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ON THE STRUCTURE OF THE STABLE

NORM OF PERIODIC METRICS

D. Burago, S. Ivanov, and B. Kleiner

Abstract. We study the differentiability of the stable norm ‖·‖ associated with
a Zn periodic metric on Rn. Extending one of the main results of [Ba2], we prove
that if p ∈ Rn and the coordinates of p are linearly independent over Q, then
there is a linear 2-plane V containing p such that the restriction of ‖·‖ to V is
differentiable at p. We construct examples where ‖·‖ it is not differentiable at a
point with coordinates linearly independent over Q.

Introduction

0.1. In this paper we study the large-scale geometry of a Zn invariant Rie-
mannian metric g on Rn. The Riemannian manifold (Rn, g) is within finite
Gromov-Hausdorff distance from an n-dimensional normed vector space, [Bu1],
which we denote (Rn, ‖·‖). We call ‖·‖ the stable norm associated with g.

We denote by B and F the unit ball and the unit sphere of the norm ‖·‖, i.e.
B = {v ∈ Rn : ‖v‖ ≤ 1}, F = {v ∈ Rn : ‖v‖ = 1}, respectively. Our subject
is the local structure of the surface F , namely, the shape of its tangent cone at
certain points. This is a part of the general (and wide open) question: what
norms can arise as stable norms of periodic Riemannian metrics?

In [Ba2] V. Bangert – inspired by Aubry-Mather theory – made substantial
progress on this question in the case of two dimensional tori (analogous results
were obtained independently by F. Nazarov [Na]). [Ba2] proved that the stable
norm is differentiable at every irrational point1 in R2, and that it is differentiable
at a rational point only if the torus is foliated by closed geodesics representing
the corresponding element of H1(T 2; Z) � Z2.

In this paper, we consider the higher dimensional case, and the regularity
of the stable norm in irrational directions. The following theorem is a partial
generalization of V. Bangert’s result [Ba2], (see also [M4], [Ba4].)
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Theorem 1. Let p be an irrational point in Rn. Then the stable norm ‖·‖ (of
a C3-smooth periodic Riemannian metric on Rn) is differentiable in at least one
nonradial direction at p; in other words, the tangent cone to F at p

‖p‖ splits as
a metric product of R with another cone.

Remark. Theorem 1 has a natural generalization to normal Riemannian covering
spaces M̂ → M of a compact manifold M with free abelian deck group Zk, pro-
vided k ≥ Dim(M) (the dimension restriction is needed for the volume/packing
argument given at the end of section 3).

The examples described in the next theorem show that the stable norm can
be nondifferentiable at irrational points; hence the most optimistic attempt to
generalize [Ba2] fails.

Theorem 2. For every k, there is an n such that for almost every irrational
point p ∈ Rn, there is a Ck-smooth Riemannian metric on the n-torus whose
stable norm is not differentiable at p.

It turns out that the (non)differentiability of the stable norm is directly related
to the structure of certain minimizing geodesics in Rn and their interplay with a
class of distance-like functions. Differentiability – or more precisely directional
differentiability – correlates with the existence of curves which deviate arbitrarily
far from a minimizing geodesic with bounded additional “cost”. Such curves
must lie in a small neighborhood of the family of minimizers associated with the
point of Rn; the idea behind Theorem 1 was that such curves may be constructed
by joining long pieces of minimizers with short segments. We note that even for
smooth metrics, the set of minimizing geodesics can be badly behaved. In the
example of Theorem 2, the surface formed by the set of minimizing geodesics is
highly corrugated; every curve that stays close to it must be “long”.

Theorems 1 and 2 give some new information about possible singularities of
the stable norm, but the picture is still far from complete. The following two
questions remain open:

1. Is the finite smoothness essential for the examples in Theorem 2, or are
there similar C∞ examples?

2. If the stable norm is smooth and uniformly strictly convex (that is, its
second fundamental form is uniformly positive definite) on an open set,
is M̂ foliated by minimizing geodesics?

The convenience of restricting ourselves to the case where M is diffeomorphic
to Tn (see the remark above), and M̂ is the universal cover of M is that we may
identify M̂ with Rn. Although this identification is non-invariant, the image of
Zn ⊂ Rn under this identification is. Then the stable norm ‖·‖ is given by

‖v‖ = lim
λ→∞

ρ(0, λv)
λ

,

where ρ(·, ·) is the distance function on M̂ � Rn. Sometimes this norm is also
called limit norm or asymptotic norm of a metric ρ. The Banach space (Rn, ‖·‖)
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approximates the metric space (Rn, ρ) in a very strong sense: there exists a
constant C = C(ρ) such that

(1) ∀ x, y ∈ Rn
∣∣‖x − y‖ − ρ(x, y)

∣∣ ≤ C

(see [Bu1]). This estimate refines the statement that the Gromov–Hausdorff
distance between (Rn, ρ) and (Rn, ‖·‖) is finite.

We will use ρ to denote the periodic metric under consideration and ρ̄ for the
corresponding metric on the torus Tn = Rn/Zn. We denote by UTTn and UTRn

the unit tangent bundles for metrics ρ̄ and ρ. All geodesics are parameterized
by arc length. We call a geodesic γ in (Tn, ρ̄) minimal if its lift γ̃ is minimal,
i.e. if ρ(γ̃(a), γ̃(b)) = |a − b| for all a, b ∈ R.

1. Rotation vectors and uniformly recurrent geodesics

1.1. We define the direction at infinity D(γ) ∈ Rn for a geodesic γ : R → (Rn, ρ)
by

D(γ) = lim
t→∞

γ(t) − γ(0)
t

if the limit exists. Since ρ(γ(t), γ(0)) ≤ t for all T ∈ R, we have

‖D(γ)‖ = lim
t→∞

‖γ(t) − γ(0)‖
t

= lim
t→∞

ρ(γ(t), γ(0))
t

≤ 1

(the second equality follows from (1)). The rotation vector R(γ) ∈ Rn of a
geodesic γ : R → (Tn, ρ̄) is defined by R(γ) = D(γ̃) where γ̃ is a lift of γ.

Recall that a geodesic γ : R → (Tn, ρ̄) is uniformly recurrent if for any t0 ∈ R

the trajectory {γ′(t) : t ∈ R} visits any neighborhood of γ′(t0) in UTTn with
a positive frequency, that is, time average of the characteristic function of the
neighborhood along the trajectory is positive. The purpose of this section is to
prove the following

1.2. Proposition. If v is an extreme point of B (i.e. v is not the midpoint
of a line segment contained in B), then there is a uniformly recurrent geodesic
γ : R → (Tn, ρ̄) with R(γ) = v.

1.3. Remark. It follows from 2.4 that a geodesic γ given by Proposition 1.2
is a minimal one. Thus we obtain a kind of existence statement for minimal
geodesics with a given rotation vector. In general, not every vector v ∈ F can
be obtained as a rotation vector of a minimal geodesic. For n ≥ 3 there exist
examples of periodic metrics for which B is a polyhedron and its vertices are the
only possible rotation vectors of minimal geodesics (see [Ba1]).

1.4. We will prove Proposition 1.2 using the technique of minimal measures
introduced by J. Mather [M2]. In fact, we only adopt the basic constructions of
[M1] to our settings.



794 D. BURAGO, S. IVANOV, AND B. KLEINER

We may also view the rotation vector of a geodesic as a function of its ve-
locity vector, i.e. for w ∈ UTTn we set R(w) = R(γ) where γ is a geodesic in
(Tn, ρ̄) with γ′(0) = w. This way R becomes a function defined on a subset
of UTTn. Define a map ω : TTn → Rn as the second projection of the natural
decomposition TTn ∼= Tn × Rn. The rotation vector of a geodesic γ in (Tn, ρ̄)
may be written in the form

(2) R(γ) = lim
t→∞

1
t

∫ t

0

γ̃′ = lim
t→∞

1
t

∫ t

0

ω ◦ (γ′) .

(here γ̃ denotes a lift of γ in Rn). Thus the function R is the average along
trajectories of the function ω.

Let m be a finite Borel measure on UTTn. We define its rotation vector
R(m) ∈ Rn by the formula

R(m) =
∫

UTT n

ω dm .

Clearly R(m) is a linear function of m. We call a measure m on UTTn invariant
if it is preserved by the geodesic flow of (Tn, ρ̄). If m is an invariant probability
measure then (by (2) and the Birkhoff ergodic theorem) the function R is defined
m-almost everywhere, and

R(m) =
∫

UTT n

R(w) dm(w) .

In particular, ‖R(m)‖ ≤ 1. The first observation about invariant measures is
the following

1.3. Lemma. For every v ∈ F there is an invariant probability measure m with
R(m) = v.

Proof. Let (λi) be a sequence of positive numbers, λi → ∞. For each i let
γi : [0, li] → (Tn, ρ̄) be a minimal geodesic whose lift joins points 0 and λiv
in (Rn, ρ). Here li = ρ(0, λiv). Then consider a probability measure uniformly
distributed along the segment [0, li] ⊂ R and let mi be the image of that measure
in UTTn under the map t �→ γ′(t). Some subsequence of (mi) converges weakly
in the space of probability measures on UTTn. We may assume that the original
sequence (mi) converges to some measure m. It is trivial that m is an invariant
measure. Then

R(m) =
∫

UTT n

ω dm = lim
∫

UTT n

ω dmi = lim
λiv

li
=

v

‖v‖

(the last equality follows from the definition of the stable norm). Since ‖v‖ = 1,
the lemma follows. �
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1.4. Now suppose that v is an extreme point of B (i.e. no line segment contained
in B has its midpoint at v). Let M(v) denote the set of all invariant probability
measures m with R(m) = v. This set is convex and compact (with respect to
the weak topology). By the Krein–Milman theorem there is a measure m which
is an extreme point of M(v). Such a measure m is ergodic with respect to the
geodesic flow. Indeed, if 0 < λ < 1 and m = λm1 +(1−λ)m2 for some invariant
probability measures m1 and m2, then v = R(m) = λR(m1) + (1 − λ)R(m2),
so the extremeness of v in B implies that R(m1) = R(m2) = v. Since m is an
extreme point of M(v) it follows that m1 = m2.

Let U be an open subset of UTTn with m(U) > 0. The ergodicity of m
implies that m-almost every trajectory of the geodesic flow visits U with positive
frequency. Since the topology of UTTn has a countable base, m-almost every
trajectory does this for all open sets of positive measure. Note that m-almost
every trajectory is contained in supp(m), the support of measure m. Since for
an open U ⊂ UTTn the condition U ∩ supp(m) �= ∅ implies m(U) > 0, it
follows that m-almost every trajectory is uniformly recurrent. On the other
hand, R(w) = R(m) = v for m-almost all w ∈ UTTn since m is ergodic. This
completes the proof of Proposition 1.2.

2. Generalized coordinates and minimizers

2.1. If L : Rn → R is a linear function we let ‖L‖ denote its norm in the space
(Rn, ‖·‖)∗, i.e. ‖L‖ = max{|L(x) : ‖x‖ = 1}. We say that a linear function L
supports B at a point v ∈ F if ‖L‖ = 1 and L(v) = 1. Geometrically it means
that a hyperplane L−1(1) touches the surface F at p. We denote by F ∗(v) the
set of linear functions supporting B at v, and by F ∗ the set of all linear functions
L with ‖L‖ = 1.

Let L ∈ F ∗ and let f be a real-valued function on (Rn, ρ). We say that f is
a generalized coordinate associated with L if
(2.1.1) f is a 1-Lipschitz function with respect to ρ, i.e. |f(x) − f(y)| ≤ ρ(x, y)

for all x, y ∈ Rn.
(2.1.2) The function (f −L) is Zn-periodic, i.e. for every x ∈ Rn and h ∈ Zn we

have f(x + h) = f(x) + L(h).
Such function were used in [Bul2] to make volume estimates. We extract a
construction from [Bul2] in the following statement.

2.2. Proposition. For any L ∈ F ∗ there is a generalized coordinate associated
with L.

Proof. Define a function f on Rn by

f(x) = lim sup
‖y‖→∞

(L(y) − ρ(x, y)) .

First, we need to prove that all values of f are finite. This follows from (1) and
the equality

lim sup
‖y‖→∞

(L(y) − ‖x − y‖) = L(x)



796 D. BURAGO, S. IVANOV, AND B. KLEINER

which holds since ‖L‖ = 1. Then f is 1-Lipschitz as it is the supremum of a
family of 1-Lipschitz functions. Finally, for any x ∈ Rn and h ∈ Zn we have

f(x + h) = lim sup
‖y‖→∞

(L(y) − ρ(x + h, y))

= lim sup
‖y−h‖→∞

(
L(y − h) − ρ(x, y − h)

)
+ L(h) = f(x) + L(h) ,

so f satisfies (2.1.2). �
2.3. Let f be a generalized coordinate and let γ : R → (Rn, ρ) be a geodesic.
We say that γ is calibrated by f , or that γ is an f-calibrated, if

(3) f(γ(b)) − f(γ(a)) = b − a

for all a, b ∈ R.
Note that for an arbitrary unit-speed curve γ in (Rn, ρ) we have

f(γ(b)) − f(γ(a)) ≤ ρ(γ(a), γ(b)) ≤ |b − a|

for all a, b ∈ R. Therefore if γ is f -calibrated then γ is a minimal geodesic. It is
clear that being f -calibrated is actually a local property: if γ is not f -calibrated
then for any ε > 0 there exists a ∈ R such that (3) fails for [a, b] = [a, a + ε].
From (2.1.2) it follows that any integer translate of an f -calibrated geodesic is
also an f -calibrated.

2.4. Proposition. Let γ : R → (Rn, ρ) be a lift of a uniformly recurrent geodesic
with D(γ) = v ∈ F , and L ∈ F ∗(v). Then γ is calibrated by any generalized
coordinate associated with L.

Proof. Let f be a generalized coordinate associated with L, and suppose that
γ is not f -calibrated. We may assume that (3) fails for a = 0 and b = 1, say
f(γ(1)) − f(γ(0)) = 1 − ε where ε > 0. Let U be a neighborhood of γ′(0)
in UTRn such that for every geodesic γ1 in (Rn, ρ) with γ′

1(0) ∈ U we have
ρ(γ1(t), γ(t)) < ε/3 for all t ∈ [0, 1]. Since γ is a lift of a uniformly recurrent
geodesic, there exists a sequence (ti)∞i=1 of real numbers such that for all i we
have ti+1 ≥ ti + 1, ti/i ≤ T0 < ∞, and γ′(ti) ∈ U + hi for some hi ∈ Zn. By
(2.1.2) and the choice of U we have

f(γ(ti + 1)) − f(γ(ti)) ≤ 1 − ε/3

for each i. Summing up these inequalities for i = 1, . . . , m, together with obvious
ones

f(γ(ti+1)) − f(γ(ti)) ≤ ti+1 − ti

we obtain that

f(γ(tm + 1)) − f(γ(0)) ≤ tm + 1 − mε

3
≤

(
1 − ε

3T0

)
tm + 1 .
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Therefore

lim sup
t→∞

f(γ(t)) − f(γ(0))
t

≤ 1 − ε

3T0
< 1 .

Since |f −L| is bounded, one may replace f by L in this estimate. On the other
hand,

lim
t→∞

L(γ(t)) − L(γ(0))
t

= L(D(γ)) = L(v) = 1

(the first equality follows from the definition of D(γ), see 1.1). This contradiction
proves the proposition. �

We will apply Proposition 2.4 at a point v ∈ F where B has several different
supporting lienar functions (this may happen if F is not smooth at v), so the
same geodesic γ will be calibrated by the generalized coordinates associated with
each of these functions. The following Proposition 2.5 tells us that in this case
all the generalized coordinates calibrating γ have similar local behavior near γ.

2.5 Proposition. Let ρ be a C3 metric. Then there is a constant C = C(ρ)
with the following property. If a geodesic γ is calibrated by two generalized coor-
dinates f1 and f2 (possibly associated with different linear functions), then for
d = f1(γ(0)) − f2(γ(0)) the inequality

|f1(x) − f2(x) − d| ≤ C · ρ(x, γ)2

holds for all x ∈ Rn. Here ρ(x, γ) denotes inf{ρ(x, γ(t)) : t ∈ R}.
Proof. It suffices to prove the statement only in the case d = 0 (just add a
constant to f2). Pick constants ε > 0 and r > ε such that r + ε is less than
the injectivity radius of (Rn, ρ). Fix t ∈ R and denote c = f1(γ(t)) = f2(γ(t)).
Since f1 and f2 are 1-Lipschitz functions, we have

fi(γ(t + r)) − ρ(γ(t + r), x) ≤ fi(x) ≤ fi(γ(t − r)) + ρ(γ(t − r), x) ,

or

flow(x) := c + r − ρ(γ(t + r), x) ≤ fi(x) ≤ c − r + ρ(γ(t − r), x) := fup(x)

for any x ∈ Rn, i = 1, 2. Both flow and fup are C2-smooth functions of x within
ε-neighborhood of γ(t), and their values and first derivatives at γ(t) coincide.
(The values are equal to c and the gradients are equal to γ′(t)). So if C > 2/ε
and C is an upper bound for the second derivative of a function ρ(x0, ·) between
its values r − ε and r + ε, then

|f1(x) − f2(x)| ≤ fup(x) − flow(x) ≤ C · ρ(x, γ(t))2

Since t is arbitrary, the proposition follows. �
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3. A tangent cone of B at an irrational point

3.1. We call a vector v ∈ Rn irrational if its coordinates are linearly independent
over Q: v is not an irrational vector if and only if there is a nonzero linear
function L ∈ (Qn)∗ ⊂ (Rn)∗ such that L(v) = 0. The latter description implies
that non-irrational vectors form a set of zero measure in Rn since this set is a
union of countably many hyperplanes. If v is an irrational vector then λv is
irrational for any λ ∈ R.

For v ∈ Rn we denote by 〈v〉 the line {λv : λ ∈ R} ⊂ Rn. If v is an irrational
vector the union of lines 〈v〉 + Zn :=

⋃
h∈Zn

(
〈v〉 + h

)
is dense in Rn.

3.2. For v ∈ F we denote by Cv(B) the tangent cone of B at v. We define a
tangent cone as an intersection of half-spaces

(4) Cv(B) =
⋂

L∈F∗(v)

{x ∈ Rn : L(x) ≤ 0}

A convex cone is called sharp if it contains no straight lines. From (4) it follows
that Cv(B) is sharp if and only if F ∗(v) contains n linearly independent linear
functions. If Cv(B) is sharp then obviously v is an extreme point of B.

3.3. Theorem. Let ρ be a C3-smooth periodic Riemannian metric on Rn, let
B be the unit ball of its stable norm, and let v be an irrational vector in the
boundary of B. Then the tangent cone Cv(B) is not sharp.

Proof. Suppose that Cv(B) is a sharp cone. By Proposition 1.5 there exists a
geodesic γ : R → (Rn, ρ) with D(γ) = v which is a lift of a uniformly recurrent
geodesic. Pick n linearly independent functions L1, . . . , Ln from F ∗(v). For
each i = 1, . . . , n construct a generalized coordinate fi associated with Li. We
may assume that fi(γ(0)) = 0 and so fi(γ(t)) = t for all t ∈ R. Define a map
f̄ : (Rn, ρ) → Rn−1 by

f̄ = (f1 − f2, f2 − f3, . . . , fn−1 − fn) .

For any x ∈ Rn and h ∈ Zn we have

f̄(x + h) = f̄(x) + L̄(h)

where the linear map L̄ : Rn → Rn−1 is defined by

L̄ = (L1 − L2, L2 − L3, . . . , Ln−1 − Ln) .

Therefore for any h ∈ Zn the values of f̄ are equal to L̄(h) along the geodesic
γ + h, so we have the estimate

|f̄(x) − L̄(h)| ≤ C · ρ(x, γ + h)2 .
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(see 2.4 and 2.5). Applying this for points x of another geodesic γ+h1 we obtain
that

|L̄(h1) − L̄(h)| ≤ C · ρ(γ + h1, γ + h)2

for all h, h1 ∈ Zn. (For two geodesics γ1 and γ2 we denote by ρ(γ1, γ2) the
distance between them as subsets of (Rn, ρ)). Therefore

(5) ρ(γ + h1, γ + h) ≥
√

|L̄(h1) − L̄(h)|/C

for all h, h1 ∈ Zn.
The functions fi−Li are bounded and fi(γ(t)) = t for t ∈ R, so |Li(γ(t))−t| ≤

C for some constant C not depending on t. Hence there is an R > 0 such that
|γ(t) − vt| ≤ R for all t ∈ R (this follows from the fact that vt is the only point
of Rn at which the values of functions Li are all equal to t). Thus any straight
line of the form 〈v〉+h is contained within R-neighborhood of the corresponding
geodesic γ + h.

Note that the map L̄ is surjective and Ker L̄ = 〈v〉. Let U be a bounded
neighborhood of a unit cube in Rn−1, U1 be a bounded set in Rn such that
U ⊂ L(U1), and U2 be the R-neighborhood of U2. Since 〈v〉 + Zn is dense in
Rn and L̄(v) = 0, the set L̄(Zn) is dense in Rn−1. For a small ε > 0 one can
find a collection of points y1, . . . , yN ∈ U ∩ L̄(Zn) such that N ≥ (1/ε)n−1 and
|yi − yj | > ε for i �= j. Let yi = L̄(hi) where hi ∈ Zn. Consider the geodesics
γ + hi in (Rn, ρ). They all cross the region U2. If U3 is the 1-neighborhood of
U2 in (Rn, ρ), then the intersection of each of our geodesics γ + hi with U3 will
contain an interval of length 2 inside U3.

By (5), the pairwise distances between the geodesics γ + hi are not less than√
ε/C. Hence their tubular neighborhoods of radius

√
ε/4C are disjoint. Sum-

ming up Riemannian volumes of these tubular neighborhoods we obtain a lower
bound for the volume of U3:

Vol(U3) ≥ (1/ε)n · (ε/4C)(n−1)/2 = c1ε
−(n+1)/2

for some c1 > 0. Since ε is arbitrarily small, it follows that Vol(U3) = ∞. This
is impossible since U3 is bounded. �

4. An example

In this section we construct the examples described in Theorem 2. The idea
of the construction is to begin by producing a set of minimizers. This set will be
(the closure of) a highly corrugated surface. The estimate of lemma (5), together
with elementary geometric considerations, suggests that the cross-section of this
surface may be regarded as a curve which stretches distance in the following
very strong sense: the distance between the images is at least the square root of
the distance between pre-images modulo 1. On the other hand, this curve has
to have irrational rotation vector, and it has to be invariant under a group of



800 D. BURAGO, S. IVANOV, AND B. KLEINER

diffeomorphisms. We construct this curve as a sum of two curves. One of them
is a small periodic curve ( with rotation vector zero), which stretches distance
and persists under a group of diffeomorphisms having dense orbits on the curve.
A construction of a curve analogous properties was used in [Bul3]. The other
one is a smooth curve with irrational rotation vector which lies in a submanifold
of high codimension. The first curve will be constructed using trigonometric
series, where the following approximation condition is a technical requirement
used to estimate the denominators in the coefficients of the series.

We call a number α ∈ R approximable if for any ε > 0 there exists a sequence
of rational numbers {pk/qk}∞k=1 such that

|α − pk/qk| < 1/q2
k

and

(6) q
1+ε/2
k < qk+1 <

1
2
q1+ε
k

for all k ≥ 1.

4.1. Lemma. Almost all real numbers are approximable.

Proof. For a given α ∈ R, every convergent pk/qk of the corresponding continued
fraction satisfies |α − pk/qk| < 1/q2

k. By Khinchin’s theorem, it is known (e.
g. [Ka]) that for almost every α the denominators of these convergents grow
exponentially: the limit limk→∞(log qk)/k exists. For such α, it is certainly
possible to find a subsequence of {qk} to satisfy (6). �

Let γ : R → Rn be a continuous curve and r > 1 be an integer. We say that γ
is r-stretching if there exists δ > 0 such that |γ(x)− γ(y)| ≥ |x− y|1/r whenever
|x − y| ≤ δ.

4.2. Proposition. Let r > 1 be an integer, and let α ∈ R be approximable.
Then there exists an r-stretching 1-periodic curve γ : R → R8r such that the
function

x �→ γ(x + α) − γ(x)

is C1-smooth.

Proof. Let ε = 1/2(r − 1) and pick a sequence {pk/qk} as in 4.1. We assume
that q1 > 104r(r−1) which, by (6), implies that qk+1 > 10rqk for all k.

We identify R8r with C4r and use the notation E(t) = exp(2πit) ∈ C for
t ∈ R. Let vk be the kth basis vector of C4r for 1 ≤ k ≤ 4r, and vk+4r = vk for
all k ∈ Z. Define γ : R → C4n by

γ(x) =
∞∑

k=1

q
−1/2r
k E(qkx)vk .
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Then

γ(x + α) − γ(x) =
∞∑

k=1

q
−1/2r
k E(qkα)E(qkx)vk .

The formal derivative of these series has the form

∞∑
k=1

q
1−1/2r
k E(qkα)E(qkx)vk .

Since qkα − pk < 1/qk, we have E(qkα) < 2πq−1
k , so this formal derivative

converges absolutely. It follows that the function x �→ γ(x + α) − γ(x) is C1.
We will prove that |γ(x)−γ(y)| ≥ |x−y|1/r whenever |x−y| < 1/2q1. Assume

that x < y < x + 1/2q1 and denote δ = y − x. We have

γ(y) − γ(x) =
∞∑

k=1

q
−1/2r
k E(qkx)(E(qkδ) − 1)vk .

The right inequality in (6) implies 1
2q−1

k+1 > q−1−ε
k , so the intervals (q−1−ε

k , 1
2q−1

k )
cover the interval (0, 1/2q1). Pick an index m for which δ ∈ (q−1−ε

m , 1
2q−1

m ). For
every integer j > −m/4r denote aj = qm+4rj and set aj = 0 for j ≤ −m/4r.
We have δ ∈ (a−1−ε

0 , 1
2a−1

0 ), so

δ−1/(1+ε) < a0 <
1
2
δ−1 ,

and, by (6),
aj+1 > a

(1+ε/2)4r

j > a1+2rε
j = a2+2ε

j .

It follows that aj+1 ≥ 102raj for all j, and

a1 > a2+2ε
0 > δ−(2+2ε)/(1+ε) = δ−2 , a−1 < a

1/(2+2ε)
0 < a

1/2
0 < δ−1/2 .

The mth coordinate of the vector γ(y) − γ(x) can be written as

∑
j∈Z

a
−1/2r
j E(ajx)(E(ajδ) − 1) .

So
|γ(y) − γ(x)| ≥ a

−1/2r
0

∣∣E(a0δ) − 1
∣∣ − ∑

j �=0

a
−1/2r
j

∣∣E(ajδ) − 1
∣∣

Since |E(t) − 1| ≥ 4t for 0 ≤ t ≤ 1/2, we have

a
−1/2r
0

∣∣E(a0δ) − 1
∣∣ ≥ 4δa

1−1/2r
0 > 4δ1−(1−1/2r)/(1+ε) = 4δ1/r .
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For j > 0 we have aj > 102r(j−1)a1 > 102r(j−1)δ−2, so

∑
j>0

a
−1/2r
j

∣∣E(ajδ) − 1
∣∣ ≤ ∑

j>0

2a
−1/2r
j <

∑
j>0

2(102r(j−1)δ−2)−1/2r

=
∑
j>0

2 · 10−j+1δ1/r < 2.5 δ1/r .

For −m/4 < j < 0 we have 104r < aj < 10j+1a−1 < 10j+1δ−1/2, so

∑
j<0

a
−1/2r
j

∣∣E(ajδ) − 1
∣∣ ≤ ∑

j<0

10−2 · 2πajδ ≤
∑
j<0

10−1(10j+1δ−1/2)δ

=
∑
j<0

10jδ1/2 < 0.5 δ1/2 ≤ 0.5 δ1/r .

It follows that |γ(x) − γ(y)| ≤ (4 − 2.5 − 0.5)δ1/r = δ1/r. �
4.3. Proposition. For every integer n ≥ 7 and v ∈ Rn there is a three-
dimensional smooth submanifold M ⊂ Tn and a smooth flow on M , one of
whose trajectories has the rotation vector v (as a curve in Tn).

Proof. Let M0 be a two-dimensional orientable surface of genus n equipped
with a negatively curved Riemannian metric, and let UTM0 be its unit tangent
bundle. Every map UTM0 → Tn is homotopic to a self-transversal smooth
map which has to be an embedding since n ≥ 7. Choose such an embedding
UTM0 ↪→ Tn which induces an epimorphism of fundamental groups; let M be
the image of UTM0 in Tn.

We consider flows on M � UTM0 preserving the Liouville measure. Each
flow is generated by a divergence-free vector field on M . The rotation vector
R(X) ∈ Rn ∼= H1(Tn; R) of such a vector field X is the average value of rotation
vectors of its trajectories as curves in Tn. The map X → R(X) is linear and
the set of its values is the entire Rn. Let Y be a divergence-free vector field with
R(Y ) = v.

Let X0 be a vector field which generates the geodesic flow of our metric. It is
skew-symmetric with respect to the relfection w �→ −w of UTM0, so R(X0) = 0.
Since the metric has negative curvature, its geodesic flow is an Anosov flow.
Hence the vector field Xε := X0 + εY still generates ergodic flow for ε small
enough. In particular, almost every trajectory generated by Xε has the rotation
vector equal to R(Xε) = εv. To complete the proof, consider the flow generated
by Xε/ε. �
4.4. Let n = 8r+6, v ∈ Rn be a completely irratonal vector. Fix M ⊂ Tn and a
trajectory γ : R → M of a smooth flow on M constructed by Proposition 4.3. For
each x ∈ Tn, identify the tangent space TxTn with Rn in the standard way, and
then consider the family {Lx = TxM : x ∈ M} of 3-dimensional linear subspaces
of Rn. Pick a (8r)-dimensional linear subspace L ⊂ Rn which is transversal to
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this family, i. e. L ∩ Lx = {0} for all x ∈ M . Transversality implies that there
exist ε > 0, a tubular neighborhood U ⊂ Tn of M , and a smooth retraction
p : U → M such that p(x + y) = x whenever x ∈ M , y ∈ L and |y| < ε.

Let α ∈ R be an approximable number. Using Proposition 4.2, construct an
r-stretching 1-periodic continuous curve γ1 : R → L such that the map f : R → L
given by

f(s) = γ1(s + α) − γ1(s)

is C1-smooth. After a suitable homothety we may assume that |γ1(s)| < ε/8,
and hence |f(s)| < ε/4, for all s ∈ R.

Denote σ = 1/3. Fix a smooth function ϕ : [0, 1+σ] → [0, 1] such that ϕ(t) = 0
for t ∈ [0, σ] and ϕ(t) = 1 for t ∈ [1, 1 + σ]. Define Γ: R× [0, 1 + σ] → Tn+1 ×R

by

Γ(s, t) = (γ(s + αt) + γ1(s) + f(s)ϕ(t), (s + αt) mod 1, t) ∈ Tn × S1 × R .

4.5. Lemma. There exists c > 0 such that

(7) |Γ(s, t) − Γ(s′, t′)| ≥ c |(s − s′) mod 1|1/r

for all s, s′ ∈ R, t, t′ ∈ [0, 1 + σ].

Proof. For values of |(s − s′) mod 1| bounded away from zero, we may find a
constant c to satisfying (7) since

|Γ(s, t) − γ2(s′, t′)| ≥ min{1, 1/|α|} · |(s − s′) mod 1|

and the function x �→ x1/r/x is bounded outside any neighborhood of zero. So
it suffices to prove the statement of lemma when |(s − s′) mod 1| is sufficiently
small.

First let t′ = t = 0. We have

|Γ(s, 0) − Γ(s′, 0)| ≥ |γ(s) + γ1(s) − γ1(s′) − γ(s′ + αt)|
≥ dist(M + γ1(s) − γ1(s′), M) ≥ c1|γ1(s) − γ1(s′)|

since the vector γ1(s) − γ1(s′) lies in L and its length is less than ε. Then (7)
for t′ = t = 0 follows from the fact that γ1 is r-stretching and 1-periodic.

Since Γ(s, t) − Γ(s, 0) is a C1 (and hence Lipschitz) function of (s, t), the
estimate (7) for t′ = t = 0 implies the same for t′ = t �= 0. Then the complete
statement follows since |t− t′| ≤ |Γ(s, t)−Γ(s, t′)| ≤ C · |t− t′| for some constant
C. �

Define Γ0 : R×[0, 1+σ] → Tn+2 to be π◦Γ where π : Tn+1×R → Tn+1×S1 =
Tn+1 is the standard factorization. Note that for t ∈ [0, σ],

Γ(s, t + 1) = (γ(s + α + αt) + γ1(s) + f(s), (s + α + αt) mod 1, t + 1)

= Γ(s + α, t) + (0, 0, 1) ∈ Tn × S1 × R ,
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so

(8) Γ0(s, t + 1) = Γ0(s + α, t) for all s ∈ R, t ∈ [0, σ].

In other words, a piece of the surface Γ0(s, t) where t ∈ [1, 1 + σ] matches the
one where t ∈ [0, σ], up to the parameter shift s �→ s + α. Γ has no other
self-intersections since the last coordinate of Γ0(s, t) is t mod 1.

Let w0 be the vector field along Γ0 given by w0(s, t) = d
dtΓ0(s, t). We are going

to consider w0(s, t) as a function of point Γ0(s, t) ∈ Tn+2. Though w0(s, t) is
only C1 as a function of (s, t), it turns out to be smoother when viewed as a
function on a subset of Tn+2.

4.6. Lemma. There exists a Cr−1-smooth vector field W0 on Tn+2 such that
w0 = W0 ◦ Γ0.

Proof. In view of (8) it suffices to prove the same statement for a similar vector
field along Γ, w(s, t) = d

dtΓ(s, t). By Whitney’s extension theorem ([F], pp. 225)
it suffices to construct for each (s, t) ∈ R × [0, 1 + σ] a smooth vector field ϕs,t

in a neighborhood of Γ(s, t) ∈ Tn+1 × R so that

|w(Γ(s′, t′)) − ϕs,t(s′, t′)| ≤ O(|Γ(s′, t′) − Γ(s, t)|r) , (s′, t′) → (s, t) .

Recall that γ is a trajectory of a smooth flow on M ⊂ Tn, so there is a smooth
vector field V on M such that γ′(t) = V (γ(t)) for all t ∈ R. So

w(s, t) = (αV (γ(s + αt)) + f(s)g′(t), α, 1)

is a C1-smooth function of (s, t). In particular,

(9) |w(t′, τ ′) − w(t, τ ′)| ≤ C|t′ − t|

for some C > 0. Let U be a neighborhood of M ⊂ Tn and p : U → M be a
retraction as described in 4.4. Define ϕs,t by

ϕs,t(x, y, z) = (αV (p(x − f(s)g(z))) + f(s)g′(z), α, 1) ,

x ∈ U + f(s)g(z) ⊂ Tn, y ∈ S1, z ∈ [0, 1 + σ] .

Then ϕs,t is a smooth function and ϕs,t(Γ(s, t)) = w(s, t) for all s ∈ R, t ∈
[0, 1 + σ]. Since f is 1-periodic, ϕs+m,t = ϕs,t for any m ∈ Z. Also, ϕs,t does
not depend on t and ϕs,t(x, y, z) is a C1-smooth function of (s, x, y, z). Then for
any m ∈ Z we have

|w(s′, t′) − ϕs,t(Γ(s′, t′))| = |ϕs′,t′(Γ(s′, t′)) − ϕs+m,t′(Γ(s′, t′))| ≤ C|s′ − s − m|

for some constant C. Since m is arbitrary,

|w(s′, t′) − ϕs,t(Γ(s′, t′))| ≤ C|(s′ − s) mod 1|
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Using 4.5 we conclude that

|w(s′, t′) − ϕs,t(Γ(s′, t′))| ≤ C|Γ(s′, t′) − Γ(s, t)|r ,

and the lemma follows. �

Thus we have a flow on Tn+2 (generated by a Cr−1-smooth vector field W0)
such that all the curves Γs

0 := Γ0(s, ·) : [0, 1] → Tn+2 are intervals of its trajecto-
ries. Every curve Γs

0 joins the points (γ(s), s, 0) and (γ(s+α), s+α, 0) in Tn+2,
and then the similar curve Γs+α

0 forms the next piece of a trajectory. Clearly Γs
0

is homotopic to a curve t �→ (γ(s + αt), s + αt, t) ∈ Tn+2, so the rotation vector
of the entire trajectory is equal to (αv, α, 1), where v ∈ Rn is the rotation vector
of γ (see 4.4).

Since the last two coordinates of w0(·) are the constants α and 1, we
may assume the same for W0(·), i.e., W0(·) = (W1(·), α, 1) for some smooth
W1 : Tn+2 → Rn.

4.7. Let M ⊂ Tn+2 be the image of Γ0. Let W̃0 and M̃ be the lifts of W0 and
M from Tn+2 to Rn+2. Both W̃0 and M̃ are Zn+2-invariant. Define two linear
functions L and H on Rn+2 by L(x, y, z) = y−αz and H(x, y, z) = z for x ∈ Rn,
y, z ∈ R. Here are the properties of W̃0 and M̃ that we will need:

(1) W̃0 is a Cr−1-smooth vector field whose last two coordinates are α and 1.
In particular, L is constant and H increases at the constant rate 1 under
the flow generated by W̃0.

(2) M̃ ⊂ Rn+2 is invariant under the flow generated by W̃0. At least one
trajectory of W̃0 lies in M and has rotation vector (αv, α, 1).

(3) There exists c > 0 such that

|p − q| ≥ c|L(p) − L(q)|1/r for all x, y ∈ M̃.

These properties follow immediately from Lemma 4.5.

Let g0 be a Riemannian metric on Rn+2 which induces the standard flat met-
ric on every hyperplane Rn+1×{const} and such that W̃0 is a unit-length vector
field orthogonal to these hyperplanes with respect to g0. Clearly g0 is uniquely
determined, Cr−1-smooth, and Zn+2-periodic. Let ρ0 denote the distance as-
sociated with g0. Note that L and H are 1-Lipschitz functions with respect
to ρ0.

It is easy to construct a Cr−2-smooth Zn-periodic function ϕ : Rn+2 → R such
that ϕ|M̃ ≡ 0 and ϕ(x) ≥ ρ0(x,M̃)r−1 for all x ∈ Rn+2. Define a Riemannian
structure g on Rn+2 by g = g0/(1 + ϕ)2. g0 is periodic and Cr−2-smooth.

Let ρ be the metric determined by g and let ‖·‖ be the stable norm of ρ. We
will prove that the unit sphere of ‖·‖ is nonsmooth at the point (αv, α, 1) ∈ Rn+2.
First note that ‖(αv, α, 1)‖ ≤ 1 by (2) above.
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4.8. Lemma. There exists an ε > 0 such that

ρ(p, q) ≥ |H(p) − H(q)| + ε|L(p) − L(q)|
whenever H(p) − H(q) is integer, p, q ∈ Rn+2.

Proof. Without loss of generality we may assume 0 ≤ H(p) < 1 and H(q) ≥
H(p). Since ρ is a length metric, there is a sequence of points p0 = p, p1, . . . ,
pN = q such that ρ(p, q) =

∑
ρ(pi, pi+1) and for each i = 0, . . . , N − 1 either

H(pi+1) = H(pi), or H(pi+1) = H(pi) + 1 and a shortest curve joining pi and
pi+1 lies between the hyperplanes H−1(H(pi)) and H−1(H(pi+1)). It suffices
to prove the desired estimate for each pair of points (pi, pi+1) instead of (p, q).
In the case H(pi) = H(pi+1) it holds with ε = 1 because L is 1-Lipschitz with
respect to ρ.

Let H(q) = H(p) + 1 and let γ be a C1-smooth curve joining p and q and
which lies between the hyperplanes {H = H(p)} and {H = H(q)}. We assume
that γ : [0, 1] → (Rn+2, ρ) is a constant speed parametrization. Let =(γ) denote
the length of γ in (Rn+2, ρ). We have to check that =(γ) ≥ 1 + ε|L(p) − L(q)|
for some ε > 0 independent of γ, p and q.

Consider the map f : Rn+1 × [0, 2] → Rn+2 defined as follows: for x ∈ Rn+1,
y ∈ [0, 2], f(x, y) is the y-shift of the point (x, 0) ∈ Rn+2 along the vector field
W̃0. Clearly f preserves hyperplanes of the form {H = const}, and f−1 is a
change of variables in Rn+1 × [0, 2] which transforms W̃0 into the (n + 2)nd

coordinate vector field. Since f is a Zn+1-periodic C1-smooth diffeomorphism,
there are constants c1, c2 > 0 such that

|x − y|/c1 ≥ ρ0(f(x), f(y)) ≥ c1|x − y| for all x, y ∈ Rn+1 × [0, 2]

and
|x − y| ≥ c2|L ◦ f(x) − L ◦ f(y)|1/r whenever x, y ∈ f−1(M̃).

Note that L ◦ f is the (n + 1)st coordinate function on Rn+1 × [0, 2].
We may write γ(t) = f(γ1(t), γ2(t)) for some γ1 : [0, 1]→ Rn+1 and γ2 : [0, 1]→

[0, 2]. Clearly g2(t) = H ◦ γ(t) for all t. Since the vector field W̃0 is orthogonal
to the hyperplanes {H = const} with respect to g̃, we have

‖γ′(t)‖g = (1 + ϕ(γ(t)) · ‖g′(t)‖g0 ≥ (1 + ϕ(γ(t))
√

c1γ′
1
2 + γ′

2
2 .

Let δ = |L(p) − L(q)|. Consider the following cases.
Case 1: δ ≥ 2. Then =(γ) ≥ ρ(p, q) ≥ |L(p) − L(q)| = δ ≥ 1 + δ/2. In the

remaining cases we suppose δ < 2.
Case 2: ρ0(p,M̃) and ρ0(q,M̃) are less than c3δ

1/r where c3 = c1c2/3. It
follows that γ1(0) and γ1(1) lie within (1

3c2δ
1/r)-neighborhood of f−1(M̃) in

Rn+1 × [0, 2], so |γ1(0) − γ1(1)| ≥ 1
3c2δ

1/r. Then

=(γ)2 =
∫ 1

0

‖γ′(t)‖2
g ≥

∫ 1

0

c1γ
′
1
2 + γ′

2
2

≥ c1|γ1(1) − γ1(0)|2 + |γ2(1) − γ2(0)|2 ≥ 1 +
c1c

2
2

9
δ2/r .
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Since r ≥ 2, it follows that =(γ) ≥ 1 + c4δ where c4 can be easily expressed in
terms of c1, c2 and the upper bound for δ (that is, 2).

Case 3: ρ0(p,M̃) ≥ c3δ
1/r (or similar case with q). Let =0 denote length with

respect to ρ0 and let γ0 be the starting interval of γ such that =0(γ0) = 1
2c3d

1/r.
Then γ0 lies entirely outside the (1

2c3δ
1/r)-neighborhood of M in (Rn+2, ρ0). In

this region, we have ϕ ≥ ( 1
2c3δ

1/r)r−1 = c5δ
1−1/r. Therefore

=(γ) ≥ =0(γ) + c5δ
1−1/r=0(γ0) ≥ 1 + c6δ

1/rδ1−1/r = 1 + c6δ,

where c6 = c3c5/2.
In all three cases, =(γ) ≥ 1 + εδ for ε = min{1/2, c4, c6}. �

4.9. Corollary. ‖·‖ ≥ H + ε|L|. �
Since ‖(αv, α, 1)‖ = 1 and L(αv, α, 1) = 0, both of the linear functions H−εL

and H + εL support the unit ball of ‖·‖ at the point (αv, α, 1). It follows that
the unit sphere of ‖·‖ is nonsmooth at (αv, α, 1).
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