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AN APPLICATION OF THE RESULTANT TO
OSCILLATORY INTEGRALS WITH POLYNOMIAL PHASE

Daniel M. Oberlin

Fix n = 2, 3, . . . and let p(t) =
n∑

j=1
ajtj be a polynomial with real coefficients.

Let I ⊆ IR be an interval. This paper is concerned with estimates of the form

(1)
∣∣∣∣
∫

I
eip(t) dt

∣∣∣∣ ≤ M(a1, . . . , an),

where M(a1, . . . , an) is independent of I. Let M0(a1, . . . , an) be the supremum
over all I of the left hand side of (1). If q(t) = p(st) for s > 0, then

∫ b

a
eiq(t) dt = s−1

∫ bs

as
eip(t) dt.

It follows that the homogeneity condition

(2) M(sa1, s
2a2, . . . , snan) = s−1M(a1, . . . , an), s > 0,

is satisfied if M(a1, . . . , an) = M0(a1, . . . , an). Our interest here is in estimates
(1) for which this natural equality (2) holds.

If 1 ≤ j1 < j2 ≤ n and the derivatives p(j1) and p(j2) have no common zero
in IR, then van der Corput’s lemma ([S], p. 332) shows that

(3)
∣∣∣∣
∫

I
eiλp(t) dt

∣∣∣∣

O(|λ|−
1

j2 ) as the real parameter λ tends to infinity. We would like our estimates
(1) to recover such information, with bounds on the relevant “big oh” constants
as well. The paper [O2] contains such estimates in case either n ≤ 4 or j2 = n−1.
(The case j2 = n is covered by van der Corput’s lemma.) Here we obtain, for each
n and 1 ≤ j1 < j2 ≤ n, an estimate (1) with right hand side M(a1, . . . , an) =
Mj1j2n(a1, . . . , an) satisfying (2). If p(j1) and p(j2) have no common complex
zero then Mj1j2n(λa1, . . . , λan) is O(|λ|−(2n−j1−j2−1)/(n2−j1j2−n)) as |λ| → ∞
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when an &= 0. If j2 < n− 1 this is weaker than the desired estimate of O(|λ|−
1

j2 )
for (3), even with the stronger hypothesis of no common complex, as opposed to
real, zero. Still, our estimates here recover Theorem 1 and Corollary 3 of [O2] as
special cases and, more importantly to our purposes, provide an extension valid
for polynomials of degree n of that Corollary 3. (Corollary 3 of [O2] furnishes
a Fourier transform estimate required for the proof of a convolution theorem
dealing with measures on the curve (t, t2, t3, t4) in IR4 - see [O1]. Its extension
is the first step in our attempt to extend the work of [O1] to the n-dimensional
setting.)

We begin by recalling the definition of the resultant of two polynomials. If

q(t) =
j∑

"=0
b"t" and r(t) =

k∑
"=0

c"t" are polynomials, their resultant R = R(q, r)

is the polynomial in the variables b" and c" defined by the determinant of the
(j + k) by (j + k) matrix:

k






j










bj bj−1 · · · · · b0

bj bj−1 · · · · b1 b0

bj bj−1 · · · · b1 b0

· · · · · · ·
ck ck−1 · · · c0

ck ck−1 · · c1 c0

ck ck−1 · · c1 c0

· · · · · · · ·





.

Thus if n = 2, 3, . . . , if 1 ≤ j1 < j2 ≤ n, and if p(t) =
n∑

j=0
ajtj , then R(p(j1), p(j2))

is a homogeneous polynomial of degree 2n− j1− j2 in a1, . . . , an. It is clear that
if

P = Pj1j2n(a1, . . . , an) =
R(p(j1), p(j2))

an
,

then P is a homogeneous polynomial of degree 2n − j1 − j2 − 1 in a1, . . . , an.
These polynomials P play a central role in our estimate.

Theorem. With n, j1, and j2 as above and P = Pj1j2n, there is a constant C,

depending only on n, j1, and j2, such that if p(t) =
n∑

j=1
ajtj (with aj ∈ IR) then,

for every interval I ⊆ IR,

(4)
∣∣∣∣
∫

I
eip(t) dt

∣∣∣∣ ≤
C

|P (a1, . . . , an)|
1

n2−j1j2−n

.

As we will see, the polynomial P has the anisotropic homogeneity property

(5) P (sa1, s
2a2, . . . , snan) = sn2−j1j2−nP (a1, . . . , an)
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so that (2) holds. Also, P is nonzero if and only if p(j1) and p(j2) have no common
complex root. Then the (isotropic) homogeneity of P shows that (3) decays at
least as fast as |λ|−(2n−j1−j2−1)/(n2−j1j2−n) as |λ| → ∞ if an &= 0. The choices
(n, j1, j2) = (n, j, n − 1) and (n, j1, j2) = (4, 1, 2) recover, respectively, Theorem
1 and Corollary 3 of [O2].

Proof. Our proof hinges on the following fact about the resultant R(q, r): with
q and r as above, if q1, . . . , qj are the (complex) zeros of q and r1, . . . , rk are
the zeros of r, then

(6) R(q, r) = bk
j cj

k

j∏

i=1

k∏

"=1

(qi − r").

(See, e.g., p. 137 in [L].) Thus, for example, it is clear that P is nonzero if and
only if p(j1) and p(j2) have no common zero (assuming an &= 0). We will now
observe two more consequences of (6): the first is that (5) holds and the second
is

(7) if t0 ∈ IR and p(t + t0) =
n∑

j=0

bjt
j , then P (b1, . . . , bn) = P (a1, . . . , an).

To prove (5), fix p(t)(=
n∑

j=1
ajtj) and s > 0. Let u(t) = p(st). Then

(8) P (sa1, s
2a2, . . . , snan) =

R(u(j1), u(j2))
snan

.

Since the zeros of u(j) are the multiples by s−1 of the zeros of p(j), (6) shows
that

R(u(j1), u(j2)) = sn(n−j1)+n(n−j2)−(n−j1)(n−j2)R(p(j1), p(j2)).

With (8) this gives (5). The proof of (7) is somewhat similar: if we let w(t) =
p(t + t0), then the zeros of w(j) are the translates by −t0 of the zeros of p(j).
Since w(j) and p(j) have the same leading coefficient, (7) follows from (6).

Our next goal is the inequality

(9) |P (a1, . . . , an)|
1

n2−j1j2−n ≤ C inf
t∈IR

n∑

j=1

∣∣∣p(j)(t)
∣∣∣
1
j

.

Define C to be

sup




|P (α1, . . . , αn)|
1

n2−j1j2−n :
n∑

j=1

|j!αj |
1
j = 1




 .
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Since for s > 0
∣∣P (sa1, s

2a2, . . . , snan)
∣∣ 1

n2−j1j2−n = s |P (a1, . . . , an)|
1

n2−j1j2−n

by (5) and since
n∑

j=1

∣∣sjj!aj

∣∣ 1
j = s

n∑

j=1

|j!aj |
1
j ,

it follows from the definition of C that

|P (a1, . . . , an)|
1

n2−j1j2−n ≤ C
n∑

j=1

∣∣∣p(j)(0)
∣∣∣
1
j

for any p(t) =
n∑

j=0
ajtj . Replacing p(t) by p(t + t0) and applying (7) gives (9).

Now let N = N(n) be a positive integer so large that, for each p(t) =
n∑

j=1
ajtj ,

the cardinality of
{

t ∈ IR :
(
p(k1)(t)

)k2

=
(
p(k2)(t)

)k1

for some k1, k2 with 1 ≤ k1 < k2 ≤ n

}

is bounded by N − 1. Then, given p, IR can be written as a disjoint union of at
most N intervals I" such that for each I" there is j′ = j′(#) ∈ {1, . . . , n} with

∣∣∣p(j′)(t)
∣∣∣

1
j′ = sup

1≤j≤n

∣∣∣p(j)(t)
∣∣∣
1
j

, t ∈ I".

Thus (9) and van der Corput’s lemma give, for each #,
∣∣∣∣
∫

I∩I!

eip(t) dt

∣∣∣∣ ≤
C

|P (a1, . . . , an)|
1

n2−j1j2−n

.

Since ∣∣∣∣
∫

I
eip(t) dt

∣∣∣∣ ≤
N(n)∑

"=1

∣∣∣∣
∫

I∩I!

eip(t) dt

∣∣∣∣ ,

(4) follows.
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