new simple proof of this last
theorem using a natural set-up of Gromov-Floer theory of perturbed Cauchy-
Riemann equations. We first need some preliminary definitions to state
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Chekanov’s theorem. As in [O4] or [C2], we define for each tame J0,

A(J0:P,ω) = inf{ω(v) | v : S2 → P, non-constant and ∂J0v = 0}
A(J0,L:P,ω) = inf{ω(w) | w : (D2, ∂D2) → (P, L), non-constant and ∂J0w = 0}.

It is not difficult to show (see [Corollary 3.5, O1] for its proof) that tameness of
(P, ω, J0) implies

A(J0:P,ω), A(J0,L:P,ω) > 0.

We then define

(1.5) A(L:P,ω) = sup
J0

min{A(J0:P,ω), A(J0,L:P,ω)}.

Using this quantity, Chekanov [C2] proved the following theorem

Theorem [Chekanov, C2]. Let (P, ω) be a tame symplectic manifold and
L ⊂ (P, ω) be a compact Lagrangian embedding. Then we have

E(L : P, ω) ≥ A(L:P,ω).

The method we use in this paper is an outgrowth of many people’s works,
most notably Gromov’s [G], Floer-Hofer-Viterbo’s [FHV], Polterovich’s [P] and
the author’s [O4-6]. We use the cut-off version (2.4) of the standard perturbed
Cauchy-Riemann equation used in the dynamical version of the Floer theory
in the following way: We first identify emptiness of intersections of two La-
grangian submanifolds L and φ1

H(L) as the obstruction to compactness of cer-
tain parametrized moduli space of perturbed Cauchy-Riemann equations. We
then combine some simple calculation to relate the disjunction energy and the
quantity A(L:P,ω). Starting from [H1], several crude forms of this calculation
have been implicitly used in many literature (see e.g., p. 979 of [O2]) on the
Floer homology in symplectic geometry. In this paper, we carry out the optimal
form of this calculation, which will quite easily give rise to the above theorem
in our set-up. This kind of optimal form of calculations used in this paper first
appeared in [C1] in a rather ambiguous way, and has been systematically used
in our previous papers [O5,6].

As in [P] and [C1,2], we would like to mention that Chekanov’s theorem imme-
diately implies that Hofer’s norm on the group of Hamiltonian diffeomorphisms
of tame symplectic manifolds is nondegenerate. We suspect that a more careful
analysis of our arguments will give rise to the proof of this nondegeneracy in any
(tame or not) symplectic manifold as proven in [LM]. We will refine the analysis
of bubblings more carefully and study the Maslov class obstruction to compact
Lagrangian embeddings elsewhere.
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2. Cut-off perturbed Cauchy-Riemann equations

The materials we use in this section is partially influenced by Section 5 in
Fukaya-Ono’s paper [FO] in the context of fixed points of Hamiltonian diffeo-
morphisms, which in turn is similar to the arguments by Floer-Hofer-Viterbo in
[FHV] in their proof of Weinstein’s conjecture.

For each K ∈ R+ = [0,∞), we define a function ρK : R → [0, 1] as follows:
for K ≥ 1, we define

ρK(τ) =
{

0 for |τ | ≥ K + 1
1 for |τ | ≤ K

with

(2.1)
ρ′K < 0 for K < τ < K + 1

> 0 for − K − 1 < τ < −K

and for 0 ≤ K ≤ 1,
ρK = K · ρ1.

In particular, ρ0 ≡ 0.
Let H : P × [0, 1] → R be a Hamiltonian such that

(2.2) φ1
H(L) ∩ L = ∅,

i.e., such that the equation {
ż = XH(z)
z(0), z(1) ∈ L

has no solutions, and J = {J(τ,t)}(τ,t)∈R×[0,1] be a two parameter family of tamed
almost complex structure such that

(2.3) J(τ,t) ≡ J0 for |τ | sufficiently large or for t = 0, 1

where J0 is a fixed (genuine) almost complex structure on P that is tamed to ω.
We would like to remark that it is necessary to vary almost complex structures

in terms of t to get appropriate transversality result for the Floer complex (see
[FHS], [O3] for detailed account of the transversality proof).

Throughout this paper, we will exclusively denote by J0 any (genuine) almost
complex structure and by J a two-parameter version of them. We denote a
one-parameter family of them by

J = {JK}K∈[0,+∞)

such that J0(τ, t, m) ≡ J0(m) is a time-independent almost complex structure
and JK = J∞ for sufficiently large K.
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For each such pair (J, H) and for K ∈ R+, we consider one parameter family
of perturbed Cauchy-Riemann equations

(2.4)


∂u
∂τ + JK(τ, t, u)

(
∂u
∂t − ρK(τ)XH(u)

)
= 0

u(τ, 0), u(τ, 1) ∈ L

where u : R × [0, 1] → P . This equation should be regarded as the one used for
the chain isotopy in the Floer homology theory connecting the Hamiltonian 0 to
H and then to 0 back. We will be interested in the solutions of (2.4) with finite
energy

(2.5) EJK
(u) :=

∫ ∞

−∞

∫ 1

0

∣∣∣∂u

∂τ

∣∣∣2
JK(τ,t,u)

dtdτ < ∞.

Noting that R × [0, 1] is conformally isomorphic to D2\{−1, 1}, it follows that
(2.4) and (2.5) imply that the map

u ◦ φ : (D2\{−1, 1}, ∂D2\{−1, 1}) → (P, L),

where φ is a conformal map, has finite (harmonic) energy and J0-holomorphic
near {−1, 1}. Then the removable singularity theorem [O1] enables us to extend
this to the whole disc, which we denote by

ũ : (D2, ∂D2) → (P, L)

and which becomes a perturbed J0-holomorphic disc. We denote by [u] ∈
π2(P, L) the homotopy class defined by ũ.

Now for each K ∈ R+ and for A ∈ π2(P, L), we study the following moduli
space

(2.6)
MA

K(J, H) = {u : R × [0, 1] → P | u satisfies (2.4) , EJK
(u) < ∞

and [u] = A in π2(P, L)}.

Since (2.4) is a compact perturbation of the standard pseudo-holomorphic equa-
tion of discs with Lagrangian boundary condition, the standard index formula
from [G] implies

(2.7) dim MA
K(J, H) = µL(A) + n

for generic J, H, provided it is non-empty. Here n denotes the dimension of the
Lagrangian submanifold L.

Lemma 2.1. MA
0 (J, H) for A = 0 in π2(P, L) consists of constant solutions

and so M0
0(J, H) is diffeomorphic to L. Furthermore M0

0(J, H) is Fredholm
regular for any almost complex structure J0.
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Proof. For K = 0, (2.3) becomes

∂u

∂τ
+ J0

∂u

∂t
= 0.

Since [u] = 0, u must be constant. The Fredholm regularity of constant solutions
is not difficult to check and is well-known to experts. We omit its proof. �
Lemma 2.2. For any given (J, H) satisfying (2.1) and (2.2), there exists a
constant K0 > 0 such that M0

K(J, H) = ∅ for all K ∈ R+ with K ≥ K0.
Proof. First we prove a simple a priori energy bound for any element u : R ×
[0, 1] → P in (2.6). A straightforward calculation shows

EJK
(u) =

∫ 1

0

∫ ∞

−∞

∣∣∣∂u

∂τ

∣∣∣2
JK

dτdt =
∫ ∫

ω
(∂u

∂τ
, JK

∂u

∂τ

)
dτdt

=
∫ ∫

ω
(∂u

∂τ
,
∂u

∂t
− ρK(τ)XH(u)

)
dτdt

=
∫ ∫

ω
(∂u

∂τ
,
∂u

∂t

)
dτdt −

∫ ∫
ρK(τ)ω

(∂u

∂τ
, XH(u)

)
dτdt.

For the first term, we have∫ ∫
ω
(∂u

∂τ
,
∂u

∂t

)
dτdt =

∫
u∗ω = 0

because of the assumptions that EJ(u) < ∞ so that u can be compactified as
above and that [u] = 0 in π2(P, L). For the second term, we have

−
∫ ∫

ρK(τ)ω
(∂u

∂τ
, XH(u)

)
dτdt =

∫ ∞

−∞
ρK(τ)

∫ 1

0

dH
(∂u

∂τ

)
dτdt

=
∫ ∞

−∞
ρK(τ)

∫ 1

0

∂

∂τ
(H ◦ u) dtdτ

= −
∫ ∞

−∞
ρ′K(τ)

∫ 1

0

H(u) dtdτ

≤ −
∫ −K

−K−1

ρ′K(τ)
( ∫ 1

0

max Ht dt
)
dτ −

∫ K+1

K

ρ′K(τ)
( ∫ 1

0

max Ht dt
)
dτ

≤
∫ 1

0

(max Ht − minHt) dt =: ‖H‖

where ‖H‖ is Hofer’s norm of H. The first inequality above holds because we
have ρ′K ≥ 0 on [−K,−K + 1] (resp. ρ′K ≤ 0 on [K, K + 1]), and ρ′K ≡ 0
otherwise. Hence we have proven

(2.8) EJK
(u) ≤ ‖H‖
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for any J , u ∈ M0
K(J, H) and for all K ∈ R+.

Remark 2.3. If [u] = A ∈ π2(P, L), then (2.8) will be replaced by

(2.9) EJK
(u) ≤ ω(A) + ‖H‖.

The inequality (2.8) will be crucial in our proof of positivity theorem of the
disjunction energy of Lagrangian embeddings.

Now we go back to the proof of Lemma 2.2. Suppose the contrary that there
exists Kj → ∞ such that M0

Kj
(J, H) �= ∅. Let uj ∈ M0

Kj
(J, H). Using the

a priori bound (2.8), by taking a subsequence and taking away bubblings if
necessary, we find a local limit

u0 : R × [0, 1] → P

that satisfies the energy bound EJ(u0) ≤ ‖H‖, in particular

(2.10)
∫ ∞

−∞
dτ

∫ 1

0

dt
∣∣∣∂u0

∂τ

∣∣∣2
J∞

< ∞,

and that satisfies the equation

(2.11)

{
∂u
∂τ + J∞(τ, t, u)

(
∂u
∂t − XH(u)

)
= 0

u(τ, 0), u(τ, 1) ∈ L

on R × [0, 1]. It follows from (2.10) and (2.11) that∫ ∞

−∞

∫ 1

0

∣∣∂u

∂t
− XH(u)

∣∣2
J∞

dtdτ < ∞.

Hence there exists a sequence {τn} with τn → ∞ as n → ∞ such that∫ 1

0

∣∣żn − XH(zn)
∣∣2
J0

dt → 0 as n → ∞,

where zn := u(τn, ·). Here we recall that J∞(τ, ·) ≡ J0 for τ with |τ | sufficiently
large. Since H has compact support and so |XH | is bounded, this implies ‖żn‖L2

is bounded, which in turn implies that ‖zn‖H1 is bounded because zn(0) ∈ L
where L is compact. By compactness of the Sobolev embedding H1 ↪→ C0,
taking a subsequence if necessary, zn → z in C0 for some continuous map z :
[0, 1] → P . Then by standard bootstrap arguments, we prove that zn → z in
C∞ and z satisfies the equation

(2.12)
{

ż = XH(z)
z(0), z(1) ∈ L.
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This contradicts to the assumption (2.2) because any such Hamiltonian orbit
would give rise to to an intersection point in L ∩ φ1

H(L). �

Note that Lemma 2.1 and 2.2 hold for any J and H that satisfy (2.3) and (2.2)
respectively. Therefore we can do the standard Fredholm theory and the gener-
icity arguments with such pairs (J, H). We will always carry out this standard
genericity argument without further mentioning details, whenever necessary.

Let H : P × [0, 1] → R be a given (generic) Hamiltonian. For generic J =
{JK}K∈[0,+∞) satisfying (2.3), we form the parametrized moduli space

M0
(J, H) :=

⋃
K∈R+

M0
K(J, H)

which becomes a smooth manifold of dimension n + 1 with boundary by the
parametrized version of the index theorem (2.7), and consider the evaluation
map

(2.13) Ev0 : M0
(J, H) × R → L × R+ × R; (u, K, τ) �→ (u(τ, 0), K, τ).

We choose smooth embedded paths Γ : [0, 1] → L × R+ × R with

Γ(s) = (γ(s), K(s), τ(s))

such that

(2.14) K(0) = 0, and K0 ≤ K(1) ≤ 2K0

where K0 is the same constant as in Lemma 2.2. Choosing generic Γ’s, we can
make the map (2.13) transverse to the path Γ so that NΓ := Ev−1

0 (Γ) becomes
a one dimensional manifold with its boundary consisting of

M0
K(0)(J, H) × {τ(0)}

∐
M0

K(1)(J, H) × {τ(1)}.

Under the assumption
φ1

H(L) ∩ L = ∅,

it follows from Lemma 2.2 and 2.3 that the above boundary becomes a sin-
gle point, i.e, (u0, τ(0)) where u0 ≡ γ(0) is the constant map. Therefore NΓ

cannot be compact. The only source of non-compactness of NΓ lies in the set
∪s∈[0,1]M0

K(s)(J, H) which corresponds to bubbling off either J(K0,τ0,t0)-spheres
for some (K0, τ0, t0) ∈ R+ × R × (0, 1), or J0-holomorphic discs with boundary
on L. Since K(1) is chosen as in (2.14), in particular bounded, the splitting
phenomenon of solutions of (2.4) does not occur.
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Gromov’s compactness theorem implies that there exists a sequence {(si, ui)}
with si → s0 and 0 < s0 < 1 such that ui ∈ M0

K(si)
(J, H) weakly converges to

the cusp curve

(2.15) u∞ = u0 +
∑

wk +
∑

v�

where u0 is a solution of (2.4) for K = K(s0), and wk’s and v�’s are J0-
holomorphic discs J(K(s0),τ�,t�)-holomorphic spheres for some (τ�, t�) respectively.
Here we note that s0 cannot be either 0 or 1, because the corresponding moduli
spaces are Fredholm regular. This is because for s = 1, M0

K(1)(J, H) = ∅ by the
choice of Γ and for s = 0, M0

K(0)(J, H) = M0
0(J, H) is regular by Lemma 2.1.

3. Disjunction energy: proof of Chekanov’s theorem

In this section, we use the set-up given in Section 2 to provide a simple proof
of Chekanov’s theorem stated in the introduction. In fact, the theorem is an
easy consequence of (2.8) and standard bubbling analysis, once we are given the
set-up we have made in Section 2.

Theorem 3.1 [Chekanov, C2]. Let (P, ω) be a tame symplectic manifold and
L ⊂ (P, ω) be a compact Lagrangian embedding. Then we have

E(L : P, ω) ≥ A(L:P,ω) > 0.

Proof. Let H : P × [0, 1] → R be a Hamiltonian such that

L ∩ φ1
H(L) = ∅.

(If there is no such H, the inequality obviously holds because in that case we
have E(L : P, ω) = +∞.) From (2.8), we have

(3.1) EJK
(u) ≤ ‖H‖

for any solution u of (2.4) with [u] = 0. In Section 2, we have shown that the
parametrized moduli space M0

(J, H) cannot be compact. Therefore we have
sequences si → s0 ∈ (0, 1), Ki → K∞, with 0 < K∞ < K0 and ui ∈ M0

Ki

weakly converging to
u∞ = u0 +

∑
k

wk +
∑

�

v�

where we have {wk} �= ∅ or {v�} �= ∅. Then we have the following energy
inequality

limi→∞EJKi
(ui) ≥ EJK∞ (u0) +

∑
k

EJ0(wk) +
∑

�

EJ(K(s0),τ�,t�)(v�).
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Since there must be at least one wk or v�, we have

(3.2) limi→∞EJKi
(ui) ≥ min

{
A(J0,L:P,ω), A(JK(s0),τ�,t�):P,ω)’s

}
Note that for any given ε > 0, we may choose J = {J(K,τ,t)} arbitrarily C∞-close
to the given J0 in the genericity argument and so that we have

(3.3) A(J(K(s0),τ�,t�):P,ω) ≥ A(J0:P,ω) − ε.

This last statement can be proven by standard compactness arguments (see
[Proposition 4.1, O4] for the proof in a similar context). Combining (3.1)–(3.3),
for any given ε > 0 we have proven

‖H‖ ≥ min
{

A(J0,L:P,ω), A(J0:P,ω)

}
− ε.

Hence comes the proof of

‖H‖ ≥ min
{

A(J0,L:P,ω), A(J0:P,ω)

}
for any H such that L ∩ φ1

H(L) = ∅. By taking the supremum over J0, we have
‖H‖ ≥ A(L:P,ω) and then by taking the infimum over H with L ∩ φ1

H(L) = ∅,
we have finished proof of the theorem. �

Note that the proof of this theorem also shows that if L allows a Hamiltonian
H such that φ1

H(L) ∩ L = ∅, then we must have

(3.4) ω|π2(P,L) �= 0

and in particular π2(P, L) �= 0. This is also the weaker version of Floer’s result
on the Arnold conjecture [F], which had been previously proven by Gromov [G]:
In [F], it was proven that under the assumption ω|π2(P,L) ≡ 0, #(φ1

H(L) ∩ L)
is estimated by the total Betti number of L. In fact, Chekanov [C2] proved
a stronger result than Theorem 3.1 in that he also estimated the number of
intersections L ∩ φ1

H(L), when ‖H‖ < A(L:P,ω) (see [C2] for details). Using
similar ideas used in the present paper, one can simplify Chekanov’s proof [C2]
to prove this result itself whose details we leave to the interested readers.
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