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ON THE REGULARITY OF THE ANOSOV SPLITTING FOR
TWISTED GEODESIC FLOWS

Gabriel P. Paternain

Abstract. Let M denote a closed Riemannian manifold whose geodesic flow is
Anosov. Given a real number λ and a smooth one form θ, consider the twisted
geodesic flow obtained by twisting the canonical symplectic structure by the lift
of λdθ to the tangent bundle of M . For λ in a certain open interval around the
origin the twisted flow remains Anosov. We show that the Anosov splitting of
the twisted geodesic flow is never of class C1 unless λ = 0.

1. Introduction

Let Mn be a closed n-dimensional manifold endowed with a C∞ Riemannian
metric 〈 , 〉, and let π : TM → M denote the canonical projection. Let ω0 denote
the symplectic form on TM obtained by pulling back the canonical symplectic
form of T ∗M via the Riemannian metric. Let H : TM → R be defined by

H(x, v) =
1
2
〈v, v〉 .

The Hamiltonian flow of H with respect to ω0 gives rise to the geodesic flow
of M . Let Ω be a closed 2-form of M which does not vanish identically and
consider the new symplectic form ωλ defined as:

ωλ
def= ω0 + λπ∗Ω, λ ∈ R.

Such a form is called a twisted symplectic structure [1] and the Hamiltonian flow
of H with respect to ωλ gives rise to a flow φλ

t : TM → TM that we shall call
twisted geodesic flow. This flow models the motion of a particle of unit mass and
charge λ under the effect of a magnetic field, whose Lorentz force Y : TM → TM
is the bundle map uniquely determined by:

Ωx(u, v) = 〈Yx(u), v〉 ,

for all u and v in TxM and all x ∈ M . Observe that φλ
t preserves all the energy

levels H = const, in particular SM
def= H−1(1/2). From now on let us consider

the restriction of φλ
t to SM .

Various properties of these flows were studied in [22, 23]. For example, we
showed that if we start with an Anosov geodesic flow φ0

t and we increase the
value of λ we must exit the set of Anosov flows for some critical value λc < ∞
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and that the topological entropy presents a strict global maximum at λ = 0
when restricted to (−λc, λc).

In the present paper we shall study a new feature of the twisted geodesic
flows, namely the regularity of the Anosov splitting. If λ ∈ (−λc, λc), let us
denote by E0

λ ⊕ Es
λ ⊕ Eu

λ the Anosov splitting of φλ
t , where E0

λ denotes the one
dimensional subbundle associated with the flow direction and Es,u

λ denote the
strong stable and strong unstable bundles respectively.

If dimM = 2 then E0
λ ⊕Es

λ and E0
λ ⊕Eu

λ are both of class C1,x log x by results
of S.Hurder and A. Katok [16]. In particular, when λ = 0, i.e. for geodesic
flows, this implies that Es

0 and Eu
0 are both of class C1,x log x since the geodesic

flow is of contact type. Also, if M has 1/4-pinched negative sectional curvature,
Es

0 and Eu
0 are both of class C1 [15]. If one assumes that Es

0 and Eu
0 are both

of class C∞ then combining results of Y. Benoist, P. Foulon and F. Labourie
[2] with results of G. Besson, G. Courtois and S. Gallot [3] it follows that M
must be locally symmetric, thus generalizing and improving previous results of
M. Kanai, A. Katok and R. Feres [17, 7, 8, 9]. Most likely the same result is true
assuming only that Es

0 and Eu
0 are both of class C2 but this is only known for

surfaces [12] and for small deformations of hyperbolic metrics by results of U.
Hamenstädt [13] and L. Flaminio [10]. We refer to [14] for more on the regularity
of the Anosov splitting.

Our aim is to show that for twisted geodesic flows assuming C1 regularity
already implies rigidity provided that Ω is an exact form:

Theorem. Let M be a closed Riemannian manifold whose geodesic flow is
Anosov. Suppose Ω is exact. Then Es

λ and Eu
λ are never both of class C1 unless

λ = 0.

If the cohomology class of Ω is not trivial, the theorem is no longer true as
it can be easily seen by looking at the case of a surface of constant negative
curvature and Ω the area form. More generally consider a compact locally sym-
metric space of non-constant negative curvature (n ≥ 4). Let J1, . . . , Jd−1 be the
parallel orthogonal endomorphisms defining the complex (d = 2), quaternionic
(d = 4) or Cayley (d = 8) hyperbolic structure of M . If we consider the 2-form
Ω naturally associated each Ji (1 ≤ i ≤ d−1) then it is straightforward to check
that the splitting is C∞.

Problem. Are these are the only cases in which the splitting can be C1 for
λ 
= 0?

Observe that for surfaces, Es
λ and Eu

λ are both of class C1 if and only if
Es

λ ⊕ Eu
λ is of class C1. If τλ denotes the one-form that vanishes on Es

λ ⊕ Eu
λ

and takes the value one on the vector field associated with φλ
t , then the theorem

is saying, for the surface case, that τλ is of class C1 if and only if λ = 0. Note
that τ0 is C∞ and coincides with the contact form α of the geodesic flow.

J.F. Plante [25] gave the first examples of volume preserving Anosov flows
for which the strong stable and unstable bundles are not both of class C1. His
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examples are also volume preserving perturbations of Anosov geodesic flows, but
he used the fact that the asymptotic cycle (cf. [26]) of the measure induced by
the volume form was not zero for the perturbed flows. We shall see in Section
2 that φλ

t preserves the volume form α ∧ (dα)n−1 and therefore the Liouville
measure µl of SM . We shall show also in Section 2 that the asymptotic cycle of
φλ

t with respect to µl vanishes for all λ (provided that M is not a 2-torus). It
follows that no argument like in [25] can be used to show the non-smoothness of
the bundles Es

λ and Eu
λ , even in the surface case.

The proof of theorem will be based on a combination of a result of U.
Hamenstädt in [13] and the theory of convex superlinear Lagrangians developed
by John Mather and Ricardo Mañé (cf. [4, 19, 20, 21]). By writing Ω = dθ, the
twisted geodesic flows can also be obtained as the Euler-Lagrange flows of the
one-parameter family of Lagrangians

Lλ(x, v) =
1
2
〈v, v〉 − λθx(v).

The energy of these Lagrangians is E(x, v) = 1
2 〈v, v〉. As we shall explain in

Section 3, to each Lλ one can attach the strict critical value c0(Lλ) as introduced
by Mañé in [19]. The proof of the theorem splits into the three cases:

• 1/2 > c0(Lλ);
• 1/2 = c0(Lλ);
• 1/2 < c0(Lλ).

The three cases may indeed occur, as it is shown in [24], as long as we do not
make any smoothness assumption on the bundles Es

λ and Eu
λ . Each case will give

rise to different variational properties that will allow us to prove the theorem.
We shall see that if Es

λ and Eu
λ are both of class C1 then the last two cases

cannot occur and that in the first case we must have λ = 0.
It is well known that for flows, a “choice of time” or equivalently, a choice of

speed at which orbits travel gets reflected on the regularity of the corresponding
strong stable and strong unstable distributions. The results of Hurder and Katok
mentioned before imply that for a contact Anosov flow on a closed three mani-
fold the Anosov splitting is C1,x log x. Our theorem is therefore saying that for
dimM = 2 a twisted geodesic flow obtained from twisting an Anosov geodesic
flow by an exact form Ω is never of contact type. As the referee pointed out this
is rather surprising since it shows that in some sense the “best time” to describe
the dynamics of the motion of a free particle under the effect of a magnetic field
it is not the one associated to the Riemannian length. This observation nat-
urally raises the following question posed by the referee: when can we change
the speed of the flow to make it contact? The main result in [5] implies that if
1/2 > c0(Lλ) then the twisted geodesic flow is the reparametrization of a Finsler
geodesic flow, which are known to be of contact type. However as we shall see in
Section 4 after the proof of the theorem, our methods show, at least for surfaces,
that if 1/2 ≤ c0(Lλ) then the twisted geodesic flow can never be reparametrized
to make it of contact type. Examples with 1/2 ≤ c0(Lλ) do indeed exist (even
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for surfaces) as it was shown in [24]. The obstruction of generalizing this result
to higher dimensions lies on the fact that Hamenstädt’s methods in [13] (cf.
Theorem 5.1 in the Appendix) definitely need a C1 splitting. I do not know if
this regularity assumption can be dropped.

Acknowledgement: I am grateful to the Institut Fourier, Grenoble, for hos-
pitality while this work was completed and to the referee for several comments
and suggestions.

2. Preliminaries

We describe in this section some of the basic geometry of the twisted geodesic
flows.

Let us begin by fixing on M a smooth Riemannian metric 〈 , 〉. Let π :
TM → M denote the canonical projection and let K : TTM → TM denote the
connection map. The latter is defined giving its value on each fibre setting

Kv(ξ) =
DZ

dt

∣∣∣∣
t=0

,

where Z : (−ε, ε) → TM verifies Z(0) = v, Z ′(0) = ξ, and D
dt denotes covariant

derivative along π ◦ Z.
It is well known that TTM splits as the direct sum of the vertical and the

horizontal subbundles . The vertical fibre on v is given by

V (v) = Ker dvπ,

and the horizontal fibre on v is defined as

H(v) = KerKv.

Thus TvTM can be identified with Tπ(v)M ⊕Tπ(v)M , and hence we write in the
sequel

ξ = (ξ1, ξ2),

where ξ1 = dvπ(ξ) and ξ2 = Kv(ξ) for every ξ in TvTM . The symplectic
structure ω0 described in the Introduction can be written as

ω0(ξ, η) = 〈dπ(ξ), K(η)〉 − 〈K(ξ), dπ(η)〉 .

The contact form α can be written as

αv(ξ) = 〈dπ(ξ), v〉 ,

and we have that ω0 = −dα.
Fix a closed two-form Ω in M such that Ω does not vanish identically. For

any λ ∈ R define ωλ by
ωλ = ω0 + λπ∗Ω.
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Consider the Hamiltonian H : TM → R given by H(v) = 1
2 〈v, v〉. Let

Y : TM → TM be the bundle map such that

Ωx(u, v) = 〈Yx(u), v〉

for all u and v in TxM and all x in M . Denote by

Xλ : TM → TTM

the symplectic gradient of H with respect to ωλ. Since the identity

dvH(ξ) = ω0(Xλ(v), ξ) + λ 〈Y (dvπ(Xλ(v))), dvπ(ξ)〉

holds for every ξ in TvTM , the identity

〈ξ2, v〉 =
〈
X1

λ(v), ξ2

〉 − 〈
X2

λ(v), ξ1

〉
+ λ

〈
(X1

λ(v)), ξ1

〉
is valid for all ξ1 and ξ2 ∈ Tπ(v)M (obviously we made use of the identification
ξ = (ξ1, ξ2) as it was explained before and (X1

λ, X2
λ) are the horizontal and

vertical components of Xλ). Therefore

Xλ(v) = (v, λY (v))

for every v in TM . It is easily seen from this equation that a curve is an integral
curve of Xλ if and only if it is of the form t �→ (γ(t), γ̇(t)) ∈ TM and satisfies
the equation

D

dt
γ̇ = λY (γ̇),(1)

which is nothing but Newton’s law of motion.
Suppose now that φ0

t : SM → SM is an Anosov flow and let (−λc, λc) denote
the maximal interval such that for λ ∈ (−λc, λc), φλ

t is an Anosov flow.

Lemma 2.1. Take λ ∈ (−λc, λc). There is no periodic orbit of φλ
t whose pro-

jection to M is null-homotopic. If σ denotes a non-trivial free homotopy class
of M , then there exists a unique closed orbit of φλ

t such that its projection to M
belongs to the homotopy class σ.

Proof. Recall that if φ0
t is Anosov, there exists a unique closed geodesic in the

class σ and there is no closed geodesic homotopic to zero. The lemma follows
right away from the fact that φλ

t is topologically equivalent to φ0
t by a homeo-

morphism isotopic to the identity.
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Let us prove now that α ∧ (dα)n−1 is invariant under φλ
t acting on SM . It

suffices to show that
d(iXλ

(α ∧ (dα)n−1)) = 0.

But this last equality is a consequence the following lemma

Lemma 2.2.

iXλ
(α ∧ (dα)n−1) = (−ωλ)n−1.

Proof. By the definition of ωλ

(dα)n−1 = (−ωλ + λπ∗Ω)n−1.

Note that on SM we have

α(Xλ) = 1.(2)

The lemma follows now from observing that

α ∧ ωi
λ ∧ (π∗Ω)n−i−1 = 0,

unless i = n − 1.

Let µl denote the probability measure on SM induced by the volume form
α ∧ (dα)n−1. For any λ, the twisted geodesic flow leaves µl invariant.

Let us show that the asymptotic cycle of µl vanishes provided that M is not
diffeomorphic to a 2-torus. If ϕ denotes any closed one-form on SM of class C1,
we need to show that ∫

SM

ϕ(Xλ) dµl = 0.

But using Lemma 2.2 we have∫
SM

ϕ(Xλ)α ∧ (dα)n−1 =
∫

SM

iXλ
(α ∧ (dα)n−1) ∧ ϕ = (−1)n

∫
SM

(ωλ)n−1 ∧ ϕ.

If n ≥ 3, the form (ωλ)n−1 is always exact. If n = 2 and M is not diffeomorphic
to a 2-torus, the form ωλ is still exact because π∗Ω is also exact, as can be easily
seen using the (non-zero) Euler class of the bundle π : SM → M . It follows that
if M is not diffeomorphic to a 2-torus the form (ωλ)n−1 is always exact. If we
write (ωλ)n−1 = dβλ we have∫

SM

(ωλ)n−1 ∧ ϕ =
∫

SM

d(βλ ∧ ϕ) = 0,

and thus the asymptotic cycle of µl vanishes for all λ.
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3. Critical values of Lagrangians

We shall describe in this section the main results that we need from the
theory of convex superlinear Lagrangians as developed by Mather and Mañé (cf.
[4, 19, 20, 21]).

Let Mn be a closed manifold and let L : TM → R be a C∞ Lagrangian
satisfying the following hypothesis:

• Convexity. For all x ∈ M , the restriction of L to TxM has everywhere
positive definite Hessian.

• Superlinear growth. Let || || denote a Riemannian metric on M . Then

lim
||v||→∞

L(x, v)
||v|| = +∞,

uniformly on x ∈ M . This condition is clearly independent of the choice
of Riemannian metric, since M is compact.

The Euler-Lagrange equation,

d

dt

(
∂L

∂v
(x, ẋ)

)
− ∂L

∂x
(x, ẋ) = 0

generates a smooth complete flow φt : TM → TM which is defined as follows.
Given (x, v) ∈ TM , consider the unique solution x : R → M of the Euler-
Lagrange equation with initial conditions

x(0) = x, ẋ(0) = v.

Now define φt : TM → TM by

φt(x, v) = (x(t), ẋ(t)).

Recall that the energy E : TM → R is defined by

E(x, v) =
∂L

∂v
(x, v).v − L(x, v).

Since L is autonomous, E is a first integral of the flow φt.
Recall that the action of the Lagrangian L on an absolutely continuous curve

u : [a, b] → M is defined by

AL(u) =
∫ b

a

L(u(t), u̇(t)) dt.

Given two points, x1 and x2 in M and T > 0 denote by CT (x1, x2) the set of
absolutely continuous curves u : [0, T ] → M , with u(0) = x1 and u(T ) = x2. For
each k ∈ R we define the action potential Φk : M × M → R by

Φk(x1, x2) = inf{AL+k(u) : u ∈ ∪T>0CT (x1, x2)}.
Mañé showed [19, 4] that there exists c(L) ∈ R such that

• if k < c(L), then Φk(x1, x2) = −∞, for all x1 and x2;
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• if k ≥ c(L), then Φk(x1, x2) > −∞ for all x1 and x2 and Φk is a Lipschitz
function;

• if k ≥ c(L), then

Φk(x1, x3) ≤ Φk(x1, x2) + Φk(x2, x3),

for all x1, x2 and x3 and

Φk(x1, x2) + Φk(x2, x1) ≥ 0,

for all x1 and x2;
• if k > c(L), then for x1 
= x2 we have

Φk(x1, x2) + Φk(x2, x1) > 0.

Observe that in general the action potential Φk is not symmetric, however defin-
ing dk : M × M → R by

dk(x1, x2) = Φk(x1, x2) + Φk(x2, x1),

the properties above say that dk is a metric for k > c(L) and a pseudometric for
k = c(L). The number c(L) is called the critical value of L.

It is important for our purposes to indicate that the results above also hold
for coverings of M , i.e. suppose M̂ is a covering of M with covering projection
p. Take the lift of the Lagrangian L to M̂ which is given by

L̂(x̂, v̂) = L(p(x̂), dp(v̂)).

Then we define for each k ∈ R the action potential Φ̂k just as above and the
results hold for L̂. Thus we have a critical value for L̂. Let M denote the abelian
covering of M which is defined as the covering of M whose fundamental group
is the kernel of the Hurewicz homomorphism π1(M) �→ H1(M, R). The abelian
covering of M gives rise to the critical value

ca(L) def= c(L).

We shall need the following result [19, 4].

Theorem 3.1. Let σ denote a non-trivial free homotopy class of M and suppose
that k > c(L). Then, there exists a periodic orbit in the energy level k such that
its projection to M belongs to σ and that minimizes the action AL+k over the set
of absolutely continuous closed curves in the class σ. Conversely, if there exists
an absolutely continuous closed curve u in the class σ that minimizes the action
AL+k among the set of all curves in the class σ, then u gives rise to a periodic
orbit of the Euler-Lagrange flow with energy k.
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Proof. This theorem is not explicitly stated in [19, 4], but its proof follows
immediately from the proofs of Theorem X and Corollaries 4.3 and 4.4 in [4].
For the reader’s convenience we shall explain the main ideas in its proof. For
each T > 0, let CT be the space of all absolutely continuous closed curves u :
[0, T ] → M in the class σ. Let a denote the infimum of AL+k over the space
∪T>0CT . Since k > c(L) this infimum is > −∞. Consider for each T > 0 a
Tonelli minimizer γT (cf. [18, p. 46] and [21]) of the action AL over CT . Take
a sequence γTn such that AL+k(γTn) approaches a. The main point here is that
{Tn} has a convergent subsequence that approaches a number 0 < T0 < ∞.
This is because k > c(L) and σ is a non-trivial homotopy class. Using this fact
one shows that the Tonelli minimizers γTn have a subsequence that converges
to a closed curve of period T0 that is a periodic solution of the Euler-Lagrange
equation. Using that this curve minimizes AL+k over the space ∪T>0CT one
shows that its energy is precisely k. For the converse statement in the theorem,
observe that if u : [0, T0] → M minimizes AL+k over the space ∪T>0CT it must
be also a Tonelli minimizer and therefore a periodic solution with energy k.

Let us recall now the main concepts introduced by Mather in [21].
Let M(L) be the set of probabilities on the Borel σ-algebra of TM that have

compact support and are invariant under the flow φt. Let H1(M, R) be the first
real homology group of M . Given a closed one-form ω on M and ρ ∈ H1(M, R),
let < ω, ρ > denote the integral of ω on any closed curve in the homology class
ρ. If µ ∈ M(L), its homology is defined as the unique ρ(µ) ∈ H1(M, R) such
that

< ω, ρ(µ) >=
∫

ω dµ,

for all closed one-forms on M . The integral on the right-hand side is with
respect to µ with ω considered as a function ω : TM → R. The function
ρ : M(L) → H1(M, R) is surjective [21].

The action of µ ∈ M(L) is defined by

AL(µ) =
∫

L dµ.

Finally we define the function β : H1(M, R) → R by

β(γ) = inf{AL(µ) : ρ(µ) = γ}.
The function β is convex and superlinear and the infimum can be shown to be
a minimum [21] and the measures at which the minimum is attained are called
minimizing measures. In other words, µ ∈ M(L) is a minimizing measure iff

β(ρ(µ)) = AL(µ).

Mañé [19, 4] established a connection between the critical values of a La-
grangian and the convex dual of Mather’s β function. He showed that
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c(L) = −min
{∫

L dµ : µ ∈ M(L)
}

.(3)

Let us recall how the convex dual α : H1(M, R) → R of β is defined. Since β
is convex and superlinear we can set

α([ω]) = max{< ω, γ > −β(γ) : γ ∈ H1(M, R)},
where ω is any closed one-form whose cohomology class is [ω]. The function α
is also convex and superlinear. Mather [21] showed that

α([ω]) = −min
{∫

(L − ω) dµ : µ ∈ M(L)
}

,

and therefore using (3) we obtain the remarkable equality

c(L − ω) = α([ω]),(4)

for any closed one-form ω whose cohomology class is [ω]. Finally, Mañé defined
the strict critical value of L as

c0(L) def= min{c(L − ω) : [ω] ∈ H1(M, R)} = −β(0).

We showed in [24] that the strict critical value of L equals the critical value of
the lift of L to the abelian covering of M , that is, ca(L) = c0(L).

4. Proof of the theorem

Since Ω is exact we can write Ω = dθ for some smooth one-form θ. As in the
Introduction, let us define

Lλ(x, v) =
1
2
〈v, v〉 − λθx(v).

The energy function associated with Lλ is

E(x, v) =
1
2
〈v, v〉 .

Let Lλ : TM → T ∗M denote the Legendre transform associated with Lλ and
let ωcan denote the canonical symplectic form of T ∗M . It is well known that the
Euler-Lagrange flow of Lλ can be obtained as the Hamiltonian flow of E with
respect to the symplectic form L∗

λωcan. An easy computation shows that

L∗
λωcan = ω0 + λπ∗dθ,

and thus the Euler-Lagrange flow of Lλ coincides with the twisted geodesic flow.
As in the Introduction let τλ denote the one-form that vanishes on Es

λ ⊕ Eu
λ

and takes the value one on the vector field Xλ. If the splitting is of class C1

then τλ is also of class C1 and dτλ is a continuous two-form invariant under
the twisted geodesic flow. U. Hamenstädt showed in [13], for the geodesic flow
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case, that any continuous invariant exact two-form must be a constant multiple
of the symplectic form provided that the splitting is of class C1. Hamenstädt’s
proof carries over to the case of twisted geodesic flows without major changes,
provided that Ω is an exact form. However, for completeness sake we include a
sketch of the proof of this fact in the appendix. It follows that there exists a
constant c such that:

dτλ = cωλ,

and thus
d(τλ + cα − cλπ∗θ) = 0.

Let us write
ϕλ

def= τλ + cα − cλπ∗θ.

Then ϕλ is a smooth closed one-form. Using (2) we obtain

ϕλ(Xλ)(v) = 1 + c − cλθπv(v).(5)

Integrating the last equality with respect to µl and using that the asymptotic
cycle of µl vanishes we have

0 = 1 + c − cλ

∫
SM

θπv(v) dµl.

On the other hand µl is invariant under the flip v �→ −v and since θπv(v) =
−θπv(−v), the integral of θπv(v) over SM must vanish and thus c = −1. Re-
placing in (5) we finally obtain

ϕλ(Xλ)(v) = λθπv(v).(6)

It is well known that the map π∗ : H1(M, R) → H1(SM, R) is an isomorphism
(provided that M is not diffeomorphic to a 2-torus). Therefore there exist a
closed smooth one-form δ in M and a smooth function f : SM → R such that

ϕλ = π∗δ + df,

and hence equation (6) gives

δπv(v) + df(Xλ)(v) = λθπv(v).(7)

The proof splits now into three cases.

• 1/2 > c0(Lλ).

By equality (4) we can take a closed one-form ω such that c0(Lλ) = c(Lλ − ω).
Let γ : [0, T ] → M denote a periodic solution of the Euler-Lagrange equation of
Lλ with energy 1/2. By Lemma 2.1 the homotopy class σ of γ is non-trivial and
γ is the only periodic solution in σ with energy 1/2. Let η : [0, R] → M denote
the unique periodic solution in the homotopy class −σ. Since the homotopy
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class of −γ is −σ and the homotopy class of −η is σ it follows from Theorem
3.1 that

ALλ−ω+1/2(η) ≤ ALλ−ω+1/2(−γ),

ALλ−ω+1/2(γ) ≤ ALλ−ω+1/2(−η).

But
ALλ−ω+1/2(η) = R −

∫
η

ω − λ

∫
η

θ,

ALλ−ω+1/2(−γ) = T +
∫

γ

ω + λ

∫
γ

θ,

ALλ−ω+1/2(γ) = T −
∫

γ

ω − λ

∫
γ

θ,

ALλ−ω+1/2(−η) = R +
∫

η

ω + λ

∫
η

θ,

therefore

R ≤ T +
∫

η+γ

ω + λ

∫
η+γ

θ,(8)

T ≤ R +
∫

η+γ

ω + λ

∫
η+γ

θ.(9)

Since the cycle η + γ is homologous to zero and η and γ are solutions of the
Euler-Lagrange equation we have using (7) that

λ

∫
η+γ

θ = 0.

Also, since ω is closed ∫
η+γ

ω = 0.

It follows from (8) and (9) that T = R and thus

ALλ−ω+1/2(η) = ALλ−ω+1/2(−γ),

and by Theorem 3.1, −γ must be a solution of the Euler-Lagrange equation
since η is a minimizer in the class −σ; in fact it follows that η = −γ. Therefore
t �→ γ(−t) and t �→ γ(t) are both solutions of equation (1) and thus

λY (γ̇(−t)) = −λY (γ̇(−t)),

which implies that λY (γ̇(0)) = 0. Since the periodic orbits are dense and Y
does not vanish identically we must have λ = 0 thus concluding the proof of the
theorem in the case 1/2 > c0(Lλ).

• 1/2 = c0(Lλ).
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Take a minimizing measure µ such that ρ(µ) = 0. It satisfies

β(0) =
∫

Lλ dµ.

A result of M.J. Dias Carneiro [6] assures that the support of µ is contained in
the energy level −β(0) = c0(Lλ) = 1/2 therefore

−1/2 = 1/2 − λ

∫
SM

θπv(v) dµ.

Integrating both sides of (7) with respect to µ and using the fact that µ is
invariant we obtain ∫

SM

δπv(v) dµ = λ

∫
SM

θπv(v) dµ.

Therefore
< δ, ρ(µ) >= 1.

Since ρ(µ) = 0, we obtain a contradiction and hence the case 1/2 = c0(Lλ)
cannot occur if the splitting is of class C1.

• 1/2 < c0(Lλ).
We shall need the following proposition which has independent interest.

Proposition 4.1. Suppose that there exists λ such that for all λ′ with λ′ ≤ |λ|,
the energy level 1/2 of Lλ′ is Anosov. Then, if 1/2 < c0(Lλ), there exists a
periodic solution x(t) of the Euler-Lagrange equation of Lλ with energy 1/2 such
that if T denotes a period, then x|[0,T ] is homologous to zero and

ALλ+1/2(x|[0,T ]) < 0.

Proof. Since ca(Lλ) = c0(Lλ) it follows that if 1/2 < c0(Lλ), there exist T0 > 0
and an absolutely continuous closed curve u : [0, T0] → M homologous to zero
such that

ALλ+1/2(u) < 0.(10)

Let us denote by σ the free homotopy class of u. For any τ ≥ T0, let Cτ (σ)
denote the set of all absolutely continuous closed curves w : [0, t] → M such that
t ≤ τ and such that the free homotopy class of w is σ. The same arguments that
prove Tonelli’s Theorem (cf. [18, p. 46] and [21]) allow us to conclude that the
action ALλ+1/2 takes a finite minimum value on the set Cτ (σ) and minimizers
are periodic solutions of the Euler-Lagrange equation of Lλ. In other words, for
each τ there exists a solution x : R → M of the Euler-Lagrange equation and
T ∈ [0, τ ] such that x|[0,T ] minimizes the action ALλ+1/2 on the set Cτ (σ), x
is periodic with period T and the homotopy class of x|[0,T ] is σ. By (10) the
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minimum value has to be negative and therefore T 
= 0. Let k be the energy of
the solution x.

Let us define for each s > 0 the following function:

F (s) def=
∫ sT

0

(Lλ + 1/2)(xs, ẋs) dt

where xs(t) : [0, sT ] → M is defined as xs(t) = x( t
s ). Then

F (s) =
(

k

s
+

s

2

)
T − λ

∫
xs

θ.

Let us compute F ′(1). Since
∫

xs
θ does not depend on s we have,

F ′(s) =
(−k

s2
+

1
2

)
T,

and thus

F ′(1) =
(

1
2
− k

)
T.

Now observe that since x|[0,T ] minimizes the action ALλ+1/2 on the set Cτ (σ) we
must have F ′(1) ≤ 0 and therefore k ≥ 1/2. In fact if T < τ then F ′(1) = 0 and
therefore k = 1/2.

Observe that there exists k0 such that for all (x, v) with energy ≥ k0 we have
Lλ(x, v) ≥ 0. Therefore since ALλ+1/2(x|[0,T ]) < 0 it follows that k < k0.

Let g : TM → TM be the map (x, v) �→ (x,
√

2kv). An easy computation
shows that

g∗ωλ =
√

2k

(
ω0 +

λ√
2k

π∗dθ

)
,

and that g sends SM into the energy level k. It follows that

g∗(Xλ|level k) =
√

2kX λ√
2k

|SM .

Since k ≥ 1/2 we have that λ√
2k

≤ |λ|. Using the fact that for all λ′ ≤ |λ|, the
energy level 1/2 of Lλ′ is Anosov and Lemma 2.1 we deduce that there exists a
unique periodic orbit of the Euler-Lagrange flow of Lλ with energy k such that
its projection to M belongs to the class σ. Let us denote by Tk the period of
this orbit. The map k �→ Tk is smooth and therefore is bounded on [1/2, k0].
It follows that for some τ sufficiently large, the minimizer x|[0,T ] has period T
strictly less than τ and therefore it has energy precisely 1/2. Since x|[0,T ] is
homotopic to a curve homologous to zero, it must be itself homologous to zero
and finally since it is a minimizer we must have

ALλ+1/2(x|[0,T ]) < 0,

as desired.
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Proposition 4.1 implies that there exists a periodic solution x(t) of the Euler-
Lagrange equation with energy 1/2 such that if T denotes a period, then γ

def=
x|[0,T ] is homologous to zero and

ALλ+1/2(γ) < 0.

Equivalently

T − λ

∫
γ

θ < 0,

which implies that

λ

∫
γ

θ > 0.

However, since γ is homologous to zero, equation (7) implies that

λ

∫
γ

θ = 0.

This contradiction shows that the case 1/2 < c0(Lλ) cannot occur if the splitting
is of class C1 thus concluding the proof of the theorem.

We shall explain now why our methods also show the following result.

Proposition 4.2. If there exists a time change that makes the flow φλ
t of contact

type, then 1/2 > c0(Lλ), provided that M is a surface.

Proof. Suppose that the exists a smooth positive function g : SM → R and a
smooth one form Θ such that Θ(gXλ) = 1 and such that the flow of gXλ leaves
Θ invariant. Cartan’s formula implies right away that igXλ

dΘ = 0. Since g is
non-zero, we obtain iXλ

dΘ = 0 and therefore dΘ is invariant under φλ
t . Since

dimM = 2, ergodicity of φλ
t implies that dΘ must be a constant multiple of the

symplectic form. Therefore there exists a constant c such that

dΘ = cωλ,

and thus Θ + cα − cλπ∗θ is a closed one form that we denote as in the proof of
the theorem by ϕλ. Observe that

ϕλ(Xλ)(v) =
1
g

+ c − cλθπv(v).

Integrating the last equality with respect to µl and using that the asymptotic
cycle of µl vanishes we have

0 =
∫

SM

1
g

dµl + c − cλ

∫
SM

θπv(v) dµl.

On the other hand µl is invariant under the flip v �→ −v and since θπv(v) =
−θπv(−v), the integral of θπv(v) over SM must vanish and thus
c = − ∫

SM
1
g dµl < 0. Suppose now that µ is any measure whose support is
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contained in SM , invariant under φλ
t and with ρ(µ) = 0. Integrating the last

equality with respect to µ we obtain (just as in the proof of the theorem):

0 =
∫

SM

1
g

dµ + cALλ+1/2(µ).

Since g is a positive function and c is negative we must have

ALλ+1/2(µ) > 0.

Now the proof of the theorem shows that this can only happen if 1/2 > c0(Lλ).

The difficulty of generalizing this argument to higher dimensions is that one
would need a result like Theorem 5.1 in the Appendix but dropping the hypoth-
esis that the splitting is C1.

5. Appendix

In this appendix we sketch a proof of the following result:

Theorem 5.1. Let η be a continuous exact 2-form in SM invariant under the
twisted geodesic flow φλ

t induced by the closed 2-form Ω. Suppose that Ω is exact
and the Anosov splitting of φλ

t is of class C1. Then η is a constant multiple of
ωλ.

Proof. This theorem was proved by U. Hamenstädt in [13] for geodesic flows.
We shall explain now why her proof extends to the case of twisted geodesic flows
provided that Ω is an exact form. Observe that the theorem is a straightforward
consequence of ergodicity if n = 2.

Let us write η = dτ and ν
def= −α + λπ∗θ, where θ is a 1-form such that

dθ = Ω. Clearly dν = ωλ. First note that since η is φλ
t -invariant, iXλ

η = 0. Also
there exists a bundle map L : Es

λ ⊕ Eu → Es
λ ⊕ Eu

λ such that L is φλ
t -invariant

and
η(x, y) = ωλ(Lx, y),

for x and y in Es
λ ⊕ Eu

λ .
Let us define

A =
∫

SM

ν ∧ (ωλ)n−1.

Note that A 
= 0 since by Stokes theorem, A also equals the integral of the
volume form (ωλ)n on the unit disk bundle in TM .

Consider the function F : R → R given by

F (r) =
∫

SM

(τ − rν) ∧ (ωλ)n−1.
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Since F ′(r) = −A, it follows that there exists c ∈ R such that F (c) = 0. Let us
set β = τ − cν. Clearly dβ is φλ

t -invariant and iXλ
dβ = 0. By ergodicity, there

exist constants ci such that

dβi ∧ (ωλ)n−1−i = ci(ωλ)n−1,

and thus
ν ∧ dβi ∧ (ωλ)n−1−i = ciν ∧ (ωλ)n−1.

Integrating by parts one finds that

ci−1F (c) = ciA,

and therefore all the ci must vanish. It follows that L can be written as cId+B,
where B : Es

λ ⊕ Eu
λ → Es

λ ⊕ Eu
λ is a nilpotent map. Next we note that Es

λ

and Eu
λ are invariant subspaces for B. Let Bs and Bu denote the map induced

by B on Es
λ and Eu

λ respectively. We shall show that Bs and Bu vanish. Let

Q(v) def= KerBs(v). Choose an open dense φλ
t -invariant set U ⊂ SM on which

Q is a continuous subbundle of Es
λ. Now the key step is Lemma 4.3 in [13] which

shows that Q|U is an integrable subbundle. (here one uses that the splitting
is C1). Using the holonomy transport along the weak unstable foliation (one
also needs here the splitting to be C1) we can construct as in [13, Lemma 3.4]
a C0-foliation of SM̃ , the unit sphere bundle of the universal covering of M .
Since φλ

t is topologically conjugate to the geodesic flow φ0
t it can be easily seen

that the space of leaves F of the lift of the weak unstable foliation to SM̃ is
topologically also a sphere Sn−1. Moreover the C0-foliation descends to the
space of leaves F and induces a C0-foliation, which by construction, is invariant
under the induced action of π1(M) on F . The latter is in turn conjugate to the
corresponding action of π1(M) on the sphere at infinity of the geodesic flow. It
follows now from a result of P. Foulon [11] that such a foliation must be trivial
and therefore Bs must vanish identically. The argument to prove the vanishing
of Bu is completely similar.
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Matemática, IMPA, 1991.
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