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EXPONENTIALLY SMALL CORRECTIONS TO DIVERGENT
ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF THE FIFTH

PAINLEVÉ EQUATION

F. V. Andreev and A. V. Kitaev

Abstract. We calculate the leading term of asymptotics for the coefficients of
certain divergent asymptotic expansions for the solutions of the fifth Painlevé
equation (P5) by using the isomonodromy deformation method and the Borel
transform. Unexpectedly, these asymptotics appear to be periodic functions of
the coefficients of P5. We also show the relation of our results with some other
facts already known in the theory of the Painlevé equations established by other
methods: (1) a connection formula for the third Painlevé equation; (2) a condition
for existence of rational solutions for P5; (3) and a numerical study of the τ -
function for P5.

1. Instead of introduction

There are several interesting asymptotic properties of the τ -function associ-
ated with a particular one-parameter family of solutions of the third Painlevé
equation (P3) with a special set of coefficients: this family can be also viewed as
the fifth Painlevé transcendent for a very special choice of its parameters. Let us
recall some of these properties, formulated in terms of the function σ = σ(x;λ),
which is the solution of the following ordinary differential equation (ODE),

(xσ′′)2 = −16(xσ′ − σ)(xσ′ − σ +
1
4
(σ′)2),(1.1)

where ′ = d
dx , satisfying the boundary condition

σ(x;λ) =
x→0

−2λx − (2λx)2 − . . . .(1.2)

If λ = 1
π , then

σ(x;
1
π

) =
x→+∞

−x2 − 1
4
−

∞∑

n=1

cn

x2n
+ O(x−∞),(1.3)
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where

c1 =
1
16

, c2 =
5
32

, c3 =
131
128

, c4 =
6575
512

, . . . , cn, n ≥ 5(1.4)

can be obtained recursively by substituting expression (1.3) into Eq. (1.1).
The asymptotic series (1.3) diverges. E. L. Basor and C. A. Tracy [1] stated

the following
Conjecture 1:

cn ∼
n→∞

const n!(n − 1)!(1.5)

where const ≈ 0, 10132.
The function σ(x;λ) and its m-th–order derivatives for λ = 1

π define the
function E2(m; s)

∣∣
s= πx

2
, which is the probability that a randomly chosen interval

of the length s contains m eigenvalues in the Gaussian Unitary Ensemble (see
[2], [3]). We are going to investigate the function E2(m; s) via the isomonodromy
deformation method in a separate paper while here, we focus our attention on the
calculation of the exponentially small correction term to the divergent expansion
(1.3) and its intimate link with the asymptotics of the sequence cn. We found
that, among the functions σ(x;λ) with λ > 0, only one, for λ = 1

π , has the
asymptotic expansion (1.3), (1.4) as x → ∞, which is in agreement with the
results obtained by a different method in [4]. Note that there is a one-parameter
family of solutions of Eq. (1.1), other then σ(x;λ), which has asymptotics (1.3)
as x → +∞. We calculated the explicit value of the const in (1.5): it is equal to

1
π2

=

0, 1013211836423377714438794632097276389043587746722465488 . . . .
(1.6)

Actually, in this work we consider a more general problem than that discussed
above. Here, we investigate a one-parameter family of solutions of P5 with the
general set of coefficients which has (1.3)-like algebraic asymptotic expansion, so
that, the results announced above are just a particular case of the ones obtained
for P5. As another result of our study we have found unexpected and interesting
property of the coefficients of the divergent algebraic asymptotic expansions,
which is general for all other Painlevé equations (P2–P5) possessing the solutions
with such expansions: This property is that the large n asymptotics of the
coefficients of the divergent asymptotic expansion are periodic functions of the
coefficients of the Painlevé equations. Note that, being formally substituted into
the Painlevé equations, the coefficients of the divergent algebraic series can be
found via recurrence relations as polynomials of the coefficients of the Painlevé
equations.

1As they told us later (June 1996, Mount Holyoke), this conjecture was based on a numerical
study of the sequence cn.
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In the next section, we recall some basic facts concerning the isomonodromy
approach to P5. Our results are formulated in Section 3, where we also give
a new derivation of the theorem on classification of a special class of rational
solutions of P5, y(x) : y(x) →

x→∞
−1, which was first proved in [5] and by other

method in [6]. In section 4, we apply the Borel transform to find the asymptotics
of the coefficients of the divergent series for P5. In Appendix, we consider two
applications of our results to P3: (1) we prove asymptotic expansion (1.5), 1.6)
and (2) verify that, for a very special choice of the coefficients of P5, our result
agree with the connection formula for P3, which was proved in [7].

2. The fifth Painlevé equation and its monodromy manifold

Let us recall that, in [8], it was shown that isomonodromy deformations of
the linear ODE

d

dλ
Ψ =

( t

2
σ3 +

A0(t)
λ

+
A1(t)
λ− 1

)
Ψ,(2.1)

where Ak(t) ∈ sl2(C) and independent of λ, are governed by the following system
of nonlinear ODEs:

t
dy

dt
= ty − 2z(y − 1)2 − (y − 1)

(Θ0 − Θ1 + Θ∞
2

y − 3Θ0 + Θ1 + Θ∞
2

)
,(2.2)

t
dz

dt
= yz

(
z +

Θ0 − Θ1 + Θ∞
2

)
− 1

y
(z + Θ0)

(
z +

Θ0 + Θ1 + Θ∞
2

)
,(2.3)

t
d

dt
log u = −2z − Θ0 + y

(
z +

Θ0 − Θ1 + Θ∞
2

)
+

1
y

(
z +

Θ0 + Θ1 + Θ∞
2

)
,(2.4)

where Θν(ν = 0, 1,∞) are complex constants — the parameters of the formal
monodromy. Eliminating the function z(t) from Eqs. (2.2) and (2.3), one finds
that the function y(t) satisfies P5:

d2y

d2t
= (

1
2y

+
1

y − 1
)(

dy

dt
)2 − dy

tdt
+

(y − 1)2

t2
(αy +

β

y
) +

γy

t
+

δy(y + 1)
y − 1

,

(2.5)

α =
1
2
(Θ0 − Θ1 + Θ∞

2
)2

,

β = −1
2
(Θ0 − Θ1 − Θ∞

2
)2

,

γ = 1 − Θ0 − Θ1, δ = −1
2
.

(2.6)

The so-called τ -function [8], [9] plays an important role in applications of P5:

d

dt
log τp(t) ≡ Hp ≡ − 1

2t
Res
λ=p

tr A2(λ, t), p = 0, 1; H0 + H1 =
Θ∞
2

,
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where A(λ, t) is the matrix in the parenthesis in Eq. (2.1). Using this definition
it is easy to write an explicit representation of the τ -function in terms of solutions
(y = y(t), z = z(t)) of the system (2.2), (2.3) (see [8], [10]). It is also convenient
to introduce an auxiliary function

ζ(t) ≡ ζ(Θ0,Θ1,Θ∞; t) ≡ −tH1 +
t

2
(Θ0 + Θ∞) +

Θ0

2
(Θ0 + Θ∞).(2.7)

In particular, it is known [8] that the function ζ(t) solves the following ODE:
(

t
d2ζ

dt2

)2

=

(
ζ − t

dζ

dt
+ 2

(
dζ

dt

)2

− (2Θ0 + Θ∞)
dζ

dt

)2

(2.8)

−4
dζ

dt

(
dζ

dt
− Θ0

) (
dζ

dt
− 1

2
(Θ0 − Θ1 + Θ∞)

) (
dζ

dt
− 1

2
(Θ0 + Θ1 + Θ∞)

)
,

which is for Θ0 = Θ1 = Θ∞ = 0 and t = 4ıx coincide with Eq. (1.1).
The solutions of system (2.2)-(2.4) are in one-to-one correspondence with

the points of the manifold of monodromy data M5(Θ0,Θ1,Θ∞). The detailed
definition of M5(Θ0, Θ1, Θ∞) can be found in our previous works [10, 11]. Here,
we recall that this manifold is defined by the matrix elements of the monodromy
matrices M0 and M1, representing, respectively, the monodromy of the canonical
solutions of Eq. (2.1) around the regular singularities at λ = 0 and λ = 1.
Denoting the matrix elements of Mp as mp

ij(p = 0, 1; i, j = 1, 2), we can define
M5(Θ0,Θ1,Θ∞) by the following algebraic equations in C8:

m0
11m

0
22 − m0

12m
0
21 = 1, m1

11m
1
22 − m1

12m
1
21 = 1,

m0
11 + m0

22 = 2 cosπΘ0, m1
11 + m1

22 = 2 cosπΘ1,

m1
11m

0
11 + m1

12m
0
21 = e−πıΘ∞ .

Note that, dimC M5(Θ0,Θ1,Θ∞) = 3. Stokes matrices, Sp+1 (p = 0, 1) (see
[10] for definition), also play an essential role in the description of analytical
properties of the solutions to Eq. (2.1). These matrices define the monodromy
properties of the canonical solutions of Eq. (2.1) near the irregular singularity
λ = ∞. The matrices Sp+1 have the following structure:

S1 =
(

1 0
s1 1

)
, S2 =

(
1 s2

0 1

)
,

where the complex parameters sp+1, p = 0, 1 are called the Stokes multipliers.
Further, we call mp

ij , sp+1, p = 0, 1, i, j = 1, 2 the monodromy coordinates.
Although, it is easy to explicitly express sp+1 in terms of mp

ij , we further always
write them down for the convenience of the reader.

The nonlinear system (2.2)-(2.4) has two singular points, t = 0 and ∞, so
that solutions of this system are defined on the universal covering of C{0}. In
the previous works [10, 11] we have investigated the asymptotics of the solutions
of the system (2.2)-(2.4) as t → +0 and t → +∞, that is why it is natural
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for us to consider the analytic continuation of these solutions from (+0, +∞).
Furthermore, we understand the functions y(t), z(t), u(t), and ζ(t), respectively,
for t ∈ C, as the ones analytically continued from R+. Since the system (2.2)-
(2.4) posses the Painlevé property, single-valued solutions can be defined on
C\[−0,−∞). We call the ray [−0,−∞) the cut and denote as y±(t), z±(t),
u±(t), and ζ±(t), respectively, the functions y(t), z(t), u(t), and ζ(t) on the
upper/lower sides of the cut, i.e., for arg t = ±π. Note that, the ±-functions
correspond to, i.e., define via Eq. (2.1), the same point of M5(Θ0,Θ1,Θ∞).
Let us denote by y−(t), z−(t), u−(t), and ζ−(t), respectively, a solution of
system (2.2)-(2.4) and the corresponding function (2.7) with Θ∞ changed to
−Θ∞: The corresponding manifold of monodromy data is M5(Θ0,Θ1,−Θ∞).
As soon as the functions y−(t), z−(t), u−(t), and ζ−(t), respectively, are known
for real positive t and an arbitrary point of M5(Θ0,Θ1,−Θ∞), one can find the
functions y±(t), z±(t), u±(t), and ζ±(t) by using the following transformation,

u±(t) =
1

u−(e∓πıt)
, y±(t) =

1
y−(e∓πıt)

,(2.9)

z±(t) = −z−(e∓πıt) − Θ0, ζ±(t) = ζ−(e∓πıt) + Θ0t + Θ0Θ∞,(2.10)

and the corresponding action of this transformation on the manifold of mon-
odromy data:

M+
p = σ1Ŝ1M̂pŜ

−1
1 σ1, S+

1 = σ1e
πıΘ∞σ3 Ŝ2e

−πıΘ∞σ3σ1, S+
2 = σ1Ŝ1σ1,(2.11)

M−
p = σ1Ŝ

−1
2 M̂pŜ2σ1, S−

1 = σ1Ŝ2σ1, S−
2 = σ1e

−πıΘ∞σ3 Ŝ1e
πıΘ∞σ3σ1.(2.12)

Here, M±
p and S±

p+1 (p = 0, 1) are the monodromy and Stokes matrices corre-
sponding to the functions y±(t), z±(t), u±(t), and ζ±(t), M̂p and Ŝp+1 are the
monodromy objects for y−(t), z−(t), u−(t), and ζ−(t), respectively, i.e., their
matrix elements define a point on M5(Θ0,Θ1,−Θ∞). According the above def-
inition, we have M+

p = M−
p , S+

p+1 = S−
p+1. IT means that depending of what we

want to ding: the + or, respectively, - functions, we have to take in Eqs. (2.9)
and (2.10), the solutions y−(·), z−(·), u−(·), and ζ−(·) which correspond (in gen-
eral case) to different points on M5(Θ0,Θ1,−Θ∞), i.e., the matrices M̂p and
Ŝp+1, in Eqs. (2.11) and (in general case) are different from those in Eqs. (2.12).

3. Properties of truncated solutions

Proposition 1. The system (2.2), (2.3) and Eq. (2.8) admit the following for-
mal solutions :

yF (t) = −1 +
∞∑

n=1

αn(Θ0,Θ1,Θ∞)
tn

,(3.1)

zF (t) = − t

8
− 2Θ0 + Θ∞

4
+

∞∑

n=1

βn(Θ0,Θ1,Θ∞)
tn

,(3.2)
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ζF (t) =
t2

16
+ (2Θ0 + Θ∞)

t

4
+

3Θ2
0

4
(3.3)

+
Θ2

1

4
+

Θ2
∞
4

+
Θ0Θ∞

2
− 1

4
+

∞∑

n=1

γn(Θ0,Θ1,Θ∞)
tn

,

where the coefficients, αn = αn(Θ0, Θ1, Θ∞), βn = βn(Θ0, Θ1, Θ∞), and
γn = γn(Θ0, Θ1, Θ∞), are uniquely determined polynomials of their arguments
of the degrees :

degαn(Θ0, Θ1, Θ∞) = n, deg βn(Θ0, Θ1, Θ∞)
= n + 1, deg γn(Θ0, Θ1, Θ∞) = n + 2.

Proof. The proof of Proposition 1 is just the straightforward substitution of
the expansions (3.1), (3.2) and (3.3) into the system (2.2), (2.3) and Eq. (2.8)
correspondingly. As the result one finds recurrence relations for the coefficients
αn, βn, and γn, which enable one to make the conclusions stated above.

Remark 1. The recurrence relations are rather complicated. We don’t use
them directly and that is why we don’t write them down here. The following is
the list of the few first polynomials :

α1 = 4(Θ0 + Θ1 − 1), α2 = 8Θ∞(Θ1 − Θ0) − 8(Θ0 + Θ1 − 1)2,

α3 = 16(Θ0 + Θ1 − 1)(Θ0 − Θ1 + Θ∞)2

+ 16(Θ0 + Θ1 − 3)(Θ0 + Θ1)2 + 32(Θ0 + Θ1),

β1 = 0, β2 = Θ∞(Θ2
1−Θ2

0), β3 = 2(Θ2
1−Θ2

0)2+2(Θ∞
2 − 1)(2Θ2

0 + 2Θ2
1 − 1),

γ1 = β2, γ2 = 1
2β3, γ3 = 4Θ∞(Θ2

1 − Θ2
0)(2Θ2

0 + 2Θ2
1 + Θ2

∞ − 5),

γ4 = 8(Θ6
0 + Θ6

1 − Θ2
0Θ4

1 − Θ2
1Θ4

0 + Θ2
0Θ4

∞ + Θ2
1Θ4

∞ + 5Θ4
1Θ2

∞ + 5Θ4
0Θ2

∞

− 2Θ2
0Θ2

1Θ2
∞ − 7Θ4

0 − 7Θ4
1 − 1

2Θ4
∞ − 12Θ2

1Θ2
∞ − 12Θ2

0Θ2
∞ + 6Θ2

0Θ2
1

+ 11Θ2
0 + 11Θ2

1 + 11
2 Θ2

∞ − 5).

Although it is not evident from the definition (2.7), one proves that ζ ′(t) = −z(t),
which means that βn+1(Θ0, Θ1, Θ∞) = nγn(Θ0, Θ1, Θ∞). Another property of
the polynomials αn, βn, and γn is that they can be rewritten as the polynomials
of the coefficients α, β, and γ (see Eq. (2.6)) of P5 (2.5), without any square
roots! It is more or less clear for the polynomials αn, since they can be obtained
recursively: by substituting expansion (3.1) into the Eq. (2.5), but than, the
polynomials βn should be obtained from the Eq. (2.2), which obviously contains
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square roots of the coefficients (2.6). Eq. (2.8) being rewritten with the coeffi-
cients, α, β, and γ, by using the formulas (2.6), also contains the square roots.
The explanation is that: by substituting the expansions (3.1)-(3.3) into the sys-
tem (2.2), (2.3) and Eq. (2.8) correspondingly, one gets for the sums in (3.1)-(3.3)
the equations, which can be written with the integer powers of α, β, and γ.

Proposition 2. There exist three special (doubly truncated) solutions of the
system (2.2)-(2.3) which along with the corresponding functions ζ(t) (2.7), we
denote as follows :

(1) y0(t), z0(t), and ζ0(t);
(2) y+1(t), z+1(t), and ζ+1(t); and
(3) y−1(t), z−1(t), and ζ−1(t).

These solutions are uniquely defined by their asymptotic expansions as |t| → +∞:

yk(t) = yF (t) + O
(
t−∞)

,

zk(t) = zF (t) + O
(
t−∞)

,

ζk(t) = ζF (t) + O
(
t−∞)

,

(3.4)

in the sectors

− π + πk < arg t < π + πk, k = −1, 0, +1.(3.5)

Proof. The existence and uniqueness of the solutions for arg t = 0 is proved in
our previous work [11] (see Sec. 3 of [11]). To prove the fact that these solutions
can be analytically continued with the same asymptotics (3.4) into the whole
sector (3.5) one should notice that for each asymptotic expansion (3.1)–(3.3)
there is only one function analytic in the sector (3.5) with this asymptotics so
that, it must coincide with the correspondent function: y(t), z(t), or ζ(t), which
has asymptotics (3.4) for arg t = 0.

Remark 2. By integrating Eq. (2.4) one finds that the corresponding functions
uk(t) have the following asymptotic behavior :

uk(t) = ûe
t
2 (1 + o(1)), k = −1, 0, +1,(3.6)

where û ∈ C{0} is the constant of integration.
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Proposition 3. The monodromy coordinates of the solutions, yk(t), zk(t), uk(t),
and ζk(t) are as follows :

(1) k = 0 ⇒ m0
11 = 0, m0

21 =
22Θ∞

ıû
e−πıΘ∞ , m1

11 = 0, m1
12 = ıû2−2Θ∞ ,

s2 = −2ıûeπıΘ∞2−2Θ∞ cosπΘ0, s1 =
2ı

û
22Θ∞ cosπΘ1;

(2) k = +1 ⇒ m0
11 = 2(cosπΘ0 + e−πıΘ∞ cosπΘ1), m0

21 = − ı

û
e−πıΘ∞22Θ∞ ,

m1
11 = 0, m1

12 = ı2−2Θ∞ û, s2 = 2ıû2−2Θ∞ cosπΘ1,

s1 = −2ı

û
eπıΘ∞22Θ∞ cosπΘ0;

(3) k = −1 ⇒ m0
11 =0, m0

21 =
22Θ∞

ıû
e−πıΘ∞ , m1

11 =2(cosπΘ1+e−πıΘ∞ cosπΘ0),

m1
12 = ıû2−2Θ∞ , s2 =2ıû2−2Θ∞e2πıΘ∞ cosπΘ1,

s1 =−2ı

û
22Θ∞e−πıΘ∞ cosπΘ0.

Proof. The formulas in item (1) were proved in Corollary 3.1 of [11]; the formulas
in items (2) and (3) are the special cases of the ones obtained in Corollaries
3.1, 3.2 of [11].

Proposition 4. The following asymptotic formulas as |t| → +∞ and k = ±1 :

yk(t) = y0(t) + 2Ξk exp
(

ki
π

4
− i

2
arg t

) √
2
|t| ek it

2 (1 + o(1)),(3.7)

zk(t) = z0(t) +
Ξk

4
exp

(
−ki

π

4
+

i

2
arg t

) √
|t|
2

ek it
2 (1 + o(1)),(3.8)

ζk(t) = ζ0(t) +
Ξk

2
exp

(
−ki

π

4
+

i

2
arg t

) √
|t|
2

ek it
2 (1 + o(1)),(3.9)

where

Ξk =
2√
2π

(
cos(πΘ0)ek πiΘ∞

2 + cos(πΘ1)e−k πiΘ∞
2

)
,(3.10)

are valid for the doubly truncated solutions in the sectors :

k = +1 ⇒ 0 ≤ arg t ≤ π, k = −1 ⇒ −π ≤ arg t ≤ 0.(3.11)

Proof. For arg t = 0, ±π these asymptotic expansions follow from the Corollaries
3.1–3.3 of the paper [11] and Eqs. (2.9)–(2.12) of Sec. 2. Their extensions to the
whole sectors (3.11) can be proved either by linearizing of the corresponding
differential equations or by inspection that, being restricted on the solutions
yk(t), zk(t), and ζk(t), the proof of asymptotic expansions in [10], [11] is also
valid for the complex t in these sectors.
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Corollary 1. The (analytic continuation of the) solutions y0(t), z0(t), and ζ0(t)
have asymptotic expansions (3.1)–(3.3) in the domain −π < arg t < +∞ and,
in particular, y+1(t) = y0(t), z+1(t) = z0(t), and ζ+1(t) = ζ0(t) iff Ξ+1 = 0.
Analogously, the (analytic continuation of the) solutions y0(t), z0(t), and ζ0(t)
have asymptotic expansions (3.1)–(3.3) in the domain −∞ < arg t < +π and, in
particular: y−1(t) = y0(t), z−1(t) = z0(t), and ζ−1(t) = ζ0(t) iff Ξ−1 = 0.

Proof. Induction on positive or negative k ∈ Z: | arg t− πk| < π, by making use
of Eqs. (2.9)–(2.12). The base of the induction follows from Proposition 4.

Corollary 2. The expansions (3.1)–(3.3) are convergent iff Ξ+1 = Ξ−1 = 0.

Proof. The condition Ξ+1 = Ξ−1 = 0 means that all the solutions yk(t), zk(t),
and ζk(t) are rational functions.

Corollary 3. The system (2.2), (2.3) and consequently the fifth Painlevé equa-
tion (2.5) have rational solutions with the property lim

t→∞
y(t) = −1, iff at least

one of the following conditions :

(1) Θ∞ = 2l, Θ0 = Θ1 + 1 + 2m,

(2) Θ∞ = 2l, Θ0 = −Θ1 + 1 + 2m,

(3) Θ∞ = 1 + 2l, Θ0 = Θ1 + 2m,

(4) Θ∞ = 1 + 2l, Θ0 = −Θ1 + 2m,

(5) Θ0 =
1
2

+ l, Θ1 =
1
2

+ m,

where l, m ∈ Z, is satisfied. This solution is unique, if the coefficients of the
system (2.2), (2.3) are set as shown above, and coincides with the doubly trun-
cated solution, (y0(t), z0(t)). In terms of the coefficients α, β, and γ (2.6) of the
fifth Painlevé equation the conditions (1), (3) can be rewritten as follows :

√
2α =

1
2

+ n1,
√
−2β =

1
2

+ n2, n1, n2 ∈ Z, γ ∈ C,(3.12)

and the conditions (2), (4), (5) as :
√

2α +
√
−2β = n1, γ = 2n2 − n1, n1, n2 ∈ Z.(3.13)

For the fixed set of α, β, and γ satisfying Eqs. (3.12) or/and Eqs. (3.13) for
some choice of the branches of the square roots, this rational solution of the
fifth Painlevé equation (2.5) is unique and coincides with y0(t). In this case the
functions z0(t) and ζ0(t) are also rational.

Proof. The proof follows from Corollary 2 and solution of the equation Ξ−1 =
Ξ+1.
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Proposition 5. The solution of the system (2.2)-(2.4) with the following mon-
odromy coordinates (the upper-truncated solution) :

m0
11 =

√
2πŵe−

πıΘ∞
2 , m0

21 =
22Θ∞

ıu
e−πıΘ∞ , s1 =

22Θ∞

ıû
(
√

2πŵe
πıΘ∞

2 −2 cosπΘ1),

m1
11 = 0, m1

12 = ıû2−2Θ∞ , s2 = ıû2−2Θ∞eπıΘ∞(
√

2πŵe−
πıΘ∞

2 −2 cosπΘ0),

where ŵ ∈ C, has in the sector 0 ≤ arg t ≤ π the following asymptotic expansion
as |t| → +∞ :

y(t) = y0(t) + 2ŵ

√
2
|t|e

ı
2 ( π

2 −arg t)e
ıt
2 + O(

1
t
e

ıt
2 ),

z(t) = z0(t) +
ŵ

4

√
|t|
2

e−
ı
2 ( π

2 −arg t)e
ıt
2 + O(t−

1
2 e

ıt
2 ),

u(t) = u0(t)(1 + o(1)),

ζ(t) = ζ0(t) +
ŵ

2

√
|t|
2

e
ı
2 ( π

2 +arg t)e
ıt
2 + O(t−

1
2 e

ıt
2 ).

Proof. The proof is based on the same arguments as the proof of Propositions 3
and 4.

Proposition 6. The solution of the system (2.2)-(2.4) with the following mon-
odromy coordinates (the lower-truncated solution) :

m0
11 = 0, m0

21 =
22Θ∞

ıû
e−πıΘ∞ , s2 = −û2−2Θ∞eπıΘ∞(

√
2πv̂e

πıΘ∞
2 + 2ı cosπΘ0),

m1
11 = ı

√
2πv̂e−

πıΘ∞
2 , m1

12 = ıû2−2Θ∞ , s1 =
22Θ∞

û
(
√

2πv̂e−
πıΘ∞

2 + 2ı cosπΘ1),

where v̂ ∈ C, has in the sector −π ≤ arg t ≤ 0 the following asymptotic expansion
as |t| → +∞ :

y(t) = y0(t) + 2v̂

√
2
|t|e

ı
2 ( π

2 −arg t)e−
ıt
2 + O(

1
t
e−

ıt
2 ),

z(t) = z0(t) −
v̂

4

√
|t|
2

e−
ı
2 ( π

2 −arg t)e−
ıt
2 + O(t−

1
2 e−

ıt
2 ),

u(t) = u0(t)(1 + o(1)),

ζ(t) = ζ0(t) +
v̂

2

√
|t|
2

e
ı
2 ( π

2 +arg t)e−
ıt
2 + O(t−

1
2 e−

ıt
2 ).

Proof. The proof is based on the same arguments as the proof of Propositions 3
and 4.
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Theorem 1. The polynomials: αn(Θ0, Θ1, Θ∞), βn(Θ0, Θ1, Θ∞), and
γn(Θ0,Θ1,Θ∞) have the following asymptotics as n → ∞(≡ p → ∞) :

α2p−1(Θ0, Θ1, Θ∞) = O(Cp) + (−1)p 42p

2π2
cos

πΘ∞
2

cos
π

2
(Θ0 − Θ1) ×

cos
π

2
(Θ0 + Θ1) Γ

(
p − 3

4

)
Γ
(

p − 1
4

) (
1 + O

(
1
p

))
,

α2p(Θ0, Θ1, Θ∞) = O(Cp) + (−1)p 42p+1

2π2
sin

πΘ∞
2

sin
π

2
(Θ0 − Θ1) ×

sin
π

2
(Θ0 + Θ1) Γ

(
p − 1

4

)
Γ
(

p +
1
4

) (
1 + O

(
1
p

))
,

β2p−1(Θ0, Θ1, Θ∞) = O(Cp) + (−1)p 42p−1

2π2
cos

πΘ∞
2

cos
π

2
(Θ0 − Θ1) ×

cos
π

2
(Θ0 + Θ1) Γ

(
p − 1

4

)
Γ
(

p +
1
4

) (
1 + O

(
1
p

))
,

β2p(Θ0, Θ1, Θ∞) = O(Cp) + (−1)p 42p

2π2
sin

πΘ∞
2

sin
π

2
(Θ0 − Θ1) ×

sin
π

2
(Θ0 + Θ1) Γ

(
p +

1
4

)
Γ
(

p +
3
4

) (
1 + O

(
1
p

))
,

γ2p−1(Θ0, Θ1, Θ∞) = O(Cp) + (−1)p 42p−1

π2
sin

πΘ∞
2

sin
π

2
(Θ0 − Θ1) ×

sin
π

2
(Θ0 + Θ1) Γ

(
p − 1

4

)
Γ
(

p +
1
4

) (
1 + O

(
1
p

))
,

γ2p(Θ0, Θ1, Θ∞) = O(Cp) − (−1)p 42p

π2
cos

πΘ∞
2

cos
π

2
(Θ0 − Θ1) ×

cos
π

2
(Θ0 + Θ1) Γ

(
p +

1
4

)
Γ
(

p +
3
4

) (
1 + O

(
1
p

))
,

where Γ( · ) is the Gamma-function [13] and C > 0 is independent of p.

Proof. The proof is given in the next Section.

Corollary 4. All leading terms of the above asymptotics vanish iff the parame-
ters Θ0, Θ1, Θ∞ satisfy one of the conditions of the Corollary 3. In this case,
at least one: odd or even, subsequence of each sequence of the coefficients has
the following asymptotic expansion :

|αn(Θ0, Θ1, Θ∞)| =
n→∞

an
Θ0,Θ1,Θ∞(1 + o(1)),

|βn(Θ0, Θ1, Θ∞)| =
n→∞

bn
Θ0,Θ1,Θ∞(1 + o(1)),

|γn(Θ0, Θ1, Θ∞)| =
n→∞

cn
Θ0,Θ1,Θ∞(1 + o(1)),

(3.14)

where aΘ0,Θ1,Θ∞ , bΘ0,Θ1,Θ∞ , and cΘ0,Θ1,Θ∞ are the numbers equal to the max-
imums of absolute values of poles of the rational solutions to the system (2.2),
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(2.3) and Eq. (2.8), which are described in the Corollary 3. If the asymptotics
of one of the subsequences is not given by the corresponding equation in (3.14),
then the absolute values of its members (at least for a rather big n) are less than
the r.-h.s. of one of the corresponding equation in (3.14).

Proof. The statement follows from Theorem 1 with the help of the Corollaries 2
and 3.

4. Derivation

To derive the large n asymptotics for the polynomials αn(Θ0, Θ1, Θ∞),
βn(Θ0,Θ1, Θ∞), and γn(Θ0, Θ1, Θ∞) (3.1)-(3.3), we use ideas based on the
Borel transform. Here, we summarize some facts concerning the Borel transform,
which we need for a derivation of the results stated in Theorem 1. The proofs
of these results can be found in the monograph [12]. The following presentation
is specific to the concrete problem under consideration.

Let F (t) be one of the divergent series yF (t), zF (t), or ζF (t). Let us denote
the coefficients of these expansions as fn, i.e.,

F (t) =
∑

fnt−n.(4.1)

It is known that, the divergent expansions (3.1)–(3.3) for the systems like (2.2)–
(2.3) are Borel summable. In particular, in our case it means that for some
positive numbers: M , A, and a, the following inequality is valid: |fn/Γ(an+1)| <
MA−n, where Γ( · ) is the Γ-function [13]. Actually, in our case a = 1, but we use
this fact only to make our derivation shorter: the fact which is really important
for the following is that such number a > 0 exists. The Borel transform, BF (p),
is defined by the following, convergent in some neighborhood of p = 0, series:

BF (p) =
∑ fn

Γ(an + 1)
pn.(4.2)

The analytic continuation of the function BF (p) into the sectors: | arg p+πk| <
π/2, k = 0,±1 (a = 1 !) has a finite exponential type T . The Laplace transform
of BF (τ/t) on τ is therefore convergent in the domain |t| > T, |argt+πk| < π/2
and yields the function f(t) (the Borel sum of F (t)):

f(t) =
∫ ∞

0
dτe−τBF (t−1τa),(4.3)

which analytic continuation into the domain |t| > T, | arg t + πk| < π has the
asymptotic expansion (4.1). Since analytic function with the asymptotic expan-
sion (4.1) in the sector | arg t+πk| < π is unique, the function f(t) (4.3) coincide
with the corresponding doubly truncated solution, fk(t), i.e., with one of the
functions: yk(t), zk(t), or ζk(t), k = 0,±1.

The function BF (p) may have poles and cuts, running from its singularities
to the infinity. The previous discussion shows that the only possibility for such
singularities (and cuts) can be along the imaginary axis. The indications of these
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cuts are ruptures of the of the function f(t): in the sectors | arg t+πk| < π/2 this
function coincides with fk(t). Thus in our case we have two such ruptures: along
the positive and negative imaginary semi-axis. To get the asymptotic formulas
announced in Theorem 1 for fn, we proceed as follows:

fn = Γ(an + 1) fn

Γ(an+1) =
+∞∫

0
dτe−ττan fn

Γ(an+1) = 1
2πı

+∞∫

0
dτe−τ

∮

Υ(τ)

BF (pτa)
pn+1 dp

=
n→∞

1
2πı

(
1 + O

(
1
n

)) +∞∫

0
dτe−τ

(
iA/τa∫

+i∞
+

−i∞∫

−iA/τa

)
∆BF (pτa)

pn+1 dp
∣∣∣p= 1

is

= in

2π

(
1 + O

(
1
n

)) +∞∫

0
dτe−τ

(
τa/A∫

+0
+

−0∫

−τa/A

)
sn−1∆BF ( τa

is ) ds

= in

2π

(
1 + O

(
1
n

))
(

+∞∫

+0
+

−0∫
−ı∞

)
sn−1 ds

+∞∫

0
∆BF ( τa

is )e−τdτ,

where Υ(τ) is a positively oriented contour around 0 in the complex p-plane and
∆BF (·) is the difference of values of the Borel transform on the cut along the
imaginary axis (r.h.s. minus l.h.s.). In the last integral we take into account that
∆BF (τa/is) = 0 when |τa| is varying from 0 to As . Finally, using Eq. (4.3) we
arrive at the following asymptotic formula for fn,

fn =
n→∞

O (Cn) +(4.4)

ın−1

2π

(
1 + O

(
1
n

)) ( ∫ +∞

0
sn−1ds(f0(ıs)

−f+1(ıs) − (−1)n(f0(−ıs) − f−1(−ıs))
)

,

where C > 0 and independent of n. The power error estimation in the last equa-
tion appear due to the fact that the integral representation (4.3) is valid only for
s > T . Now, consequently substituting for fk in the last equation the asymptotic
results from Proposition 4 for the doubly truncated solutions: yk(t), zk(t), and
ζk(t) defined in Proposition 2, we obtain the asymptotic expansions stated in the
Theorem 1. Note, that by using the asymptotics in Eq. (4.4) instead of the ex-
act solutions we get an additional error, which can be also estimated as O(Cn),
where C is independent of n. The error estimations indicated in the asymptotic
expansions given in Proposition 4 are contributing to O (1/p)-correction terms
for fn in Theorem 1.

Appendix: Applications to the third Painlevé transcendent

Here we consider two special cases of our results: the first one (Θ0 = Θ1 =
Θ∞ = 0) concerns the function σ(x; λ) which is discussed in the Sec. 1, the
second example (Θ0 = Θ1 = 1/2,Θ∞ = 0) shows, how one can reproduce one
of the first connection formulas for the Painlevé equations [7] (in our notations
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it is a connection formula for asymptotics of P5 along the imaginary axis) by
using the connection results for asymptotics on the real axis [10] and analytic
continuation described in Sec. 3.

Proposition 7. A solution of the system (2.2), (2.3) with Θ0 = Θ1 = Θ∞ = 0
is holomorphic at t = 0 iff for some z0 ∈ C y(t) and z(t) have the following
asymptotic expansions as t → 0 :

y(t) = 1 + t + (
1
2
− z0)t2+ (

1
6
− z0)t3+ (

1
4!

− 13
24

z0 +
z2
0

2
)t4(A.1)

+(
1
5!

− 5
24

z0 +
5
9
z2
0)t5 + (

1
6!

− 137
2160

z0 +
25
72

z2
0 − 3

16
z3
0)t6

+(
1
7!

− 7
432

z0 +
847
5400

z2
0 − 35

144
z3
0)t7+ (

z4
0

16
− 19

108
z3
0 +

1
8!

− 871
241920

z0 +
4907
86400

z2
0)t8 + (

1
9!

− 517
725760

z0 +
8189

470400
z2
0

− 497
5400

z3
0 +

3
32

z4
0)t9 + (

1
10!

− 1543
12096000

z0 +
989

211680
z2
0

− 48019
1244160

z3
0 +

805
10368

z4
0 − 5

256
z5
0)t10 + O(t11),

z(t) = z0 + 2z2
0t + 3z3

0t2 + (
z2
0

9
+ 4z4

0)t3 + (
25
144

z3
0 + 5z5

0)t4(A.2)

+(
z2
0

300
+

z4
0

4
+ 6z6

0)t5 + (
49

10800
z3
0 +

49
144

z5
0 + 7z7

0)t6

+(
1

17640
z2
0 +

121
16200

z4
0 +

4
9
z6
0 + 8z8

0)t7 + (
761

11289600
z3
0

+
73

6400
z5
0 +

9
16

z7
0 + 9z9

0)t8 + (
1

1632960
z2
0 +

1349
9144576

z4
0

+
19

1152
z6
0 +

25
36

z8
0 + 10z10

0 )t9 + (
7381

11430720000
z3
0

+
234377

914457600
z5
0 +

5929
259200

z7
0 +

121
144

z9
0 + 11z11

0 )t10 + O(t11).

In that case expansions (A.1), (A.2), of course, coincide with the Taylor ex-
pansions of the functions y(t) and z(t) at t = 0, moreover, the parameter z0

characterize them uniquely.

Proof. By substituting formal power series for y(t) and z(t) into the system
(2.2), (2.3) one gets the recursion relation which allow to uniquely determine
all the coefficients as soon as z0 ∈ C is given and prove the convergence in the
standard manner.

Proposition 8. In the case Θ0 = Θ1 = Θ∞ = 0 the function ζ(t) (2.7) is
holomorphic at t = 0 iff the corresponding solution (y(t), z(t)) of the system
(2.2), (2.3) is holomorphic at t = 0.
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Proof. The proof follows from Proposition 7 and the equations:

ζ = −tz +
z2

y
(1 − y)2, z = −ζ ′, y = 1 +

1
2z2

(tz′ + ζ + tz),(A.3)

where the prime denotes differentiation on t. Eqs. (A.3) are resulted from the
system (2.2), (2.3) and definition (2.7). If ζ(t) is a holomorphic function at t = 0,
then according to the last equation in (A.3) the function y(t) can, theoretically,
have a pole at t = 0 but this contradicts to the system (2.2), (2.3).

Remark 3. It is easy to see that the coefficient, zn, before tn in the Tailor series
(A.2) is a polynomial of the power n+1 of the parameter z0. For n ≥ 2 the senior
coefficients have the following structure: zn = (n+1)zn+1

0 + (n+1)2

3224 zn
0 +. . . , while

the structure of the junior terms is not evident. By denoting yn the coefficient
before tn in the Tailor series (A.1): y1 = 1, y2 = 1/2 − z0, . . . , we find (see
Eq. (2.9)) that

∑

k+l=m

(−)lyl(−z0)yk(z0) + (−)mym(−z0) + ym(z0) = 0.

The function y(t) (A.1) can be presented in the form: y(t) = et + z0f(t, z0),
where the function f(t, z0) is holomorphic at (t = 0, z0 = 0). The Tailor expan-
sion for the function ζ(t) can be obtained by integration of the expansion (A.2),
ζ(t) = −

∫ t
0 z(t) dt. We write it in terms of the function σ(x; λ)(see Eq. (1.2))

by using the relation σ(x; λ) = ζ(0, 0, 0; 4ix)|z0=−iλ/2 and introducing the
parameter µ = 2λ:

σ(x;
µ

2
) = −µx − µ2x2 − µ3x3 − (µ4 − 4

9
µ2)x4 − (µ5 − 5

9
µ3)x5(A.4)

−(µ6− 2
3
µ4+

32
225

µ2)x6− (µ7− 7
9
µ5+

112
675

µ3)x7

−(µ8− 8
9
µ6+

484
2025

µ4− 64
2205

µ2)x8 − (µ9− µ7

+
73
225

µ5− 3044
99225

µ3)x9− (µ10 − 10
9

µ8+
19
45

µ6

− 10792
178605

µ4+
512

127575
µ2)x10 − (µ11 − 11

9
µ9 +

1078
2025

µ7

− 85228
893025

µ5 +
85888

22325625
µ3)x11O(x12).

Proposition 9. Solution of the system (2.2), (2.3) with Θ0 = Θ1 = Θ∞ = 0
holomorphic at t = 0 has the truncated behavior as t → ∞ iff the parame-
ter z0 = ± 1

2πı . The solution with the expansions (A.1)–(A.2) with z0 = 1
2πı ,

ζu(0, 0, 0; t), is the upper-truncated (see Proposition 5) and can be character-
ized by the monodromy coordinates :

m0
11 = 2, m0

21 = (iu)−1, m1
11 = 0, m1

12 = iu, s1 = s2 = 0.(A.5)



756 F. V. ANDREEV AND A. V. KITAEV

The solution with the expansions (A.1)–(A.2) with z0 = − 1
2πı , ζl(0, 0, 0; t), is the

lower-truncated (see Proposition 6) and can be characterized by the monodromy
coordinates:

m0
11 = 0, m0

21 = (iu)−1, m1
11 = 2, m1

12 = iu, s1 = s2 = 0(A.6)

Proof. The assertion of the proposition follows from our previous work [10], see
Theorems 4.1–4.3, where the monodromy coordinates of the general solution of
the system (2.2)–(2.4) were calculated. In these theorems the small t asymptotics
of the general solution of the system (2.2)–(2.4) is characterized by the complex
parameters σ and ẑ. From the Theorems 4.1 and 4.3 we see that the solution can
be holomorphic at t = 0 only if the parameter σ = 0 (in the case σ = 1 one of the
functions y(t) or z(t) has a pole at the origin. Put in the formulas (4.1) of the
work [10] Θ0 = Θ1 = Θ∞ = 0 and than σ → 0 to find that ŝ =

σ→0
σ/(8z0). On

the other hand Theorem 4.2 shows that in the case Θ0 = Θ1 = Θ∞ = σ = 0 the
Stokes multipliers s1 = s2 = 0 and the limits as t → 0 of m0

11 = 1−2πız0, m0
22 =

1 + 2πız0. Comparing these formulas with the monodromy coordinates of the
upper/lower-truncated solutions (see Propositions 5, 6) we get that necessarily
z0 = ±1/(2πı). Finally, calculating the remaining monodromy coordinates we
arrive at the Eqs. (A.5)–(A.6).

Corollary 5. For λ = 1/π the function σ(x;λ) defined by Eqs. (1.1), (1.2)
satisfies the following equality:

σ(x;
1
π

) = ζu(0, 0, 0; 4ix) = ζl(0, 0, 0;−4ix),(A.7)

where ζu(0, 0, 0; ·) and ζl(0, 0, 0; ·) are the solutions of the Eq. (2.8) which
are specified in Proposition 9. Asymptotics of the sequence cn (see Eq. (1.3)) is
as follows :

cn = −γ2n(0, 0, 0)
(4i)2n

=
n→∞

1
π2

Γ
(

n +
1
4

)
Γ

(
n +

3
4

) (
1 + O

(
1
n

))
.(A.8)

Proof. The first equality in (A.7) follows from the definition of σ(x;λ) and
Proposition 9. The second equality resulted from the Proposition 9 and formulas
(2.10)–(2.12). The equation (A.8) is the special case of the last formula in
Theorem 1.

Remark 4. Since (see [13]) we have

Γ
(

n +
1
4

)
Γ

(
n +

3
4

)
=

n→∞
n!(n − 1)!

(
1 − 0, 1875

n
+ O

(
1
n2

))
,(A.9)

the Eq. (A.8) proves the conjecture (1.5) by E. L. Basor and C. A. Tracy. More
exactly we can write:

cn =
n→∞

1
π2

n!(n − 1)!
(

1 + O
(

1
n

))
.(A.10)
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Although formally the error estimations in the formulas (A.8) and (A.10) are
the same, the leading term in our formula (A.8) more exactly approximates the
numbers cn, since the term 3

16n in Eq. (A.9) add the systematic error equal to
3

16π2 (n − 1)!2. In the last two columns of the following table we present the
results of calculations of the numbers cn for n = 5, 10, and 15 via the leading
terms of asymptotic expansions (A.8) and (A.10) correspondingly.

cn Exact value Eq.(A.8) Eq.(A.10)

c5
1080091

4096 = 263.694091796875 281.0779 . . . 291.8050 . . .

c10
266126511253407125

2097152 = 0.12689 . . .·1012 0.1309 . . .·1012 0.1334 . . .·1012

c15
23990916462228670446948154489421

2147483648 = 0.1140 . . .·1023 0.1155 . . .·1023

0.1117 . . .·1023

Our numerical calculations show that the error term in Eq. (A.8) can be evalu-
ated as ≈ −0, 3105/n. To calculate it explicitly or, more generally, to develop
the asymptotic expansions obtained in the Theorem 1 into the complete asymp-
totic series, one has to study the so-called trans-series for the system (2.2), (2.3)
and Eq. (2.8).

Proposition 10. If Θ0 = Θ1 = 1/2,Θ∞ = 0, then the upper-truncated so-
lutions, y(iτ), (see Proposition 5) with the parameter ŵ = 2i√

2π
sin πσ

2 , where
0 < -σ < 1, have the following asymptotics :

y(iτ) =
τ→+0

1 + 4iK
(τ

2

)σ
+ O

(
τ2σ

)
+ O(τ),

y(iτ) =
τ→+∞

−1 −
4i sin πσ

2√
πτ

e−
τ
2

(
1 + O

(
e−

τ
2

√
τ

))
,

z(iτ) =
τ→+0

(1+σ)
8 iK

(
τ
2

)σ − 1
4 + (1−σ)

8iK

(
τ
2

)−σ + O
(
τ1−σ

)
,

ζ(iτ) =
τ→+0

σ2

4 − is
8

(
(iK)

1
2

(
τ
2

)σ
2 − (iK)−

1
2

(
τ
2

)−σ
2
)2

+ O
(
τ2−2σ

)
,

where K = 2−3σ Γ( 1
2−

σ
2 )

Γ( 1
2+ σ

2 ) .

Proof. These results are the consequence of the Theorems 4.1 and 4.2 of our
previous work [10]. More exactly, one has to put Θ0 = Θ1 = 1/2 and Θ∞ = 0 in
the formulas (4.3) and (4.4) of Theorem 4.2: this considerably simplifies them, in
particular, parameters m̂p

11 = m̂p
22 = 0. After that, by equating the monodromy

coordinates of the upper-truncated solutions given in Proposition 5 with the ones
given in Theorem 4.2, one finds the relations between the parameter w, which
defines the asymptotics as t → ∞ and the parameters σ and ŝ (see formulas
(4.1) and (4.2) of [10]), which define asymptotics of the general solutions of the
system (2.2) and (2.3) as t → 0. More exactly, one gets the equations relating
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w with σ (see above) and û with r : û = ir, where the parameter r defines
asymptotics of the function u(t) (see Eq. (2.4)): u(t) =

t→0
−r(1 + O(tσ)), by

comparing formulas for the Stokes multipliers, s1, s2. All the other equations
are equivalent to (σ−1)ŝ = i(1+σ)K, where K is given above. Finally, one finds
the asymptotics of the functions y(t), z(t), and ζ(t) as t → 0 by substituting ŝ
into the Eqs. (4.1) and (4.2) of the work [10].

Corollary 6. [7] For each σ ∈ C, 0 < -σ < 1, there exists a unique solution,
η = η(τ), of the third Painlevé equation,

η′′ =
η′2

η
− η′

τ
+

1
16

(
η3 − η−1

)
,

where the primes denote differentiation on τ , with the following asymptotics :

η(τ) =
τ→+0

K
(τ

2

)σ
+ O

(
τ2σ

)
+ O(τ),

η(τ) =
τ→+∞

1 −
2 sin πσ

2√
πτ

e−
τ
2

(
1 + O

(
e−

τ
2

√
τ

))
,

in which K is given in Proposition 10.

Proof. η(τ) = −i
√

y(iτ)−1√
y(iτ)+1

.
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