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PERCOLATION ON THE PROJECTIVE PLANE

Michael H. Freedman

Abstract. Since the projective plane is closed, the natural homological observ-
able of a percolation process is the presence of the essential cycle in H1(RP 2; Z2).
In the Voroni model at critical phase, pc = .5, this observable has probability
q = .5 independent of the metric on RP 2. This establishes a single instance
(RP 2, homological observable) of a very general conjecture about the confor-
mal invariance of percolation due to Aizenman and Langlands, for which there
is much moral and numerical evidence but no previously verified instances. On
RP 2 all metrics are conformally equivalent so the proof of metric independence
is precisely what the conjecture would predict. What is very special, is that at pc

metric invariance holds in all finite models so passing to the limit is trivial; the
probability q is fixed at .5 by a topological symmetry.

Percolation is the effect, at larger size scales, of randomly laying down ma-
terial at a small scale. The arena may be a surface with or without boundary
or a higher dimensional manifold. Although the continuum limit is the most
interesting regime, to date it has been necessary to approach this as a limit of
a discrete problem. Many related discrete forms have been studied: (1) lattice
models in which bonds (or vertices) are “chosen” at random, (2) lilly pad mod-
els in which metric disks about randomly selected points are chosen, and (3)
Voronoi models in which Voronoi domains about randomly selected capitals are
themselves chosen independently with probability, p ∈ (0, 1), [VW] and [BS]. We
will think of the manifold as white and the chosen material black. The subject
studies the statistical/geometric properties of the black material and its appear-
ance in the high refinement or the “continuum limit”. At the largest size scale
in the problem we come to homological questions: Classically it is asked what
is the probability of finding a black path (i.e. a path in the black region) across
a 1-connected planar domain D with endpoints lying on fixed disjoint sub-arcs
⊂ ∂D. This amounts to asking the probability that the nontrivial element of
H1(D, arc1 ∪ arc2) comes from the inclusion of the black subset, B. Similarly
on a closed surface S it is natural to study the probability that any given ab-
solute element ∈ H1(S) is in the image of B. These elements are “homological
observables” of the process and their expected values are of interest. Further
generalizing, given a percolation process on a manifold M , the event that an
absolute (or relative) homology class comes from B is “homological observable”.
Such observables live at the largest scale.
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It is a remarkable conjecture of Michael Aizenman based partly on computer
studies of Langlands et al. (see [L]), and partly on connections with conformal
fields theory, which were further developed by J. Cardy [C], that for surfaces,
at the critical phase1 pc the entire percolation processes in the continuum limit
depends only on the conformal structure (not the entire metric). Theorem 1
below verifies conformal invariance of the single homological observable for the
real projective plane, RP 2. Certain generalizations are given in Theorem 2 and
Propositions 1, 2, 3, and 4.

The projective plane is a very special case for percolation because: (1) there
is exactly one essential homology class or “observable” in the middle dimension,
and (2) the projective plane (like the sphere) is conformally unique—any two
Riemannian metrics on RP 2 admit a conformal isomorphism. In view of the
latter, “conformal invariance” for percolation on RP 2 actually means “metric
invariance”. We prove that in a discrete setting which generalizes the Voronoi
model that “metric invariance” holds exactly at pc = .5; it is not necessary to
pass to any limit.

For a surface S, the discrete notion of metric that we use is a “generic cellu-
lation”. That is S is tiled by finitely-many closed piecewise-smooth 2-cells with
disjoint interiors so that no more than three meet at any point. Such a cellula-
tion might arise in the Voronoi model given a metric and a Poisson process but
we need no such assumption. Conversely one may think of a cellulation itself
as a discrete approximation to a metric. The two-fold incidence relations of the
tiling can be realized using Andreev’s theorem ([T] and [RS]) as a disk packing
on a unique surface S′ of constant curvature (the projective plane in the case
of Theorem 1 below). This surface S′ together with the coarse map S → S′

determined by: cells → disks is the induced geometric structure.

Lemma 1. Let C be a generic cellulation of RP 2 with n cells. Of the 2n possible
black-white colorings of C, exactly 2(n−1) admit an essential loop lying entirely
in the black region.

Proof. By genericity of C the black (B) and white (W ) subsets are closed
subsurfaces meeting along their boundaries. We claim that exactly one of B
and W contains an essential loop in RP 2. Every boundary circle γ between
B and W is two-sided and therefore bounds a disk in RP 2. To see this, note
that if γ bounded a non-disk on both sides, each of these sides would have non-
positive Euler-characteristic and by additivity we would obtain the contradiction
χ(RP 2) ≤ 0. It follows that RP 1 contained in PR2 can be isotoped (i.e. pushed)
off all these circles one at a time and therefore into either B or W ; thus at least
one side contains an essential loop - that is a loop which carries the non-zero
element of H1(RP 2, Z2). Because the Z2- intersection form on RP 2 is one-
dimensional < 1 > any two essential loops must have intersection number equal
one. Thus it is impossible for both B and W to contain essential loops, for these

1In the 2-dimensional Voronoi model and on self-dual lattice models Pc = .5 by symmetry
considerations.
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could be isotoped into the respective interiors where they would necessarily be
disjoint. This proves the claim. There is a fixed-point free symmetry of the
colorings of C which for any given coloring interchanges B and W . In view of the
claim, the condition that there be an essential loop in the black side B defines
a section of the quotient map π : colorings of C → colorings of C/involution.
Thus the number of colorings with an essential black loop is the cardinality of
the quotient space 2(n−1). �

From the preceding discussion and the Lemma we have:

Theorem 1. In the Voronoi model at any level of refinement and at pc = .5,
the (unique) homological observable on (RP 2) i.e. the event “the generator of
H1(RP 2;Z2) lies in black” is conformally (equivalently metric) invariant. It
occurs with probability q = .5 independent of the metric on RP 2. �

The “torus trick” of Kirby [K] and later Sullivan [S] show that topological and
geometric problems can sometimes be profitably localized onto a closed manifold.
In this spirit we suggest that the duality on the projective plane might figure
into a proof of the general conjecture. Much of the progress in two-dimensional
percolation rests on the metrical symmetry of the square. The symmetry of the
projective plane is inherently topological and therefore more robust.

We now consider closed manifolds of dimension ≥ 2. Let C be a class of closed
manifolds (possibly a singleton) and P (B, W ) is a property of decompositions
B ∪ W = M ∈ C, where B and W are submanifolds of M meeting along their
common boundary, taking values in Z2 = {true, false}. We call P an exclusive
property if exactly one of P (B, W ) and P (W, B) is true.

Let M be a closed smooth manifold of with a compatible P.L. triangulation.
We consider the process which colors the dual cells to this triangulation black
with probability = .5. We may imagine that the cells are generated from a metric
(and its associated volume form) by selecting “capitals” by a Poisson process and
expanding these to “countries” or Voronoi cells. Generically such cells will be
dual to a compatible P.L. triangulation. For the topological discussion it will not
matter how these cells are generated only that any union of them is a piece-wise
smooth, codimension zero, submanifold with boundary.

An immediate generalization of Theorem 1 is:

Theorem 2. Let C be some class of manifolds for which an exclusive property
P is defined. In the Voronoi model of percolation, at any level of refinement,
and at pc = .5, the observable on M = B ∪ W , “P (B, W ) is true” occurs with
probability = .5 independent of the metric on M . �

We establish four (related) exclusive properties; readers are encouraged to
find more.

Let Sn be the connected sum of 2n + 1 copies of RP 2, {Sn, n ≥ 0} is our
class C1. And for any decomposition of Sn into a black and white subsurfaces
meeting along their common boundary, Sn = B∪W let P1 be the property that:

dim(image H1(B;Z2) → H1(Sn;Z2)) > dim(image H1(W ;Z2) → H1(Sn;Z2)).
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Proposition 1. P1 is an exclusive property on C1.

Proof. Let C be the 1-manifold B∩W . The image (H1(C;Z2)) = I ⊂ H1(Sn;Z2)
is an isotropic subspace and its perpendicular space I⊥ is easily identified as the
image (H1(B, Z2) ⊕ H1(W ;Z2))

inc∗⊕inc∗−−−−−−→ H1(Sn;Z2). Writing the intersection
form on Sn as

<, >=
⊕

n

αi

βi

αi βi∣∣∣∣ 0 1
1 0

∣∣∣∣ ⊕ δ

|1|

an arbitrary k-dimensional isotropic subspace, k ≤ n, may be mapped by an iso-
morphism of the intersection form onto the span of αi, . . . , αk within the maximal
n-dimensional isotropic subspace, span (α1, . . . , αn). In these coordinates, I⊥ is
spanned by

α1, . . . , αk, αk+1, βk+1, . . . , αn, βn, δ

so dim (I⊥/I) is odd. However

I⊥/I ∼= image H1(B;Z2) ⊕ H1(W ;Z2) ⊂ H1(Sn;Z2)
image H1(C;Z2) ⊂ H(Sn; Z2)

∼= image H1(B;Z2) ⊕ H1(W ; Z2) ⊂ H1(Sn;Z2)
image(H1(B;Z2) ⊂ H1(Sn;Z2)) ∩ image(H1(W ;Z2) ⊂ H1(Sn;Z2))

.

Setting b, w, and i equal to the dimensions of the image of H1(B; Z2), the image
of H1(B;Z2), and their intersection, respectively, we have: odd = (b+w− i)− i.
Consequently b = dim (image H1(B;Z2) ⊂ H1(Sn; Z2)) is never equal to w =
dim (image H1(W ;Z2) ⊂ H1(Sn;Z2)). �

We choose some coefficient field F and restrict to the class of manifolds C2

with dim(M) = 2n and Hn(M ;F ) ∼= F , i.e. the middle dimensional homology
has rank one. Now consider the property P2:

“The map Hn(B;F ) → Hn(M ;F ) is onto”.

Proposition 2. P2 is an exclusive property on C2.

Proof. Consider the Mayer-Vietovis sequence with coefficients in F .

→ Hn(B ∩ W )

∈

∂̂α

→ Hn(B) ⊕ Hn(W ) → Hn(M)

∈

α

∂−→ Hn−1(B ∩ W )

∈

∂α

→

Let α denote a generator. The ∂-map is given by transverse intersection. In
the homology of the n-1-manifold B∩W, ∂̂α denotes a Poincaré dual to ∂α which
exists unless ∂α = 0. The intersection number < ∂̂α, ∂α >(B∩W )= 1 ∈ F . Since
the normal bundle νB∩W⊂M is trivial (“toward B” is a section) the intersection
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number < ∂̂α, ∂̂α >M= 0 ∈ F . Thus by our hypothesis on M, inc∗∂̂α = 0 ∈
Hn(M) otherwise the one dimensional intersection form on M would be singular
contradicting Poincaré duality. But

< ∂̂α, ∂α >(B∩W )=< ∂̂α, α >M=< 0, α >M= 0.

This contradiction implies ∂α = 0. Using the exactness of the Mayer-Vietovis
sequence and (again) the one dimensionality of Hn(M) we see that at least one of
the inclusions Hn(B) → Hn(M) or Hn(W ) → Hn(M) must be an epimorphism.
As in the proof of Lemma 1, only one of these inclusions can be an epimorphism,
otherwise a cycle with non-zero self intersection could be represented in two
disjoint regions, interior B and interior W . �

Let C3 be the class of closed smooth 4k-dimensional manifolds with odd sig-
nature and for B ∪ W = M ∈ C3 let P3(B, W ) state “signature B > signature
W”.

Proposition 3. P3 is an exclusive property on C3.

Proof. The proposition follows directly from Novikoff’s additivity property for
signature (see [W]). �

Note that both Propositions 2 and 3 apply to the well known manifolds CP 2

and HP 2.
A final example is less interesting for percolation since it depends on the

details of the subset, for which there is no bound on complexity, rather than
upon its homological image. Let C4 be the class of closed manifolds with odd
Euler characteristic = X , and for B∪W = M ∈ C4, let P4(B, W ) state “X (B) >
X (W )”.

Proposition 4. P4 is an exclusive property on C4.

Proof. Euler characteristic is additive. �
Using the axiom of choice, rather absurd exclusive properties can be con-

structed on any manifold.
The four examples above are all isotopy invariant, meaning P (B, W ) ⇐⇒

P (ItB, ItW ), where It : M × [0, 1] → M is an isotopy, M = B ∪ W .

Theorem 3. No closed odd-dimenisional manifold has an exclusive isotopy in-
variant property. (The statement may be interpreted in the smooth, P.L., or
topological categories.) �
Proof. Every closed (2n + 1)-dimensional manifold M2n+1 may be described
as an “open book”, that is as a relative mapping cylinder of an automorphism
h : (N2n, ∂N2n) → (N2n, ∂N2n), for some 2n-dimensional manifold N, where
h|∂N2n = id∂N2n : This theorem is trivial for n = 0, and proved in [A] for n = 1
and [Law], [Q] for n ≥ 2.

M ∼= N × [0, 1]
/

(n, 0) ≡ (h(n), 1) for n ∈ N,
(n′, t) ≡ (n′, t′) for n′ ∈ ∂N, t, t′ ∈ [0, 1]
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Setting B = image(N × [0, 1
2 ]) and W = image(N × [ 12 , 1]) ⊂ M , we see that the

isotopy of M:

It(n, s) = (n, s + t) s + t ≤ 1
(h(n), s + t − 1) s + t ≥ 1,

s ∈ [0, 1], t ∈ [0, 1
2 ], and n ∈ N,

exchanges the subsets B and W so no isotopy-invariant exclusive property can
exist. �

A different proof of Theorem 3 using Cerf theory has been found by Peter Te-
ichner (personal communication); he also points out that the Kirby-Siebenmann
invariant yields an exclusive property on the class of closed, nonstably-smooth-
able, four-dimensional topological manifolds. We wonder if it is impossible for a
closed manifold of even Euler characteristic to admit a diffeomorphism-invariant
exclusive property.
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