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VERTEX OPERATOR ALGEBRAS AND IRREDUCIBILITY

OF CERTAIN MODULES FOR AFFINE LIE ALGEBRAS

Dražen Adamović

Abstract. We find the connection between the representation theory of vertex

operator algebra L(kΛ0) and the irreducibility of tensor products V (µ)⊗L(kΛ0).

In the case of affine Lie algebra A
(1)
1 , on every admissible rational level we con-

struct a family of irreducible modules having infinite-dimensional weight spaces.

0. Introduction

Let g be a simple finite-dimensional Lie algebra and ĝ the associated affine
Lie algebra. Let V (µ) be a loop module for ĝ corresponding to irreducible
finite-dimensional g–module V (µ) and let L(λ) be an irreducible highest weight
ĝ–module. Then the tensor product V (µ)⊗L(λ) has infinite-dimensional weight
spaces.

V. Chari and A. Pressley in [CP] studied these modules in the case when
L(λ) is the integrable highest weight module. They proved that the ĝ–module
V (µ) ⊗ L(λ) is irreducible if the weight µ is “large” compared with λ. In this
way their construction gave the first examples of irreducible ĝ–modules having
infinite-dimensional weight spaces. The author in [A] studied the case of critical
level and proved that at this level there is uncountably many irreducible modules
of the type V (µ) ⊗ L(λ). In the proof of irreducibility theorem in [CP] some
structural results for integrable modules were used. For irreducibility result in
[A], author used the structure of center of the completed enveloping algebra at
the critical level. From the results which we mentioned follows that for studying
such modules at the arbitrary level k, we have to use some peculiarity of the
representation theory of affine Lie algebra on this level. We will show that the
language of vertex operator algebras can be used in the irreducibility analysis of
these modules.

In this paper we will consider the tensor products V (µ) ⊗ Lk, where Lk =
L(kΛ0) is the irreducible highest weight ĝ–module with the highest weight kΛ0

(Lk is sometimes called vacuum-module). On ĝ–module Lk we have the struc-
ture of simple vertex operator algebra (see [FZ], [DL], [MP]). The irreducible

Received February 11, 1997.

1991 Mathematics Subject Classification. 17B67.

Kew words and phrases. Affine Lie algebra, Vertex operator algebra, Zhu’s algebra, Tensor
products, Loop modules, Admissible representations.

809
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Lk–modules are in one-to-one correspondence with the irreducible modules for
corresponding Zhu’s algebra A(Lk), introduced in [Z]. Since Zhu’s algebra A(Lk)
can be identified as certain quotient of the universal enveloping algebra U(g) (see
[FZ]), every A(Lk)–module is also U(g)–module.

Our main theorem gives the irreducibility criterion for modules V (µ) ⊗ Lk

in the terms of representations of algebra A(Lk). We will prove the following
theorem which shows that the question of irreducibility for modules V (µ) ⊗ Lk

is closely related to the classification of finite-dimensional modules for Zhu’s
algebra A(Lk).

Theorem 1. Let k ∈ C. The ĝ–module V (µ) ⊗ Lk is irreducible if and only if
V (µ) is not a module for Zhu’s algebra A(Lk).

In the case of affine Lie algebra A
(1)
1 Theorem 1 and the classification of

irreducible Lk–modules obtained in [AM] enable us to decide on irreducibility
of V (µ)⊗Lk for every k ∈ C. In particular, we have the following irreducibility
result.

Theorem 2. Let k = p/q ∈ Q such that q ∈ N, p ∈ Z, (p, q) = 1 and 2q+p−2 ≥
0 (such level is called admissible). Let j ∈ Z+.

Then ĝ–module V (jω1) ⊗ Lk is irreducible if j > 2q + p − 2 and reducible if
j ≤ 2q + p − 2 (here ω1 denotes the fundamental weight for sl2).

Theorem 2 gives the existence of an infinite family of irreducible modules
having infinite-dimensional weight spaces on every admissible rational level.

1. Preliminaries

1.1 Vertex operator algebras and modules.

Definition 1.1. A vertex operator algebra (VOA) is a Z+–graded vector space
V =

⊕
n∈Z

Vn with a sequence of linear operators {a(n) | n ∈ Z} ⊂ End V
associated to every a ∈ V , such that for fixed a, b ∈ V , a(n)b = 0 for n
sufficiently large. We call the generating series Y (a, z) =

∑
n∈Z

a(n)z−n−1 ∈
(End V )[[z, z−1]], vertex operators associated to a, satisfy the following axioms:

(1) Y (a, z) = 0 iff a = 0.
(2) There is a vacuum vector, which we denote by 1, such that

Y (1, z) = IV (IV is the identity of End V ).

(3) There is a special element ω ∈ V (called the Virasoro element), whose
vertex operator we write in the form

Y (ω, z) =
∑
n∈Z

ω(n)z−n−1 =
∑
n∈Z

Lnz−n−2,

such that
L0a = na = (deg a)a for a ∈ Vn;
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Y (L−1a, z) =
d

dz
Y (a, z) for every a ∈ V,

[Lm, Ln] = (m − n)Lm+n + δm+n,0
m3 − m

12
c,

where c is some constant in C, which is called the rank of V .
(4) The Jacobi identity holds, i.e.

z−1
0 δ

(
z1 − z2

z0

)
Y (a, z1)Y (b, z2) − z−1

0 δ

(−z2 + z1

z0

)
Y (b, z2)Y (a, z1)

= z−1
2 δ

(
z1 − z0

z2

)
Y (Y (a, z0)b, z2)

for any a, b ∈ V .

The subspace I of V is called ideal if Y (a, z)b ∈ I[[z, z−1]] for every a ∈ V, b ∈
I. Given an ideal I in V such that 1 /∈ I, ω /∈ I, the quotient V/I admits a
natural VOA structure (see [FZ]).

Definition 1.2. Given an V OA V , a representation of V (or V –module) is a
Z+–graded vector space M =

⊕
n∈Z+

M(n) and a linear map

V −→ (End M)[[z, z−1]],

a �−→ YM (a, z) =
∑
n∈Z

a(n)z−n−1,

satisfying
(1) a(n)M(m) ⊂ M(m + deg a − n − 1) for every homogeneous element a.
(2) YM (1, z) = IM , and setting YM (ω, z) =

∑
n∈Z

Lnz−n−2, we have

[Lm, Ln] = (m − n)Lm+n + δm+n,0
m3 − m

12
c,

YM (L−1a, z) =
d

dz
YM (a, z)

for every a ∈ V.
(3) The Jacobi identity holds, i.e.

z−1
0 δ

(
z1 − z2

z0

)
YM (a, z1)YM (b, z2) − z−1

0 δ

(−z2 + z1

z0

)
YM (b, z2)YM (a, z1)

= z−1
2 δ

(
z1 − z0

z2

)
YM (Y (a, z0)b, z2)

for any a, b ∈ V .
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The submodules, quotient modules, irreducible modules, completely reducible
modules are defined in the usual way ([FHL]).

Let Mi (i = 1, 2, 3) be V –modules. Then an intertwining operator of type(
M3

M1,M2

)
is defined [FHL] to be a linear map I(·, z) from M1 to HomC(M2, M3){z}

such that I(L−1u, z) = d
dz I(u, z) for u ∈ M1 and a suitably adjusted Jacobi

identity holds. Denote by I
(

M3
M1,M2

)
the space of all intertwining operators of the

indicated type. The dimension of this vector space is called the fusion rule of this
type. It is well-known that the spaces I

(
M3

M1,M2

)
and I

(
M3

M2,M1

)
are isomorphic.

1.2 Zhu’s algebra A(V ). Let V be a VOA. For any homogeneous element
a ∈ V and for any b ∈ V , following [Z] we define

a ∗ b = Resz
(1 + z)deg a

z
Y (a, z)b.

Then extend this product bilinearly to the whole space V . Let O(V ) be the
subspace of V linearly spanned by the elements of type

Resz
(1 + z)deg a

z2
Y (a, z)b for homogeneous elements a, b ∈ V.

Set A(V ) = V/O(V ). The multiplication ∗ induces the multiplication on the
A(V ) and A(V ) becomes an associative algebra. The image of 1 in A(V ) becomes
the identity element till the image of ω is in center of A(V ) (see [Z]). Let M =
⊕n∈Z+M(n) be a V –module. For a homogeneous element a ∈ V we define
o(a) = a(deg a−1). From the definition of M follows that operator o(a) preserves
the graduation of M .

Theorem 1.1.

(1) On End(M(0)) we have

o(a)o(b) = o(a ∗ b), o(x) = 0

for every a, b ∈ V , x ∈ O(V ). The top level M(0) is an A(V )–module.
(2) Let U be an A(V )–module. There exists V –module M such that A(V )–

module M(0) and U are isomorphic.

Thus, we have one-to-one correspondence between irreducible V –modules and
irreducible A(V )–modules.

We have the following consequence from the definition of A(V ).

Proposition 1.1. Let I be an ideal of V Assume 1 �∈ I, ω �∈ I. Then the
associative algebra A(V/I) is isomorphic to A(V )/[I], where [I] is the image of
I in A(V ).
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1.3 Vertex operator algebras associated to affine Lie algebras.
Let g be a finite-dimensional simple Lie algebra over C and let (·, ·) be a

nondegenerate symmetric bilinear form on g. Let g = n−+h+n+ be a triangular
decomposition for g. The affine Lie algebra ĝ associated with g is defined as
g⊗C[t, t−1]⊕Cc⊕Cd, where c is the canonical central element [K] and the Lie
algebra structure is given by

[x ⊗ tn, y ⊗ tm] = [x, y] ⊗ tn+m + n(x, y)δn+m,0c,

[d, x ⊗ tn] = nx ⊗ tn

for x, y ∈ g. We will write x(n) for x ⊗ tn. We define the subalgebras ĝ+ and
ĝ− with ĝ± = g ⊗ t±1C[t±1]. The Cartan subalgebra ĥ and subalgebras n̂+, n̂−
of ĝ are defined by

ĥ = h ⊕ Cc ⊕ Cd, n̂± = n± ⊕ g ⊗ t±1C[t±1].

Let ĝ′ by the subalgebra g ⊗ C[t, t−1] ⊕ Cc.
Set n−(1) = n− ⊗ t1. Let P+ be the set of all dominant integral weights for

g. Let ∆ be a root system for ĝ. Set Γ =
∑

ϕ∈∆ Zϕ.

For a fixed weight λ ∈ ĥ∗ let L(λ) be the irreducible ĝ–module with the
highest weight λ. Let λ be a restriction on h. For a weight µ ∈ P+, let V (µ)
be the irreducible finite-dimensional highest weight g–module with the highest
weight µ. Let V (µ) = V (µ) ⊗ C[t, t−1] be the corresponding loop ĝ–module of
level 0.

Let P = C[t]⊗g⊕Cc be upper parabolic subalgebra. Let U be any g–module.
Considering U as a P–module, we have the induced module (so called generalized
Verma module) M(k, U) = U(ĝ) ⊗U(P ) U , where the central element c acts as
multiplication with k ∈ C.

For µ ∈ h∗ with M(µ) we denote Verma module and with V (µ) its irreducible
quotient.

Set Mk,µ = M(k, V (µ)). Let Lk,µ denotes its irreducible quotient. Set Mk =
Mk,0, Lk = Lk,0.

Theorem 1.2. ([FZ]) For every k �= −h∨ (where h∨ denotes dual Coxeter
number) ĝ–modules Mk and Lk have the structure of VOA. Let U be any g–
module. Then every M(k, U) is a module for Mk. In particular, Mk,µ is Mk–
module.

We define the Z–grading on U(ĝ) with

deg a1(−i1) · · · ar(−ir) = i1 + · · · ir,
for every a1, . . . ar ∈ g. Let y ∈ U(g−) such that deg y = n. Let 1k be the vacuum
vector in Mk. Clearly we have that y1k ∈ Mk and L0(y1k) = (deg y)(y1k).

Next we define the projection map F : U(ĝ−) → U(g) with

F (a1(−i1 − 1) · · · an(−in − 1)) = (−1)i1+···inanan−1 · · · a1,

for every a1, . . . , an ∈ g, i1, . . . , in ∈ Z+, n ∈ N.
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Theorem 1.3. ([FZ]) The Zhu’s algebra A(Mk) is canonically isomorphic to
U(g) and the isomorphism F : A(Mk) → U(g) is given by :

F (a1(−i1 − 1) · · · an(−in − 1)1k + O(Mk)) = F (a1(−i1 − 1) · · · an(−in − 1))

for every a1, · · · , an ∈ g and every i1, · · · , in ∈ Z+.

We know that for every λ ∈ h∗ and k �= −h∨ Lk,λ is a Mk–module. One
can show that Lk,λ =

∐
n∈Z+

Lk,λ(n) and L0|Lk,λ(n) = (n + hk,λ)Id, where

hk,λ = (λ,λ+2ρ)
2(k+h∨) (see [DL]). Then ĝ′-module Lk,λ becomes ĝ = ĝ′ + Cd–module

with d = L0 − h�,λ .
Let Lk,µ, Lk,λ, Lk,ν are Mk–modules. Set h1 = hk,µ , h2 = hk,λ h3 = hk,ν .

Let I(·, z) be an intertwining operator from the space I
(

Lk,ν

Lk,µ,Lk,λ

)
. We define

I◦(u1, z) = zh1+h2−h3I(u1, z) =
∑
n∈Z

u1(n)z−n−1

for u1 ∈ Lk,µ. Then I◦(·, z) can be considered as a linear map from C[t, t−1] ⊗
Lk,µ ⊗Lk,λ to Lk,ν . Let φI denotes a restriction of I◦(·, z) on C[t, t−1]⊗V (µ)⊗
Lk,λ. By using Jacobi identity one can easily obtain the following relations

[a(m), I(u, z)] = zmI(au, z);

[Lm, I(u, z)] = ((m + 1)h1 + z
d

dz
)I(u, z)

for a ∈ g ⊂ Mk , u ∈ V (µ), m ∈ Z.
This implies that φI ∈ Homĝ(V (µ) ⊗ Lk,λ, Lk,ν). We have the following

lemma:

Lemma 1.1. Linear map φ defined with

φ : I

(
Lk,ν

Lk,µ, Lk,λ

)
→ Homĝ(V (µ) ⊗ Lk,λ, Lk,ν);

I(·, z) �→ φI

is injective.

Proof. Let φI = 0. Then I◦ ≡ 0 on V (µ). Since V (µ) generate Lk,µ, from Jacobi
identity follows I◦ = 0, and we get I = 0. �
Remark 1.1. H.-Li in [Li] proved that if k ∈ N and Lk,λ, Lk,µ, Lk,ν are Lk–
modules, then the map φ is an isomorphism.

Lemma 1.2. Assume that the space I
(

Lk,ν

Lk,µ,Lk,λ

)
is nontrivial. Then the ĝ–

module V (µ) ⊗ Lk,λ is reducible.

Proof. Let I ∈ I
(

Lk,ν

Lk,µ,Lk,λ

)
and I �= 0. Then φI : V (µ) ⊗ Lk,λ → Lk,ν is a

nontrivial ĝ–homomorphism. Assume that V (µ) ⊗ Lk,λ is irreducible. Then
φI is injective ĝ–homomorphism, which implies that V (µ) ⊗ Lk,λ is isomorphic
to Lk,ν . This is a contradiction, since the weight spaces of V (µ) ⊗ Lk,λ are
infinite-dimensional and the weight spaces of Lk,ν are finite-dimensional. �
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Proposition 1.2. Let µ ∈ P+ such that V (µ) is a module for Zhu’s algebra
A(Lk). Then the ĝ–module V (µ) ⊗ Lk is reducible.

Proof. Since V (µ) is A(Lk), then Lk,µ is Lk–module. This implies that the space

I

(
Lk,µ

Lk,µ, Lk

)
∼= I

(
Lk,µ

Lk, Lk,µ

)

is nontrivial. Then the proposition follows from Lemma 1.2. �
Remark 1.2. In what follows we will prove that if V (µ) is not a A(Lk)–module,
then the ĝ–module V (µ) ⊗ Lk is irreducible.

2. Tensor products V (µ) ⊗ Lk

In this section let µ ∈ P+ and λ ∈ ĥ∗. We will consider the tensor product
V (µ) ⊗ L(λ). Let vλ be a highest weight vector in L(λ) and let Ωµ a highest
weight vector in V (µ). For n ∈ Z and Z ∈ V (µ) set Zn = Z ⊗ tn. Let
Ωµ,n = (Ωµ)n and Ωwµ,n = (Ωwµ)n (w here denotes the element of maximal
length in the Weyl group of g). Let Vn be the ĝ–submodule generated by the
element Ωµ,n ⊗ vλ.

We shall need the following lemma from [CP]:

Lemma 2.1. (Lemma 2.1 from [CP]) As an ĝ–module V (µ)⊗L(λ) is generated
by each of the sets

{Ωµ,n ⊗ vλ, n ∈ Z}, {Ωwµ,n ⊗ vλ, n ∈ Z}.

Corollary 2.1.
(1) Vn ⊇ Vn+1 for all n ∈ Z,
(2) ∪n∈ZVn = V (µ) ⊗ L(λ).

Proof. For (1) it is enough to see that there is h ∈ h such that

h(1)(Ωµ,n ⊗ vλ) = Ωµ,n+1 ⊗ vλ.

Statment (2) follows from Lemma 2.1. �
The following lemma was proved in [A].

Lemma 2.2. (Lemma 1.1 from [A]) For x1, . . . , xr ∈ g; j1, . . . , jr ∈ Z, r ∈ N

we have
x1(j1) · · ·xr(jr).(Ωµ,n ⊗ vλ) ∈

r∑
k=0

∑
k1,...,kr∈{0,1}
k1+···+kr=k

(−1)kΩµ,n+k ⊗ x1(j1 − k1) . . . xr(jr − kr)vλ

+Vn+1, n ∈ Z.

For v ∈ V (µ) ⊗ L(λ) set [v] = v + Vn+1. Clearly, U(ĝ)–module Vn/Vn+1 is
generated by [Ωµ,n ⊗ vλ].
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Proposition 2.1. (Proposition 1.1 from [A]) For every n ∈ Z the ĝ–module
Vn/Vn+1 is in the category O.

Let Jk be the maximal ĝ–submodule in Mk. Then Lk = Mk/Jk is irreducible
highest weight ĝ–module with the highest weight kΛ0. Let vk = 1k + Jk be the
highest weight vector in Lk. We are interested in tensor products V (µ) ⊗ Lk.
We have the following:

Proposition 2.2. Let µ ∈ P+ and k ∈ C. Assume that Vn/Vn+1 �= 0. Then we
have the following :

(1) Vn/Vn+1 is the highest weight ĝ–module and [Ωµ,n ⊗ vk] is the highest
weight vector.

(2) [Zn ⊗ vk] �= 0 for every Z ∈ g, Z �= 0.

Proof. (1) Since Vn/Vn+1 is in the category O and [Ωµ,n⊗vk] generates Vn/Vn+1,
it sufficies to prove that [Ωµ,n ⊗ vk] is the highest weight vector.

Since n̂+vk = n−vk = 0, n+Ωµ,n = 0 , then by using Lemma 2.2 we have that

(n̂+ − n−(1))[Ωµ,n ⊗ vk] = 0,

n−(1)[Ωµ,n ⊗ vk] = −[Ωµ,n+1 ⊗ n−vk] = 0.

This implies that n̂+[Ωµ,n ⊗ vk] = 0, and we conclude that [Ωµ,n ⊗ vk] is the
highest weight vector in Vn/Vn+1.

(2) Assume now that there is Z ∈ g, Z �= 0 such that [Zn ⊗vk] = 0. Since the
U(g)–module V (µ) is irreducible we can choose x ∈ U(g) such that xZ = Ωµ.
Then we have that [Ωµ,n ⊗ vk] = x[Zn ⊗ vk] = 0. This contradicts the fact that
Vn/Vn+1 �= 0. �

Lemma 2.3. Let n ∈ Z, r ∈ Z+ and Z ∈ V (µ). For every n1, n2, . . . , nr ∈ Z+

and a1, a2, . . . , ar ∈ g we have

Zn+N ⊗ a1(−n1 − 1) · · · ar(−nr − 1)vk ∈ Vn

and

Zn+N ⊗ a1(−n1 − 1) · · · ar(−nr − 1)vk ≡ (−1)r(ar · · · a1Z)n ⊗ vk mod Vn+1,

where N = n1 + n2 + · · · + nr + r.

Proof. First we notice that R = U(g)(Ωµ,m ⊗ vk) is finite-dimensional U(g)–
module isomorphic to V (µ). This implies that Zm⊗vk ∈ Vm for every Z ∈ V (µ)
and m ∈ Z.

We prove the lemma by induction on r ∈ Z+. For r = 1 we have

Zn+n1+1 ⊗ a1(−n1 − 1)vk = a1(−n1 − 1)(Zn+n1+1 ⊗ vk) − (a1Z)n ⊗ vk.
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Since Zn+n1+1 ⊗ vk ∈ Vn+n1+1 ⊂ Vn+1, we obtain that

Zn+n1+1 ⊗ a1(−n1 − 1)vk ≡ (a1Z)n ⊗ vk mod Vn+1.

Assume that the result holds for r ∈ Z+. We have

Zn+N0 ⊗ a0(−n0 − 1)a1(−n1 − 1) · · · ar(−nr − 1)vk

= a0(−n0 − 1)(Zn+N0 ⊗ a1(−n1 − 1) · · · ar(−nr − 1)vk)

− (a0Z)n+N ⊗ a1(−n1 − 1) · · · ar(−nr − 1)vk,

where N0 = n0 + n1 + · · ·nr + r + 1, N = n1 + · · ·nr + r.
By induction hypothesis follows

Zn+N0 ⊗ a1(−n1 − 1) · · · ar(−nr − 1)vk ∈ Vn+n0+1 ⊂ Vn+1,

and we have that
Zn+N0 ⊗ a0(−n0 − 1)a1(−n1 − 1) · · · ar(−nr − 1)vk

≡ −(a0Z)n+N ⊗ a1(−n1 − 1) · · · ar(−nr − 1)vk mod Vn+1.

By the induction hypothesis follows that

(a0Z)n+N⊗a1(−n1−1) · · · ar(−nr−1)vk≡(−1)r+1(ar · · · a1a0Z)n⊗vk mod Vn+1

and the lemma holds. �
Lemma 2.4. Let n ∈ Z, d ∈ Z+ and Z ∈ V (µ). Let y ∈ U(ĝ−) such that
deg y = d. Then we have

[Zn+d ⊗ yvk] = (−1)d[(F (y)Z)n ⊗ vk].

Proof. Let

y =
t∑

i=1

a
(i)
j1

(−j
(i)
1 − 1) · · · a(i)

jli
(−j

(i)
li

− 1)vk,

where a
(i)
j1

, . . . , a
(i)
jli

∈ g, li, j
(i)
1 , . . . j

(i)
li

∈ Z+ such that

j
(i)
1 + · · · + j

(i)
li

+ li = d, ∀i = 1, . . . , t.

By using Lemma 2.3 we obtain

[Zn+d ⊗ yvk] =
t∑

i=1

(−1)li [(a(i)
jli

· · · a(i)
j1

Z)n ⊗ vk]

=
t∑

i=1

(−1)li+j
(i)
1 +...j

(i)
li [(F (a(i)

j1
(−j

(i)
1 − 1) · · · a(i)

jli
(−j

(i)
li

− 1))Z)n ⊗ vk]

= (−1)d[(F (y)Z)n ⊗ vk].

�
Let Jk be the maximal submodule of Mk. The following lemma follows from

definition of the maximal submodule Jk.
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Lemma 2.5. Let w ∈ Jk. Then w can be written in the form w =
∑s

i=1 wi,
where wi ∈ Jk and L0wi = diwi for some di ∈ Z+, i = 1, . . . , s.

Proposition 2.3. Assume that Vn/Vn+1 is a nontrivial subquotient of ĝ–module
V (µ) ⊗ Lk. Then V (µ) is a module for Zhu’s algebra A(Lk).

Proof. The maximal ĝ–submodule Jk of Mk is an ideal in vertex operator algebra
Mk. Then A(Jk) is a two-sided ideal in A(Mk). For w ∈ Mk set w = w +
O(Mk) ∈ A(Mk). By using isomorphism F : A(Mk) → U(g) (Theorem 1.3) and
Proposition 1.1 we see that A(Jk) is isomorphic to the two-sided ideal in U(g)
generated by the set {F (w), w ∈ Jk}. Now we will show that V (µ) is A(Lk)–
module. Since A(Lk) = A(Mk)/A(Jk), it suffices to prove that F (w)Z = 0 for
every w ∈ Jk and Z ∈ V (µ).

Let w ∈ Jk and Z ∈ V (µ). Then Lemma 2.5 implies that w = w1 + · · · + ws,
where wi ∈ Jk and L0(wi) = diwi, di ∈ Z+, i = 1, . . . , s. Let yi ∈ U(ĝ−) such
that wi = yi1k, deg yi = di, i = 1, . . . , s. We have that

F (w)Z =
s∑

i=1

F (yi)Z.

Since yivk = 0 in Lk, by using Lemma 2.4 we have that

[(F (yi)Z)n ⊗ vk] = (−1)di [Zn+di ⊗ yivk] = 0

for i = 1, . . . , s. This implies that

[(F (w)Z)n ⊗ vk] = 0.

Now Proposition 2.2 (2) gives F (w)Z = 0. �

3.Irreducibility of tensor products V (µ) ⊗ Lk

We shall need the following fundamental result from [CP].

Proposition 3.1. (Proposition 2.5 from [CP]) If a module of type V (µ)⊗L(λ)
is cyclic on each of the elements Ωµ,n⊗vλ, n ∈ Z, then V (µ)⊗L(λ) is irreducible.

Remark 3.1. The statement of this proposition is true for every λ ∈ ĥ∗ (see
note after Proposition 2.5 in [CP]). In [CP] this result is applied to the case of
integrable modules and in [A] to the modules at the critical level.

Theorem 3.1. Assume that µ ∈ P+ such that V (µ) is not A(Lk)–module. Then
ĝ–module V (µ) ⊗ Lk is irreducible.

Proof. In view of Proposition 3.1 it suffices to prove that Vn/Vn+1 = 0 for all
n ∈ Z. Assume that Vn/Vn+1 is non-zero. Then Proposition 2.3 implies that
V (µ) is A(Lk)–module, contradicting the fact that V (µ) is not A(Lk)–module.
This proves that Vn/Vn+1 = 0. �
Theorem 3.2. Lk,µ, µ ∈ P+, is Lk–module if and only if ĝ–module V (µ)⊗ Lk

is reducible.
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4. Some general results

In this section we study the tensor products V (µ)⊗Lk for general simple Lie
algebra g. We list all cases for which it is possible to decide on irreducibility of
ĝ–modules V (µ) ⊗ Lk.

First we will consider the case k ∈ N. Let eθ be the element corresponding to
the highest root θ.

Theorem 4.1. ([FZ]) Let k ∈ N. Then A(Lk) = U(g)/〈ek+1
θ 〉. The irreducible

A(Lk)–modules are exactly V (µ), µ ∈ P+, (µ, θ) ≤ k.

Theorem 4.2. Let µ ∈ P+ and k ∈ N. Then the ĝ–module V (µ) ⊗ Lk is
reducible if (µ, θ) ≤ k and irreducible if (µ, θ) > k.

Remark 4.1. The irreducibility result from Theorem 4.2 is part of the result
obtained in [CP].

We recall the following result for representations of critical level obtained by
the author in [A].

Theorem 4.3. The ĝ–module V (µ) ⊗ L−h∨ is irreducible for every µ ∈ P+.

Now we recall the following well known result obtained in [KL] for the algebras
of the type A, D, E.

Lemma 4.1. [KL] Let k /∈ Q or k < −h∨. Then the generalized Verma module
Mk is irreducible, i.e. Lk = Mk.

Theorem 4.4. Let k /∈ Q or k < −h∨. Then the ĝ–module V (µ) ⊗ Lk is
reducible for every µ ∈ P+.

Proof. From Lemma 4.1 follows that Lk = Mk, and we have that A(Lk) =
A(Mk) = U(g). This implies that for every µ ∈ P+ V (µ) is a A(Lk)–module.
Now Proposition 1.2 gives that the ĝ–module V (µ) ⊗ Lk is reducible. �

Remark 4.2. We see that we can solve the question of irreducibility for modules
V (µ) ⊗ Lk in the following cases : k /∈ Q, k < −h∨, k = −h∨, k ∈ N. In
what follows we study these modules for k + h∨ ∈ Q>0, and we will solve the
irreducibility question for affine Lie algebra A

(1)
1 .

5. The case g = sl2

Let now g = sl(2, C) with generators e, f, h and relations: [h, f ] = −2f ,
[h, e] = 2e, [e, f ] = h. Let Λ0, Λ1 denote the fundamental weights for ĝ, and ω1

the fundamental weight for g.
Admissible representations are irreducible highest weight representations

whose highest weight is an admissible weight([KW 1]). Admissible weights are
defined as follows.
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Definition 5.1. We call a weight λ admissible if it satisfies the following two
conditions.

(1) 〈λ + ρ̂, α∨ 〉 /∈ {0,−1,−2,−3, · · · } for all real positive coroots α∨,
(2) QRλ = QΠ∨

where ρ̂ is the sum of all fundamental weights, Π∨ is the set of simple coroots
and

Rλ = {α∨ : a positive real coroot|〈λ + ρ, α∨ 〉 ∈ Z}.

The classification of admissible weights is given in [KW 2]. We recall this
classification in the case of affine Lie algebra A

(1)
1 .

Definition 5.2. A rational number k = p/q ∈ Q is called admissible if q ∈ N,
p ∈ Z, (p, q) = 1 and 2q + p − 2 ≥ 0.

Proposition 5.1. Let k = p/q ∈ Q be admissible. Set t = k + 2. The set of
all admissible weights at the level k is

P k = {(k − n + mt)Λ0 + (n − mt)Λ1, m, n ∈ Z+, n ≤ 2q + p − 2, m ≤ q − 1}.

When k is admissible then ĝ–module Lk = L(kΛ0) carries the structure of
VOA. Moreover, there is a vector Q ∈ U(g), Q �= 0, such that the Zhu’s alge-
bra A(Lk) is isomorphic to U(g)/〈Q〉, where 〈Q〉 is a two-sided ideal in U(g)
generated by Q.

We recall the following results from [AM].

Lemma 5.1. (Proposition 3.5.2 from [AM]) The set {V (λ) | λ ∈ P k} provides
all irreducible A(Lk)–modules from the category O.

Lemma 5.2. (Theorem 3.5.3 from [AM]) The set {L(λ) | λ ∈ P k} provides all
irreducible Lk–modules from the category O.

From the Lemma 5.1 we get:

Theorem 5.1. All irreducible finite-dimensional A(Lk)–modules are exactly

V (jω1), j ∈ {0, 1, . . . , 2q + p − 2}.

Now Theorem 5.1 and Theorem 3.1 imply the following.

Theorem 5.2. Let j ∈ Z+, and let k = p/q be admissible. Then ĝ–module
V (jω1) ⊗ Lk is irreducible if j > 2q + p − 2 and reducible if j ≤ 2q + p − 2.

The irreducibility is not affected if we twist the representation by the non-
trivial diagram automorphism of A

(1)
1 . This automorphism is determined by

e(n) �→ f(n + 1) , f(n) �→ e(n − 1) and h(n) �→ −h(n) + δn,0c , and we obtain
the following.
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Corollary 5.1. Let j ∈ Z+, and let k = p/q be admissible. Then ĝ–module
V (jω1)⊗ L(kΛ1) is irreducible if j > 2q + p− 2 and reducible if j ≤ 2q + p− 2.

Remark 5.1. For every M weight ĝ–module let P (M) be the set of weights of
M . An irreducible weight module M is called dense if P (M) = λ + Γ for some
λ ∈ ĥ∗, and non-dense otherwise (see [F]). Irreducible modules which are realized
as tensor product of irreducible highest weight modules with loop modules are
dense. Theorem 5.2 shows that at every admissible rational level exist dense
A

(1)
1 –modules with all infinite-dimensional weight spaces.
We have the following conjecture.

Conjecture 5.1. Let g be any simple Lie algebra. Assume that kΛ0 is admis-
sible weight and µ ∈ P+. Define µ̂ = kΛ0 + µ. Then the ĝ–module V (µ)⊗Lk is
irreducible if and only if µ̂ is not an admissible weight.
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[KL] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras I,

J. Amer. Math. Soc. 64 (1993), 905–947.
[KW 1] V. G. Kac and M. Wakimoto, Modular invariant representations of infinite di-

mensional Lie algebras and superalgebras, Proc. Natl. Acad. Sci. USA 85 (1988),
4956–4960.

[KW 2] , Classification of modular invariant representations of affine algebras,
Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), 138–177,
Adv. Ser. Math. Phys., vol. 7, World Sci. Publishing, Teaneck, NJ, 1989.

[Li] H.-Li, Representation theory and tensor product theory of vertex operator algebras
(1994), PH. D. dissertation, Rutgers University.

[MP] A. Meurman and M. Primc, Annihilating fields for sl2(C)̃ and combinatorial iden-
tities, Trans. Amer. Math. Soc. (to appear).

[Z] Y. Zhu, Vertex operator algebras, elliptic function and modular forms (1990), Ph.
D. dissertation, Yale University.

Dept. of Math., University of Zagreb, Bijenička 30, 10000 Zagreb, CROATIA
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