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AN APPLICATION OF THE RESULTANT TO
OSCILLATORY INTEGRALS WITH POLYNOMIAL PHASE

DANIEL M. OBERLIN

n .
Fixn=2,3,... and let p(t) = > a;t’ be a polynomial with real coefficients.
j=1
Let I C R be an interval. This paper is concerned with estimates of the form

(1)

/eip(t) dt‘ < M(ay,...,an),
I

where M(aq,... ,a,) is independent of I. Let My(ay,... ,a,) be the supremum
over all I of the left hand side of (1). If ¢(t) = p(st) for s > 0, then

b bs
/ et gt — 8_1/ et gt

It follows that the homogeneity condition
(2) M(sa1,s%as,. .. ,s"ay) = s *M(ay,... ap), s> 0,

is satisfied if M (ay,... ,a,) = My(aq,... ,a,). Our interest here is in estimates
(1) for which this natural equality (2) holds.

If 1 < j1 < jo2 < n and the derivatives p(jl) and p(jQ) have no common zero
in R, then van der Corput’s lemma ([S], p. 332) shows that

/ iAp(t) dt’
I

O(|)\\_%) as the real parameter \ tends to infinity. We would like our estimates
(1) to recover such information, with bounds on the relevant “big oh” constants
as well. The paper [O2] contains such estimates in case either n < 4 or jo = n—1.
(The case j2 = n is covered by van der Corput’s lemma.) Here we obtain, for each
n and 1 < j; < jo < n, an estimate (1) with right hand side M(aq,... ,a,) =
M, jon(ay, ... ,ay,) satisfying (2). If pU1) and pU2) have no common complex
zero then Mj, j,n(Aa1,. .., Aay) is O(|A|=@n=ii=i2=1)/(n*~iri2a=n)) a5 |\| — oo

3)
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when a,, # 0. If jo < n—1 this is weaker than the desired estimate of O(]/\|_ﬁ)
for (3), even with the stronger hypothesis of no common complex, as opposed to
real, zero. Still, our estimates here recover Theorem 1 and Corollary 3 of [O2] as
special cases and, more importantly to our purposes, provide an extension valid
for polynomials of degree n of that Corollary 3. (Corollary 3 of [O2] furnishes
a Fourier transform estimate required for the proof of a convolution theorem
dealing with measures on the curve (t,#2,¢3,t%) in R - see [O1]. Its extension
is the first step in our attempt to extend the work of [O1] to the n-dimensional
setting.)

We begin by recalling the definition of the resultant of two polynomials. If

J k
q(t) = > bet* and r(t) = Y ¢t are polynomials, their resultant R = R(q,7)
=0 £=0

is the polynomial in the variables b, and ¢, defined by the determinant of the

(j + k) by (j + k) matrix:

B b] bj, 1 . bo 7
k bj bjf 1 . : b1 b()
bj bj -1 : : : b1 b()
Ck  Ck—1 : : - Co
. Ck Ck—1 : G Co
J Ck Ck—1 - =+ C1 Co

Thusifn =2,3,...,if 1 < j; < jo <n,and if p(t) = > a;t7, then R(pU1), pli2))

7=0
is a homogeneous polynomial of degree 2n — j; — jo in aq, ... ,a,. It is clear that
if
P = Pj1j2n(a17 ceeyOp) = ¥7
an
then P is a homogeneous polynomial of degree 2n — j; — jo — 1 in aq,... ,ay.

These polynomials P play a central role in our estimate.

Theorem. With n, ji, and jo as above and P = Pj ;,,, there is a constant C,
depending only on n, ji, and j2, such that if p(t) = > a;t? (with a; € R) then,
j=1

for every interval I C R,

/6ip(t) dt‘ <
I |P(ax, ..

As we will see, the polynomial P has the anisotropic homogeneity property

C

(4) —
., an)| nZ—j1ig—n

(5) P(sa1,s%az, ... ,s"a,) = 3"2_j172_”P(a1, cee )
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so that (2) holds. Also, P is nonzero if and only if pUt) and p{2) have no common
complex root. Then the (isotropic) homogeneity of P shows that (3) decays at
least as fast as |\|~(2n—di—d2=1)/(n*~1j2=n) a5 |\| - oo if a,, # 0. The choices
(n,j1,72) = (n,7,n — 1) and (n, j1,j2) = (4,1, 2) recover, respectively, Theorem
1 and Corollary 3 of [O2].

Proof. Our proof hinges on the following fact about the resultant R(q,r): with
q and r as above, if ¢qi,... ,q; are the (complex) zeros of ¢ and ry,... ,r, are
the zeros of r, then

7k
(6) R(g,r) = b5, [T [ (@i —ro).

i=1/=1

(See, e.g., p. 137 in [L].) Thus, for example, it is clear that P is nonzero if and
only if p1) and pl2) have no common zero (assuming a,, # 0). We will now
observe two more consequences of (6): the first is that (5) holds and the second
is

(7) ifto € Rand p(t+to) =Y _bt/, then P(by,... ,by) = Plas,... ,an).
7=0

To prove (5), fix p(t)(= Y a;t/) and s > 0. Let u(t) = p(st). Then
j=1

(41) ,,(32)
(8) P(Sa1752a2’ o 7snan) _ ]%LL—’U)
s™ Ay,
Since the zeros of u) are the multiples by s~ of the zeros of pi/), (6) shows

that
R(u(ﬁ)’ u(]é)) — sn(n*jl)+n(n*j2)*(n*j1)(n*]é)R(p(]&)’p(]é))_

With (8) this gives (5). The proof of (7) is somewhat similar: if we let w(t) =
p(t 4 to), then the zeros of w) are the translates by —to of the zeros of pl7).
Since w¥) and pY¥) have the same leading coefficient, (7) follows from (6).

Our next goal is the inequality

S

(9) |P(ay,...,an)

n
T < Cinf Y ‘p(j)(t)
teRj:1

Define C to be

n
1
sup ] |[P(aq, ... ,qp)|?—itiz=n Zm%ﬁ _q
j=1
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Since for s > 0
1 1
‘P(sal, s2ag, . .. ,S"an)| n?—jviz=n = g |P(ay,... ,ay,)|"* iz

by (5) and since

n . 1 n 1
Z |sjj!a,j‘j = SZ |7'a;]7
j=1 j=1

it follows from the definition of C that

S

1 n )
Plas,... .a) 7507 <03 [p9(0)
j=1

for any p(t) = > a;t7. Replacing p(t) by p(t + to) and applying (7) gives (9).
3=0

n .
Now let N = N(n) be a positive integer so large that, for each p(t) = > a;t’,
i=1
the cardinality of

k k
{t eR : <p(k1)(t)> F o (p(’”)(t)> ' for some ki, ko with 1 < k1 < ko < n}

is bounded by N — 1. Then, given p, R can be written as a disjoint union of at
most N intervals I, such that for each I, there is j' = j'(¢) € {1,... ,n} with

& T
T = sup pW@)|", tel.
1<j<n

’p(j/)(t)

Thus (9) and van der Corput’s lemma give, for each ¢,

NI, |P(ay, ... ap)|""—itiz—n
Since
(t) w o
Gin(t dt' < / oip(t dt‘,
/I ZZ:; InI,
(4) follows.
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