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EXAMPLES PERTAINING TO GEVREY HYPOELLIPTICITY

Michael Christ

1. Introduction

The purpose of this note is to introduce certain examples which shed light on
a conjecture concerning hypoellipticity in Gevrey classes for partial differential
operators with multiple characteristics.

For s ≥ 1 and any open set U , let Gs(U) denote the class of all C∞ functions
f defined in U , such that for each compact subset K ⊂ U there exists C < ∞
such that for all x ∈ K and all multi-indices α,

|∂αf(x)| ≤ C1+|α||α|s|α|.

A linear partial differential operator L is said be Gs hypoelliptic in U if for any
open subset U ′ ⊂ U and any u ∈ D′(U ′) such that Lu ∈ Gs(U ′), necessarily
u ∈ Gs(U ′). An operator L is said to be microlocally Gs hypoelliptic in a conic
open set Γ ⊂ T ∗U if for any distribution u, there is an inclusion of Gs wave front
sets: WFGs(u) ∩ Γ ⊂ WFGs(Lu) ∩ Γ.

The conjecture in question proposes a sufficient condition for the microlocal
Gs hypoellipticity of operators L =

∑
1≤j≤k X2

j , where the Xj are real vector
fields with real analytic coefficients in some open subset V of R

d, under the
hypothesis that {Xj} satisfies the bracket hypothesis of Hörmander [9]. Its
formulation requires several definitions.

Denote by σj the principal symbol of Xj , and by T ∗V the cotangent bundle
of V with the zero section deleted. Let M ⊂ T ∗V be a smooth submanifold. For
the purposes of this paper, a submanifold M ′ ⊂ M of positive dimension will
be said1 to be a bicharacteristic submanifold of M if the tangent space of M ′ is
orthogonal to the tangent space of M with respect to the canonical symplectic
form on T ∗V , at every point of M ′.

Define I1 to be the ideal, in the ring of germs of real analytic functions on
T ∗V , generated by all the symbols σj . Inductively define Ij+1 to be the ideal
generated by Ij together with all Poisson brackets {f, σi} such that f ∈ Ij and
1 ≤ i ≤ k. Define Σj ⊂ T ∗V to be the zero variety of Ij . Then Ij ⊂ Ij+1 and
Σj ⊃ Σj+1 for all j ≥ 1. The bracket hypothesis at a point x ∈ V implies that
Σm ∩ T ∗

x V = ∅ for some finite m. Under that hypothesis, define m(x) to be the

Received June 6, 1997.
Research supported by NSF grant DMS 96-23007.
1A notion of bicharacteristic leaf is defined slightly differently by Treves [12]; it is not

defined in [2]. Likewise the Poisson stratification introduced in [12] differs from that of [2].
These fine distinctions are not relevant to the simple examples treated in this article.
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smallest integer m such that Σm ∩ T ∗
x V = ∅. A more refined invariant m(x, ξ),

defined at each point of T ∗V , is the smallest integer such that (x, ξ) /∈ Σm.
Assuming for simplicity that each Σj is a smooth manifold, define a second
invariant, �(x, ξ), to be the smallest index j < m(x, ξ) such that for every conic
neighborhood Γ of (x, ξ), Σj∩Γ contains a bicharacteristic submanifold, provided
such an index exists. Define �(x, ξ) = m(x, ξ) if no such j < m(x, ξ) exists.

Conjecture 1. (Bove and Tartakoff [2]) Let L be a sum of squares of Cω

real vector fields, satisfying the bracket hypothesis at x. Suppose that there exists
a neighborhood V0 of x such that each Σj ∩ T ∗V0 is a smooth manifold. Then L
is microlocally Gs hypoelliptic in a small conic neighborhood of (x, ξ) for every
s ≥ m(x, ξ)/�(x, ξ).

Modulo certain fine distinctions, this generalizes a conjecture of Treves [12] con-
cerning the analytic case s = 1.

In [6] we showed that the operators ∂2
x1

+x2p
1 ∂2

x2
+x2q

1 ∂2
x3

are Gs hypoelliptic if
and only if s ≥ max(p/q, q/p), thereby demonstrating that the optimal exponent
for Gevrey hypoellipticity is not always 1 or m(x), but rather that a range
of intermediate behavior arises. A refinement in terms of certain anisotropic
generalizations of the Gevrey classes was then formulated and proved, by a
different method, by Bove and Tartakoff [2]. Their conjecture is consistent with
these examples.

In the present note basic examples of a different character will be analyzed.2

Their import is twofold: First, Gs hypoellipticity may sometimes hold for a larger
range of exponents than predicted by Conjecture 1. Second, the mechanism
underlying the simpler examples of [6] is not the only factor influencing Gevrey
hypoellipticity.

Consider

Lm,p = ∂2
x + (xm−1∂t)2 + (tp∂t)2(1.1)

in R
2. Assume that m ≥ 2 and p ≥ 1 are integers. Then any such L is elliptic

everywhere except where (x, t) = 0; with coordinates (x, t, ξ, τ) for T ∗
R

2, its
characteristic variety is the line {x = t = ξ = 0}.3

Theorem 2. Lm,p is Gs hypoelliptic for all s satisfying

s−1 ≤ 1 − p−1(1 − m−1).(1.2)

2More general results were announced in [4], based on the argument used below to derive
Theorems 2 and 3. That argument works when a certain polynomial Θ arising in the theory
of [4] is nonnegative on R

2 and certain higher order terms are dominated by it, but a more
elaborate argument for the general case contained a gap; it yields a strictly weaker conclusion
than the desired Gevrey class hypoellipticity. The correctness of the most general statements
in [4] is doubtful.

3Since the characteristic variety of Lm,p consists of a discrete set of rays, Gs hypoellipticity
is equivalent to microlocal Gs hypoellipticity for Lm,p.
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Modulo insignificant lower order terms, the operators (1.1) are generalizations
of a fundamental example of Métivier [11]; their Poisson strata are discussed by
Treves [12], Example 3.6. These operators fail to be analytic hypoelliptic, as
follows from the method of [3] and [5].

In these examples Σj = {x = t = ξ = 0} for all 1 ≤ j < m, and Σm = ∅.
Thus Conjecture 1 predicts Gs hypoellipticity if and only if s−1 ≤ m−1. But
�(0, 0, 0, τ) = 1 for all τ �= 0, and when p ≥ 2, the reciprocal of the optimal
exponent for Gs hypoellipticity is 1 − p−1(1 − m−1) > 1 − (1 − m−1) = m−1.

The following variant of Theorem 2 can be proved by the same technique,
and was also obtained by Bernardi, Bove and Tartakoff [1] and Matsuzawa [10].
Consider

Lm,k,p = ∂2
x +

(
[xm−1 + xm−1−ktp]∂t

)2
.(1.3)

Define p̃ = p(m − 1)/k.

Theorem 3. Suppose that m − 1, k, p are all even. Then Lm,k,p is Gs hypoel-
liptic for all s−1 ≤ 1 − p̃−1(1 − m−1).

By an elaboration of the method of [3] and [5] we have shown the indicated
range of s to be optimal in Theorems 2 and 3, but the proofs are more involved
than those of the positive results and will not be indicated here.

One interpretation of Theorem 2 is that not only the symplectic geometry
of the varieties Σj , but also the ideals Ij themselves, influence Gevrey class
hypoellipticity for s < 1. We believe this also to be the case for s = 1. The
following examples may be of interest: let L = X2 + Y 2 in R

3 with coordinates
(x, y, t) where X = ∂x and Y = ∂y+a(x, y)∂t, a ∈ Cω is real valued, and ∂a/∂x =
x2p +x2y2 +y2p for some p ≥ 2. Hypoellipticity of these operators depends only
on ∂a/∂x, rather than on a itself. Conjecture 1 predicts analytic hypoellipticity
for all p ≥ 2. Indeed, m = 6 for all p; the varieties Σj are independent of p
for all j ≥ 2, and they equal the symplectic manifold {(x, y, t; ξ, η, τ) : x = ξ =
y = η = 0} for 2 ≤ j < 6, and are empty for j = 6. L is known to be analytic
hypoelliptic for p = 2 [8], but existing methods of proof do not appear to be
applicable for p > 2. The ideals Ij have a somewhat different character when
p > 2 than when p = 2.

After this paper was circulated we received preprints of Bernardi, Bove and
Tartakoff [1] and of Matsuzawa [10] containing Theorems 2 and 3, with different
methods of proof. The latter paper contains more general results as well.

2. Proofs

The method of proof of Theorem 2 is the same as that used in [5] and [6]
to prove results in the positive direction.4 Fix m, p. For any linear partial

4This method does apply in somewhat greater generality, but our aim here is the analysis
of the simplest relevant examples.
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differential operator L, denote by L∗ its adjoint. Write y = (x, t), η = (ξ, τ).
The coordinate t will sometimes be complex, whereas x, ξ, τ will remain real.

For any compactly supported distribution u in R
2, consider the FBI transform

Fu(y, η) =
∫

u(y′)α(y − y′)ei(y−y′)·η− 1
2 〈η〉(y−y′)2 dy′,(2.1)

where (y − y′)2 is defined to be (x− x′)2 + (t− t′)2, 〈η〉 = (1 + η2)1/2, α(x, t) =
(1 + i

2xξ〈η〉−1)(1 + i
2 tτ〈η〉−1), and the integral is interpreted in the sense of

distributions if u /∈ L1. Then u ∈ Gs in a neighborhood of some point y0, if and
only if there exist a neighborhood V of y0 and δ > 0 such that

Fu(y, η) = O(exp(−δ〈η〉1/s))(2.2)

for all (y, η) ∈ V × R
2.

In proving Gs hypoellipticity near y0, we may assume u to be supported in
a small neighborhood of y0, and F(Lm,pu)(y, η) to satisfy (2.2) in V × R

d for
some smaller neighborhood V . Operators which are microlocally elliptic are
microlocally Gs hypoelliptic, so since the characteristic variety of Lm,p is the
line x = t = ξ = 0, it suffices to prove (2.2) for y near 0 and where η = (ξ, τ)
with |τ | ≥ |ξ| and |η| large. Thus |τ | ∼ |η|.

Define

γ(m, p) = 1 − p−1(1 − m−1).(2.3)

Then 0 < γ(m, p) < 1, and we aim to prove Gs hypoellipticity for all s ≥
γ(m, p)−1.

The main step is the following lemma. Let Bδ = {y ∈ C
2 : |y| < δ}. Let

ỹ = (x̃, t̃) ∈ R
2 be any point near 0, and set

E(x, t) = exp
(
i(t̃ − t)τ − 1

2
〈η〉γ(t̃ − t)2

)
.(2.4)

Lemma 2.1. Let L = Lm,p and γ = γ(m, p). Then for any sufficiently small
constants 0 < c1 < c2 < c3 there exists δ > 0 such that for each ỹ ∈ Bc1 ∩ R

2

and each η = (ξ, τ) ∈ R
2 satisfying |ξ| ≤ |τ |, there exists g ∈ C∞(Bc3 ∩ R

2)
satisfying the following three conditions.

L∗(gE)(y) =

α(ỹ − y)ei(x̃−x)ξ− 1
2 〈η〉(x̃−x)2E(y) + O(e−δ〈η〉γ

) for y ∈ Bc3 ∩ R
2,

(2.5)

g extends to a holomorphic function of t in Bc3 ∩ {| Im (t)| < 〈η〉γ−1} and

g(y) = O(1) in the L2 norm for y ∈ Bc3 ∩ {| Im (t)| < 〈η〉γ−1},(2.6)

and

g(x, t) =

O(e−δ〈η〉γ

) in the L2 norm for (x, t) ∈ Bc3 ∩ R
2 where |x| > c2.

(2.7)
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A symbol “O(·)” connotes a bound uniform in η, ỹ, y. Before discussing the
proof, we indicate how the lemma leads to Theorem 2.

Lemma 2.2. Let L be any linear partial differential operator satisfying the con-
clusion of Lemma 2.1 for some γ ∈ (0, 1]. Then for any s ≥ γ−1 and for
any sufficiently small neighborhood U of 0 and any relatively compact U ′ � U ,
for any u ∈ D′(R2) such that Lu ∈ Gs(U), there exists ε > 0 such that
Fu(y, η) = O

(
exp(−ε|η|1/s)

)
as |η| → ∞, uniformly for y ∈ U ′, provided that

η = (ξ, τ) where |τ | ≥ |ξ|.
Sketch of proof. The easy proof is essentially identical to the argument immedi-
ately following the statement of Lemma 3.1 of [6], so we merely recall its outline.
Suppose that Lu ∈ Gs(U ′), where s = γ(m, p)−1.

Begin by rewriting the integral defining Fu by substituting

α(y − y′) exp
(
i(y − y′) · η − 1

2
〈η〉(y − y′)2

)
= L∗(gE) + O(exp(−δ〈η〉γ))

The second term leads to an error of the desired order of magnitude. Integrating
by parts leads to a main term

∫
gE ·Lu; boundary terms are negligible because

exp(− 1
2 〈η〉(y − y′)2) is O(exp(−c〈η〉)) away from the diagonal.

Next, because Lu ∈ Gs, conclusion (5) of Theorem 2.3 of [6] asserts that it
is possible to decompose Lu as v + R where v is holomorphic with respect to t
and is O(1) in the region | Im (t)| < 〈η〉γ−1, and R is O(exp(−ε〈η〉γ)) in the real
domain. R again leads to an acceptable error. Finally the contribution of v is
treated by shifting the contour of integration with respect to t into the complex
domain so as to pick up a factor of exp(−c〈η〉γ) from the factor exp(i(t̃ − t)τ)
in E.

Any linear differential operator with analytic coefficients is microlocally Gs

hypoelliptic for all s ≥ 1 in any conic open set where its principal symbol does not
vanish. Therefore for any operator L that is elliptic where |ξ| ≥ |τ |, under the hy-
potheses of the preceding lemma, one has also a decay estimate O

(
exp(−ε|η|1/s)

)
wherever L is elliptic. In particular, the operators of Theorem 2 are elliptic where
|ξ| ≥ |τ |.

To prove Theorem 2, we couple these decay estimates with the FBI transform
characterization (2.2) of Gs, to conclude that any L that satisfies the conclusion
of Lemma 2.1, and is elliptic where |ξ| ≥ |τ |, is Gs hypoelliptic in a neighborhood
of the origin for all s ≥ γ−1. In particular, Lm,p is Gs hypoelliptic for all
s ≥ γ(m, p)−1. Thus Theorem 2 is proved, modulo the proof of Lemma 2.1.

We now discuss the proof of Lemma 2.1. Fix (x̃, t̃ ) and η = (ξ, τ) where
|τ | ≥ |ξ|. One has

E−1L∗E =

∂2
x +

(
xm−1[∂t − iτ + 〈η〉(t̃ − t)]

)2 +
(
[∂t − iτ + 〈η〉(t̃ − t)]tp

)2
.

(2.8)
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Write

E−1L∗E = A + R where A = ∂2
x − τ2x2(m−1) − τ2t2p.(2.9)

A acts on functions of (x, t); we also write At = ∂2
x−τ2x2(m−1)−τ2t2p to denote

the same operator, acting on functions of x alone and depending on a parameter
t.

The construction of the approximate solution g sought in Lemma 2.1 tran-
spires in various Sobolev type spaces. Henceforth let γ = γ(m, p). Define

wτ (x, t) =
(
τ2/m + τ2x2(m−1) + τ2|t|2p

)1/2

,

for (x, t) ∈ R × C. Fix a nonnegative auxiliary function v ∈ C∞(R) such that
v ≡ 0 in a neighborhood of {|x| ≤ c1}, and v ≡ 1 in a neighborhood of {|x| ≥ c2}.
For any open set Ω ⊂ C

1, for k ∈ {0, 1, 2}, define Hk
τ (R × Ω) to consist of all

measurable functions f(x, t) defined on R × Ω that are holomorphic in t for
almost every x, and for which the following norms are finite:

‖f‖2
H0

τ (R×Ω) =
∫∫

R×Ω

|f(x, t)|2 wτ (x, t)−2eρ|τ |v(x) dx dt dt̄

‖f‖2
H1

τ (R×Ω) =
∫∫

R×Ω

(
|∂xf(x, t)|2 wτ (x, t)−2 + |f(x, t)|2

)
eρ|τ |v(x) dx dt dt̄

‖f‖2
H2

τ (R×Ω) =
∫∫

R×Ω

(
|∂2

xf(x, t)|2 wτ (x, t)−2 + |∂xf(x, t)|2

+ |f(x, t)|2wτ (x, t)2
)
eρ|τ |v(x) dx dt dt̄ .

These spaces and norms depend on the parameter ρ, which may for the present
be any real number but will ultimately be chosen to be small but strictly posi-
tive. There are corresponding spaces of functions defined on R, depending on a
parameter t ∈ C:

‖f‖2
H0

τ,t(R) =
∫

R

|f(x)|2 wτ (x, t)−2eρ|τ |v(x) dx

‖f‖2
H1

τ,t(R) =
∫

R

(
|∂xf(x)|2 wτ (x, t)−2 + |f(x)|2

)
eρ|τ |v(x) dx

‖f‖2
H2

τ,t(R) =
∫

R

(
|∂2

xf(x)|2 wτ (x, t)−2 + |∂xf(x)|2 + |f(x)|2wτ (x, t)2
)
eρ|τ |v(x) dx

The definitions ensure that A maps H2
τ (R × Ω) boundedly to H0

τ (R × Ω), uni-
formly in Ω, τ , under the standing hypotheses that |τ | ≥ |ξ| and |τ | ≥ 1. Likewise
At maps H2

τ,t(R) boundedly to H0
τ,t(R), uniformly in τ ∈ R, t ∈ C.
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Lemma 2.3. There exists c0 > 0 such that for all sufficiently small |ρ| and all
τ �= 0, At : H2

τ,t(R) �→ H0
τ,t(R) is invertible, uniformly in t ∈ C, τ ∈ R provided

that

| Im (t)| ≤ c0|τ |γ(m,p)−1.(2.10)

Proof. The proof is based on the inequality

− Re 〈Atf, f〉 ≥ c

∫
R

(|∂xf |2 + w(x, t)2|f |2) dx for all f ∈ C2
0 (R),(2.11)

where 〈f, g〉 =
∫

R
fg dx. To prove this write

−Re 〈Atf, f〉 = ‖∂xf‖2 +
∫

R

x2(m−1)τ2|f |2 dx +
∫

τ2 Re (t2p)|f |2 dx.

One has

‖∂xf‖2 +
∫

x2(m−1)τ2|f |2 dx ≥ cτ2/m

∫
|f |2 dx,

as follows from the case τ = 1 by scaling. Moreover

Re (t2p) ≥ c(Re (t))2p − C(Im (t))2p

for some c, C ∈ R
+. The hypothesis (2.10) restricting the imaginary part of t

implies

τ2(Im (t))2p ≤ c2p
0 τ2+2p(γ−1).

The exponent is 2 + 2p(γ − 1) = 2 − 2p(p−1(1 − m−1)) = 2m−1. Combining
all these ingredients yields (2.11), provided that c0 is chosen to be sufficiently
small.

The conclusion of the lemma follows easily from (2.11) as in [3], Lemma 3.1
and [6], Lemma 3.3, because

eρ|τ |v/2Ate
−ρ|τ |v/2 − At = O(|ρ|)

as an operator from H2
τ,t(R) to H0

τ,t(R); this holds because v ≡ 0 in a neigh-
borhood of the origin while the term |τ |xm−1 in the definition of w is strictly
positive on the support of v. For further details see the proof of Lemma 3.3 of
[6].

Corollary 2.4. If c0 is chosen to be sufficiently small then for any open set
Ω ⊂ C

1 contained in the region where | Im (t)| < c0|τ |γ(m,p)−1, the operator
A : H2

τ (R × Ω) �→ H0
τ (R × Ω) is invertible, uniformly in τ, Ω.
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Let

Ω1 = {t ∈ C : |Re (t)| < 2 and | Im (t)| <
c0

2
|τ |γ−1},

Ω∞ = {t ∈ C : |Re (t)| < 1 and | Im (t)| <
c0

4
|τ |γ−1},

Let Λ ∈ R
+ be a large constant to be chosen below. Given a large τ , choose

an integer N so that |N − Λ−1|τ |γ | < 1. For 2 ≤ j ≤ 2N construct open sets
Ωj ⊂ C, depending on τ , with Ω∞ = Ω2N � Ω2N−1 � · · · � Ω1 satisfying

distance (Ωj+1, ∂Ωj) ≥ cΛ|τ |−1.

Here c is a small constant, independent of τ, Λ, j.

Lemma 2.5. R : H2
τ (R×Ωj) �→ H0

τ (R×Ωj+2) is bounded, with norm O(Λ−1 +
c1 + c0), uniformly in τ .

Proof. By Cauchy’s inequality relating the derivative of a holomorphic func-
tion to its L1 norm over a ball, ∂t maps each space Hk

τ (R × Ωj) boundedly to
Hk

τ (R × Ωj+1), with norm O(distance (Ωj+1, ∂Ωj)−1) = O(Λ−1|τ |). The norms
are defined so that the multiplication operators τtp and τxm−1 map Hk

τ (R×Ωj)
to Hk−1

τ (R×Ωj) with uniformly bounded norms. Furthermore, the extra factors
of t̃− t in the definition (2.8),(2.9) for R contribute an additional factor to these
bounds which is O(c1 + c0). Combining these estimates yields the lemma. For
further details see the proofs of Lemma 3.4 of [6], and of the first display at the
top of page 319 of [3].

Set ψ(y) = α(ỹ − y)ei(x̃−x)ξ− 1
2 〈η〉(x̃−x)2 . To attempt to solve (A + R)g ≈ ψ

we define

g =
N∑

j=0

(−1)j
(A−1hR)jA−1ψ,(2.12)

where h ∈ C∞
0 (R) is ≡ 1 where |x| ≤ c3. Thus

(A + hR)g = ψ ± E ,

where

E = (hRA−1)N+1ψ.

Note that ψ ∈ H0
τ (R × Ω1) with norm O(1), provided ρ > 0 is chosen to be

sufficiently small. If Λ is chosen to be sufficiently large and c0, c3 to be sufficiently
small then applying Lemmas 2.3 and 2.5 in turn N times yields

E = O(exp(−εN)) = O(exp(−ε′|τ |γ))

for some ε, ε′ > 0, in the H0
τ (R × Ω∞) norm.

Because v(x) > 0 for |x| ≥ c2 and ρ > 0, the weight eρ|τ |v(x) in the definitions
of the Hk

τ norms ensures that g = O(exp(−ε|τ |γ)) in the L2(dx dt) norm for
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such x. In the region |x| < c3 of interest, the auxiliary function h is ≡ 1, hence
(A+R)g ≡ ψ + E . This approximate solution g thus has all properties required
of it in Lemma 2.1.

The main change needed to obtain Theorem 3 is to modify the weight w(x, t)
used in the definitions of the Hk

τ and Hk
τ,t norms to

(
τ2/m + τ2/(m−1−k)|t|2p + τ2[x2(m−1) + x2(m−1−k)|t|2p]

)1/2
.

Remark. The limiting effect preventing this analysis from establishing Gs hy-
poellipticity for a larger range of exponents s is the failure of At to be invertible
for t outside of a complex region which shrinks to the real axis as |τ | → ∞; the
rate of shrinkage dictates the optimal Gevrey class Gs. This phenomenon is the
essence of [5] and [3].

For the operators studied in [6] and [2], the limitation on s comes about in a
different way. Application of the FBI transform F as above leads to unacceptable
error terms, so variants Fγ adapted to specific Gevrey classes were employed
instead in [6] in order to obtain smaller error terms.
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