EXAMPLES PERTAINING TO GEVREY HYPOELLIPTICITY

MICHAEL CHRIST

1. Introduction

The purpose of this note is to introduce certain examples which shed light on a conjecture concerning hypoellipticity in Gevrey classes for partial differential operators with multiple characteristics.

For $s \geq 1$ and any open set U, let $G^s(U)$ denote the class of all C^{∞} functions f defined in U, such that for each compact subset $K \subset U$ there exists $C < \infty$ such that for all $x \in K$ and all multi-indices α ,

$$|\partial^{\alpha} f(x)| \le C^{1+|\alpha|} |\alpha|^{s|\alpha|}$$

A linear partial differential operator L is said be G^s hypoelliptic in U if for any open subset $U' \subset U$ and any $u \in \mathcal{D}'(U')$ such that $Lu \in G^s(U')$, necessarily $u \in G^s(U')$. An operator L is said to be microlocally G^s hypoelliptic in a conic open set $\Gamma \subset T^*U$ if for any distribution u, there is an inclusion of G^s wave front sets: $WF_{G^s}(u) \cap \Gamma \subset WF_{G^s}(Lu) \cap \Gamma$.

The conjecture in question proposes a sufficient condition for the microlocal G^s hypoellipticity of operators $L = \sum_{1 \le j \le k} X_j^2$, where the X_j are real vector fields with real analytic coefficients in some open subset V of \mathbb{R}^d , under the hypothesis that $\{X_j\}$ satisfies the bracket hypothesis of Hörmander [9]. Its formulation requires several definitions.

Denote by σ_j the principal symbol of X_j , and by T^*V the cotangent bundle of V with the zero section deleted. Let $M \subset T^*V$ be a smooth submanifold. For the purposes of this paper, a submanifold $M' \subset M$ of positive dimension will be said¹ to be a bicharacteristic submanifold of M if the tangent space of M' is orthogonal to the tangent space of M with respect to the canonical symplectic form on T^*V , at every point of M'.

Define \mathcal{I}_1 to be the ideal, in the ring of germs of real analytic functions on T^*V , generated by all the symbols σ_j . Inductively define \mathcal{I}_{j+1} to be the ideal generated by \mathcal{I}_j together with all Poisson brackets $\{f, \sigma_i\}$ such that $f \in \mathcal{I}_j$ and $1 \leq i \leq k$. Define $\Sigma_j \subset T^*V$ to be the zero variety of \mathcal{I}_j . Then $\mathcal{I}_j \subset \mathcal{I}_{j+1}$ and $\Sigma_j \supset \Sigma_{j+1}$ for all $j \geq 1$. The bracket hypothesis at a point $x \in V$ implies that $\Sigma_m \cap T_x^*V = \emptyset$ for some finite m. Under that hypothesis, define m(x) to be the

Received June 6, 1997.

Research supported by NSF grant DMS 96-23007.

¹A notion of bicharacteristic leaf is defined slightly differently by Treves [12]; it is not defined in [2]. Likewise the Poisson stratification introduced in [12] differs from that of [2]. These fine distinctions are not relevant to the simple examples treated in this article.

smallest integer m such that $\Sigma_m \cap T_x^* V = \emptyset$. A more refined invariant $m(x,\xi)$, defined at each point of T^*V , is the smallest integer such that $(x,\xi) \notin \Sigma_m$. Assuming for simplicity that each Σ_j is a smooth manifold, define a second invariant, $\ell(x,\xi)$, to be the smallest index $j < m(x,\xi)$ such that for every conic neighborhood Γ of $(x,\xi), \Sigma_j \cap \Gamma$ contains a bicharacteristic submanifold, provided such an index exists. Define $\ell(x,\xi) = m(x,\xi)$ if no such $j < m(x,\xi)$ exists.

Conjecture 1. (Bove and Tartakoff [2]) Let L be a sum of squares of C^{ω} real vector fields, satisfying the bracket hypothesis at x. Suppose that there exists a neighborhood V_0 of x such that each $\Sigma_j \cap T^*V_0$ is a smooth manifold. Then Lis microlocally G^s hypoelliptic in a small conic neighborhood of (x,ξ) for every $s \geq m(x,\xi)/\ell(x,\xi)$.

Modulo certain fine distinctions, this generalizes a conjecture of Treves [12] concerning the analytic case s = 1.

In [6] we showed that the operators $\partial_{x_1}^2 + x_1^{2p} \partial_{x_2}^2 + x_1^{2q} \partial_{x_3}^2$ are G^s hypoelliptic if and only if $s \ge \max(p/q, q/p)$, thereby demonstrating that the optimal exponent for Gevrey hypoellipticity is not always 1 or m(x), but rather that a range of intermediate behavior arises. A refinement in terms of certain anisotropic generalizations of the Gevrey classes was then formulated and proved, by a different method, by Bove and Tartakoff [2]. Their conjecture is consistent with these examples.

In the present note basic examples of a different character will be analyzed.² Their import is twofold: First, G^s hypoellipticity may sometimes hold for a *larger* range of exponents than predicted by Conjecture 1. Second, the mechanism underlying the simpler examples of [6] is not the only factor influencing Gevrey hypoellipticity.

Consider

(1.1)
$$L_{m,p} = \partial_x^2 + (x^{m-1}\partial_t)^2 + (t^p\partial_t)^2$$

in \mathbb{R}^2 . Assume that $m \ge 2$ and $p \ge 1$ are integers. Then any such L is elliptic everywhere except where (x,t) = 0; with coordinates (x,t,ξ,τ) for $T^*\mathbb{R}^2$, its characteristic variety is the line $\{x = t = \xi = 0\}$.³

Theorem 2. $L_{m,p}$ is G^s hypoelliptic for all s satisfying

(1.2)
$$s^{-1} \le 1 - p^{-1}(1 - m^{-1}).$$

²More general results were announced in [4], based on the argument used below to derive Theorems 2 and 3. That argument works when a certain polynomial Θ arising in the theory of [4] is nonnegative on \mathbb{R}^2 and certain higher order terms are dominated by it, but a more elaborate argument for the general case contained a gap; it yields a strictly weaker conclusion than the desired Gevrey class hypoellipticity. The correctness of the most general statements in [4] is doubtful.

³Since the characteristic variety of $L_{m,p}$ consists of a discrete set of rays, G^s hypoellipticity is equivalent to microlocal G^s hypoellipticity for $L_{m,p}$.

Modulo insignificant lower order terms, the operators (1.1) are generalizations of a fundamental example of Métivier [11]; their Poisson strata are discussed by Treves [12], Example 3.6. These operators fail to be analytic hypoelliptic, as follows from the method of [3] and [5].

In these examples $\Sigma_j = \{x = t = \xi = 0\}$ for all $1 \leq j < m$, and $\Sigma_m = \emptyset$. Thus Conjecture 1 predicts G^s hypoellipticity if and only if $s^{-1} \leq m^{-1}$. But $\ell(0,0,0,\tau) = 1$ for all $\tau \neq 0$, and when $p \geq 2$, the reciprocal of the optimal exponent for G^s hypoellipticity is $1 - p^{-1}(1 - m^{-1}) > 1 - (1 - m^{-1}) = m^{-1}$.

The following variant of Theorem 2 can be proved by the same technique, and was also obtained by Bernardi, Bove and Tartakoff [1] and Matsuzawa [10]. Consider

(1.3)
$$\mathcal{L}_{m,k,p} = \partial_x^2 + \left([x^{m-1} + x^{m-1-k} t^p] \partial_t \right)^2.$$

Define $\tilde{p} = p(m-1)/k$.

Theorem 3. Suppose that m - 1, k, p are all even. Then $\mathcal{L}_{m,k,p}$ is G^s hypoelliptic for all $s^{-1} \leq 1 - \tilde{p}^{-1}(1 - m^{-1})$.

By an elaboration of the method of [3] and [5] we have shown the indicated range of s to be optimal in Theorems 2 and 3, but the proofs are more involved than those of the positive results and will not be indicated here.

One interpretation of Theorem 2 is that not only the symplectic geometry of the varieties Σ_j , but also the ideals \mathcal{I}_j themselves, influence Gevrey class hypoellipticity for s < 1. We believe this also to be the case for s = 1. The following examples may be of interest: let $L = X^2 + Y^2$ in \mathbb{R}^3 with coordinates (x, y, t) where $X = \partial_x$ and $Y = \partial_y + a(x, y)\partial_t$, $a \in C^{\omega}$ is real valued, and $\partial a/\partial x =$ $x^{2p} + x^2y^2 + y^{2p}$ for some $p \ge 2$. Hypoellipticity of these operators depends only on $\partial a/\partial x$, rather than on a itself. Conjecture 1 predicts analytic hypoellipticity for all $p \ge 2$. Indeed, m = 6 for all p; the varieties Σ_j are independent of pfor all $j \ge 2$, and they equal the symplectic manifold $\{(x, y, t; \xi, \eta, \tau) : x = \xi =$ $y = \eta = 0\}$ for $2 \le j < 6$, and are empty for j = 6. L is known to be analytic hypoelliptic for p = 2 [8], but existing methods of proof do not appear to be applicable for p > 2. The ideals \mathcal{I}_j have a somewhat different character when p > 2 than when p = 2.

After this paper was circulated we received preprints of Bernardi, Bove and Tartakoff [1] and of Matsuzawa [10] containing Theorems 2 and 3, with different methods of proof. The latter paper contains more general results as well.

2. Proofs

The method of proof of Theorem 2 is the same as that used in [5] and [6] to prove results in the positive direction.⁴ Fix m, p. For any linear partial

⁴This method does apply in somewhat greater generality, but our aim here is the analysis of the simplest relevant examples.

differential operator L, denote by L^* its adjoint. Write y = (x, t), $\eta = (\xi, \tau)$. The coordinate t will sometimes be complex, whereas x, ξ, τ will remain real.

For any compactly supported distribution u in \mathbb{R}^2 , consider the FBI transform

(2.1)
$$\mathcal{F}u(y,\eta) = \int u(y') \,\alpha(y-y') e^{i(y-y')\cdot\eta - \frac{1}{2}\langle\eta\rangle(y-y')^2} \,dy',$$

where $(y - y')^2$ is defined to be $(x - x')^2 + (t - t')^2$, $\langle \eta \rangle = (1 + \eta^2)^{1/2}$, $\alpha(x, t) = (1 + \frac{i}{2}x\xi\langle\eta\rangle^{-1})(1 + \frac{i}{2}t\tau\langle\eta\rangle^{-1})$, and the integral is interpreted in the sense of distributions if $u \notin L^1$. Then $u \in G^s$ in a neighborhood of some point y_0 , if and only if there exist a neighborhood V of y_0 and $\delta > 0$ such that

(2.2)
$$\mathcal{F}u(y,\eta) = O(\exp(-\delta\langle\eta\rangle^{1/s}))$$

for all $(y,\eta) \in V \times \mathbb{R}^2$.

In proving G^s hypoellipticity near y_0 , we may assume u to be supported in a small neighborhood of y_0 , and $\mathcal{F}(L_{m,p}u)(y,\eta)$ to satisfy (2.2) in $V \times \mathbb{R}^d$ for some smaller neighborhood V. Operators which are microlocally elliptic are microlocally G^s hypoelliptic, so since the characteristic variety of $L_{m,p}$ is the line $x = t = \xi = 0$, it suffices to prove (2.2) for y near 0 and where $\eta = (\xi, \tau)$ with $|\tau| \geq |\xi|$ and $|\eta|$ large. Thus $|\tau| \sim |\eta|$.

Define

(2.3)
$$\gamma(m,p) = 1 - p^{-1}(1 - m^{-1}).$$

Then $0 < \gamma(m,p) < 1$, and we aim to prove G^s hypoellipticity for all $s \ge \gamma(m,p)^{-1}$.

The main step is the following lemma. Let $B_{\delta} = \{y \in \mathbb{C}^2 : |y| < \delta\}$. Let $\tilde{y} = (\tilde{x}, \tilde{t}) \in \mathbb{R}^2$ be any point near 0, and set

(2.4)
$$E(x,t) = \exp\left(i(\tilde{t}-t)\tau - \frac{1}{2}\langle\eta\rangle^{\gamma}(\tilde{t}-t)^{2}\right).$$

Lemma 2.1. Let $L = L_{m,p}$ and $\gamma = \gamma(m,p)$. Then for any sufficiently small constants $0 < c_1 < c_2 < c_3$ there exists $\delta > 0$ such that for each $\tilde{y} \in B_{c_1} \cap \mathbb{R}^2$ and each $\eta = (\xi, \tau) \in \mathbb{R}^2$ satisfying $|\xi| \leq |\tau|$, there exists $g \in C^{\infty}(B_{c_3} \cap \mathbb{R}^2)$ satisfying the following three conditions.

(2.5)
$$\begin{aligned} L^*(gE)(y) &= \\ \alpha(\tilde{y}-y)e^{i(\tilde{x}-x)\xi-\frac{1}{2}\langle\eta\rangle(\tilde{x}-x)^2}E(y) + O(e^{-\delta\langle\eta\rangle^{\gamma}}) \quad for \ y \in B_{c_3} \cap \mathbb{R}^2, \end{aligned}$$

g extends to a holomorphic function of t in $B_{c_3} \cap \{|\operatorname{Im}(t)| < \langle \eta \rangle^{\gamma-1}\}$ and

(2.6)
$$g(y) = O(1)$$
 in the L^2 norm for $y \in B_{c_3} \cap \{ |\operatorname{Im}(t)| < \langle \eta \rangle^{\gamma - 1} \},\$

and

(2.7)
$$g(x,t) = O(e^{-\delta\langle\eta\rangle^{\gamma}}) \text{ in the } L^2 \text{ norm for } (x,t) \in B_{c_3} \cap \mathbb{R}^2 \text{ where } |x| > c_2$$

728

A symbol " $O(\cdot)$ " connotes a bound uniform in η, \tilde{y}, y . Before discussing the proof, we indicate how the lemma leads to Theorem 2.

Lemma 2.2. Let *L* be any linear partial differential operator satisfying the conclusion of Lemma 2.1 for some $\gamma \in (0,1]$. Then for any $s \geq \gamma^{-1}$ and for any sufficiently small neighborhood *U* of 0 and any relatively compact $U' \subseteq U$, for any $u \in \mathcal{D}'(\mathbb{R}^2)$ such that $Lu \in G^s(U)$, there exists $\varepsilon > 0$ such that $\mathcal{F}u(y,\eta) = O\left(\exp(-\varepsilon|\eta|^{1/s})\right)$ as $|\eta| \to \infty$, uniformly for $y \in U'$, provided that $\eta = (\xi, \tau)$ where $|\tau| \geq |\xi|$.

Sketch of proof. The easy proof is essentially identical to the argument immediately following the statement of Lemma 3.1 of [6], so we merely recall its outline. Suppose that $Lu \in G^s(U')$, where $s = \gamma(m, p)^{-1}$.

Begin by rewriting the integral defining $\mathcal{F}u$ by substituting

$$\alpha(y-y')\exp\left(i(y-y')\cdot\eta - \frac{1}{2}\langle\eta\rangle(y-y')^2\right) = L^*(gE) + O(\exp(-\delta\langle\eta\rangle^{\gamma}))$$

The second term leads to an error of the desired order of magnitude. Integrating by parts leads to a main term $\int gE \cdot Lu$; boundary terms are negligible because $\exp(-\frac{1}{2}\langle \eta \rangle (y-y')^2)$ is $O(\exp(-c\langle \eta \rangle))$ away from the diagonal.

Next, because $Lu \in G^s$, conclusion (5) of Theorem 2.3 of [6] asserts that it is possible to decompose Lu as v + R where v is holomorphic with respect to tand is O(1) in the region $|\operatorname{Im}(t)| < \langle \eta \rangle^{\gamma-1}$, and R is $O(\exp(-\varepsilon \langle \eta \rangle^{\gamma}))$ in the real domain. R again leads to an acceptable error. Finally the contribution of v is treated by shifting the contour of integration with respect to t into the complex domain so as to pick up a factor of $\exp(-c\langle \eta \rangle^{\gamma})$ from the factor $\exp(i(\tilde{t} - t)\tau)$ in E.

Any linear differential operator with analytic coefficients is microlocally G^s hypoelliptic for all $s \ge 1$ in any conic open set where its principal symbol does not vanish. Therefore for any operator L that is elliptic where $|\xi| \ge |\tau|$, under the hypotheses of the preceding lemma, one has also a decay estimate $O\left(\exp(-\varepsilon|\eta|^{1/s})\right)$ wherever L is elliptic. In particular, the operators of Theorem 2 are elliptic where $|\xi| \ge |\tau|$.

To prove Theorem 2, we couple these decay estimates with the FBI transform characterization (2.2) of G^s , to conclude that any L that satisfies the conclusion of Lemma 2.1, and is elliptic where $|\xi| \ge |\tau|$, is G^s hypoelliptic in a neighborhood of the origin for all $s \ge \gamma^{-1}$. In particular, $L_{m,p}$ is G^s hypoelliptic for all $s \ge \gamma(m,p)^{-1}$. Thus Theorem 2 is proved, modulo the proof of Lemma 2.1. \square

We now discuss the proof of Lemma 2.1. Fix (\tilde{x}, \tilde{t}) and $\eta = (\xi, \tau)$ where $|\tau| \ge |\xi|$. One has

(2.8)
$$\begin{aligned} E^{-1}L^*E &= \\ \partial_x^2 + \left(x^{m-1}[\partial_t - i\tau + \langle \eta \rangle (\tilde{t} - t)]\right)^2 + \left([\partial_t - i\tau + \langle \eta \rangle (\tilde{t} - t)]t^p\right)^2 \end{aligned}$$

Write

(2.9)
$$E^{-1}L^*E = \mathcal{A} + \mathcal{R}$$
 where $\mathcal{A} = \partial_x^2 - \tau^2 x^{2(m-1)} - \tau^2 t^{2p}$

 \mathcal{A} acts on functions of (x, t); we also write $A_t = \partial_x^2 - \tau^2 x^{2(m-1)} - \tau^2 t^{2p}$ to denote the same operator, acting on functions of x alone and depending on a parameter t.

The construction of the approximate solution g sought in Lemma 2.1 transpires in various Sobolev type spaces. Henceforth let $\gamma = \gamma(m, p)$. Define

$$w_{\tau}(x,t) = \left(\tau^{2/m} + \tau^2 x^{2(m-1)} + \tau^2 |t|^{2p}\right)^{1/2},$$

for $(x,t) \in \mathbb{R} \times \mathbb{C}$. Fix a nonnegative auxiliary function $v \in C^{\infty}(\mathbb{R})$ such that $v \equiv 0$ in a neighborhood of $\{|x| \leq c_1\}$, and $v \equiv 1$ in a neighborhood of $\{|x| \geq c_2\}$. For any open set $\Omega \subset \mathbb{C}^1$, for $k \in \{0, 1, 2\}$, define $\mathcal{H}^k_{\tau}(\mathbb{R} \times \Omega)$ to consist of all measurable functions f(x,t) defined on $\mathbb{R} \times \Omega$ that are holomorphic in t for almost every x, and for which the following norms are finite:

$$\begin{split} \|f\|_{\mathcal{H}^{0}_{\tau}(\mathbb{R}\times\Omega)}^{2} &= \iint_{\mathbb{R}\times\Omega} |f(x,t)|^{2} w_{\tau}(x,t)^{-2} e^{\rho|\tau|v(x)} \, dx \, dt \, d\bar{t} \\ \|f\|_{\mathcal{H}^{1}_{\tau}(\mathbb{R}\times\Omega)}^{2} &= \iint_{\mathbb{R}\times\Omega} \left(|\partial_{x}f(x,t)|^{2} w_{\tau}(x,t)^{-2} + |f(x,t)|^{2} \right) e^{\rho|\tau|v(x)} \, dx \, dt \, d\bar{t} \\ \|f\|_{\mathcal{H}^{2}_{\tau}(\mathbb{R}\times\Omega)}^{2} &= \iint_{\mathbb{R}\times\Omega} \left(|\partial_{x}^{2}f(x,t)|^{2} w_{\tau}(x,t)^{-2} + |\partial_{x}f(x,t)|^{2} \\ &+ |f(x,t)|^{2} w_{\tau}(x,t)^{2} \right) e^{\rho|\tau|v(x)} \, dx \, dt \, d\bar{t} \end{split}$$

These spaces and norms depend on the parameter ρ , which may for the present be any real number but will ultimately be chosen to be small but strictly positive. There are corresponding spaces of functions defined on \mathbb{R} , depending on a parameter $t \in \mathbb{C}$:

$$\begin{split} \|f\|_{\mathcal{H}^{0}_{\tau,t}(\mathbb{R})}^{2} &= \int_{\mathbb{R}} |f(x)|^{2} w_{\tau}(x,t)^{-2} e^{\rho|\tau|v(x)} dx \\ \|f\|_{\mathcal{H}^{1}_{\tau,t}(\mathbb{R})}^{2} &= \int_{\mathbb{R}} \left(|\partial_{x}f(x)|^{2} w_{\tau}(x,t)^{-2} + |f(x)|^{2} \right) e^{\rho|\tau|v(x)} dx \\ \|f\|_{\mathcal{H}^{2}_{\tau,t}(\mathbb{R})}^{2} &= \int_{\mathbb{R}} \left(|\partial_{x}^{2}f(x)|^{2} w_{\tau}(x,t)^{-2} + |\partial_{x}f(x)|^{2} + |f(x)|^{2} w_{\tau}(x,t)^{2} \right) e^{\rho|\tau|v(x)} dx \end{split}$$

The definitions ensure that \mathcal{A} maps $\mathcal{H}^2_{\tau}(\mathbb{R} \times \Omega)$ boundedly to $\mathcal{H}^0_{\tau}(\mathbb{R} \times \Omega)$, uniformly in Ω, τ , under the standing hypotheses that $|\tau| \ge |\xi|$ and $|\tau| \ge 1$. Likewise A_t maps $\mathcal{H}^2_{\tau,t}(\mathbb{R})$ boundedly to $\mathcal{H}^0_{\tau,t}(\mathbb{R})$, uniformly in $\tau \in \mathbb{R}, t \in \mathbb{C}$.

730

Lemma 2.3. There exists $c_0 > 0$ such that for all sufficiently small $|\rho|$ and all $\tau \neq 0$, $A_t : \mathcal{H}^2_{\tau,t}(\mathbb{R}) \mapsto \mathcal{H}^0_{\tau,t}(\mathbb{R})$ is invertible, uniformly in $t \in \mathbb{C}, \tau \in \mathbb{R}$ provided that

(2.10)
$$|\operatorname{Im}(t)| \le c_0 |\tau|^{\gamma(m,p)-1}$$

Proof. The proof is based on the inequality

(2.11)
$$-\operatorname{Re}\langle A_t f, f \rangle \ge c \int_{\mathbb{R}} \left(|\partial_x f|^2 + w(x,t)^2 |f|^2 \right) dx \quad \text{for all } f \in C_0^2(\mathbb{R}),$$

where $\langle f, g \rangle = \int_{\mathbb{R}} f \overline{g} \, dx$. To prove this write

$$-\operatorname{Re}\langle A_t f, f \rangle = \|\partial_x f\|^2 + \int_{\mathbb{R}} x^{2(m-1)} \tau^2 |f|^2 \, dx + \int \tau^2 \operatorname{Re}(t^{2p}) |f|^2 \, dx.$$

One has

$$|\partial_x f||^2 + \int x^{2(m-1)} \tau^2 |f|^2 \, dx \ge c \tau^{2/m} \int |f|^2 \, dx,$$

as follows from the case $\tau = 1$ by scaling. Moreover

$$\operatorname{Re}(t^{2p}) \ge c(\operatorname{Re}(t))^{2p} - C(\operatorname{Im}(t))^{2p}$$

for some $c, C \in \mathbb{R}^+$. The hypothesis (2.10) restricting the imaginary part of t implies

$$\tau^2 (\operatorname{Im}(t))^{2p} \le c_0^{2p} \tau^{2+2p(\gamma-1)}.$$

The exponent is $2 + 2p(\gamma - 1) = 2 - 2p(p^{-1}(1 - m^{-1})) = 2m^{-1}$. Combining all these ingredients yields (2.11), provided that c_0 is chosen to be sufficiently small.

The conclusion of the lemma follows easily from (2.11) as in [3], Lemma 3.1 and [6], Lemma 3.3, because

$$e^{\rho|\tau|v/2}A_t e^{-\rho|\tau|v/2} - A_t = O(|\rho|)$$

as an operator from $\mathcal{H}^2_{\tau,t}(\mathbb{R})$ to $\mathcal{H}^0_{\tau,t}(\mathbb{R})$; this holds because $v \equiv 0$ in a neighborhood of the origin while the term $|\tau|x^{m-1}$ in the definition of w is strictly positive on the support of v. For further details see the proof of Lemma 3.3 of [6].

Corollary 2.4. If c_0 is chosen to be sufficiently small then for any open set $\Omega \subset \mathbb{C}^1$ contained in the region where $|\operatorname{Im}(t)| < c_0 |\tau|^{\gamma(m,p)-1}$, the operator $\mathcal{A} : \mathcal{H}^2_{\tau}(\mathbb{R} \times \Omega) \mapsto \mathcal{H}^0_{\tau}(\mathbb{R} \times \Omega)$ is invertible, uniformly in τ, Ω .

Let

$$\Omega_{1} = \{ t \in \mathbb{C} : |\operatorname{Re}(t)| < 2 \text{ and } |\operatorname{Im}(t)| < \frac{c_{0}}{2} |\tau|^{\gamma - 1} \},\$$
$$\Omega_{\infty} = \{ t \in \mathbb{C} : |\operatorname{Re}(t)| < 1 \text{ and } |\operatorname{Im}(t)| < \frac{c_{0}}{4} |\tau|^{\gamma - 1} \},\$$

Let $\Lambda \in \mathbb{R}^+$ be a large constant to be chosen below. Given a large τ , choose an integer N so that $|N - \Lambda^{-1}|\tau|^{\gamma}| < 1$. For $2 \leq j \leq 2N$ construct open sets $\Omega_j \subset \mathbb{C}$, depending on τ , with $\Omega_{\infty} = \Omega_{2N} \Subset \Omega_{2N-1} \Subset \cdots \Subset \Omega_1$ satisfying

distance
$$(\Omega_{i+1}, \partial \Omega_i) \ge c\Lambda |\tau|^{-1}$$
.

Here c is a small constant, independent of τ, Λ, j .

Lemma 2.5. $\mathcal{R} : \mathcal{H}^2_{\tau}(\mathbb{R} \times \Omega_j) \mapsto \mathcal{H}^0_{\tau}(\mathbb{R} \times \Omega_{j+2})$ is bounded, with norm $O(\Lambda^{-1} + c_1 + c_0)$, uniformly in τ .

Proof. By Cauchy's inequality relating the derivative of a holomorphic function to its L^1 norm over a ball, ∂_t maps each space $\mathcal{H}^k_{\tau}(\mathbb{R} \times \Omega_j)$ boundedly to $\mathcal{H}^k_{\tau}(\mathbb{R} \times \Omega_{j+1})$, with norm $O(\text{distance}(\Omega_{j+1}, \partial\Omega_j)^{-1}) = O(\Lambda^{-1}|\tau|)$. The norms are defined so that the multiplication operators τt^p and $\tau x^{m-1} \max \mathcal{H}^k_{\tau}(\mathbb{R} \times \Omega_j)$ to $\mathcal{H}^{k-1}_{\tau}(\mathbb{R} \times \Omega_j)$ with uniformly bounded norms. Furthermore, the extra factors of $\tilde{t} - t$ in the definition (2.8),(2.9) for \mathcal{R} contribute an additional factor to these bounds which is $O(c_1 + c_0)$. Combining these estimates yields the lemma. For further details see the proofs of Lemma 3.4 of [6], and of the first display at the top of page 319 of [3].

Set $\psi(y) = \alpha(\tilde{y} - y)e^{i(\tilde{x} - x)\xi - \frac{1}{2}\langle \eta \rangle (\tilde{x} - x)^2}$. To attempt to solve $(\mathcal{A} + \mathcal{R})g \approx \psi$ we define

(2.12)
$$g = \sum_{j=0}^{N} (-1)^{j} (\mathcal{A}^{-1} h \mathcal{R})^{j} \mathcal{A}^{-1} \psi,$$

where $h \in C_0^{\infty}(\mathbb{R})$ is $\equiv 1$ where $|x| \leq c_3$. Thus

$$(\mathcal{A} + h\mathcal{R})g = \psi \pm \mathcal{E},$$

where

$$\mathcal{E} = (h\mathcal{R}\mathcal{A}^{-1})^{N+1}\psi.$$

Note that $\psi \in \mathcal{H}^0_{\tau}(\mathbb{R} \times \Omega_1)$ with norm O(1), provided $\rho > 0$ is chosen to be sufficiently small. If Λ is chosen to be sufficiently large and c_0, c_3 to be sufficiently small then applying Lemmas 2.3 and 2.5 in turn N times yields

$$\mathcal{E} = O(\exp(-\varepsilon N)) = O(\exp(-\varepsilon' |\tau|^{\gamma}))$$

for some $\varepsilon, \varepsilon' > 0$, in the $\mathcal{H}^0_{\tau}(\mathbb{R} \times \Omega_{\infty})$ norm.

Because v(x) > 0 for $|x| \ge c_2$ and $\rho > 0$, the weight $e^{\rho|\tau|v(x)}$ in the definitions of the \mathcal{H}^k_{τ} norms ensures that $g = O(\exp(-\varepsilon|\tau|^{\gamma}))$ in the $L^2(dx \, dt)$ norm for

732

such x. In the region $|x| < c_3$ of interest, the auxiliary function h is $\equiv 1$, hence $(\mathcal{A} + \mathcal{R})g \equiv \psi + \mathcal{E}$. This approximate solution g thus has all properties required of it in Lemma 2.1.

The main change needed to obtain Theorem 3 is to modify the weight w(x,t)used in the definitions of the \mathcal{H}^k_{τ} and $\mathcal{H}^k_{\tau,t}$ norms to

$$\left(\tau^{2/m} + \tau^{2/(m-1-k)}|t|^{2p} + \tau^2 [x^{2(m-1)} + x^{2(m-1-k)}|t|^{2p}]\right)^{1/2}.$$

Remark. The limiting effect preventing this analysis from establishing G^s hypoellipticity for a larger range of exponents s is the failure of A_t to be invertible for t outside of a complex region which shrinks to the real axis as $|\tau| \to \infty$; the rate of shrinkage dictates the optimal Gevrey class G^s . This phenomenon is the essence of [5] and [3].

For the operators studied in [6] and [2], the limitation on s comes about in a different way. Application of the FBI transform \mathcal{F} as above leads to unacceptable error terms, so variants \mathcal{F}_{γ} adapted to specific Gevrey classes were employed instead in [6] in order to obtain smaller error terms.

References

- 1. E. Bernardi, A. Bove, and D. Tartakoff, On a conjecture of F. Treves: Analytic hypoellipticity and Poisson strata, preprint.
- 2. A. Bove and D. Tartakoff, Optimal non-isotropic Gevrey exponents for sums of squares of vector fields, preprint.
- M. Christ, The Szegö projection need not preserve global analyticity, Ann. of Math. 143 (1996), 301–330.
- 4. _____, On local and global analytic and Gevrey hypoellipticity, Journees "Equations aux derivees partielles", Saint-Jean-de-Monts, Mai-Juin 1995.
- 5. _____, Analytic hypoellipticity in dimension two, MSRI preprint 1996-009, submitted.
- 6. _____, Intermediate optimal Gevrey exponents occur, Comm. Partial Diff. Eq. 22 (1997), 359–379.
- 7. _____, Hypoellipticity in the infinitely degenerate regime, preprint.
- A. Grigis and J. Sjöstrand, Front d'onde analytique et sommes de carrés de champs de vecteurs, Duke Math. J. 52 (1985), 35–51.
- L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171.
- 10. T. Matsuzawa, *Gevrey hypoellipticity for Grushin operators*, Pub. RIMS Kyoto University, to appear.
- 11. G. Métivier, Non-hypoellipticité analytique pour $D_x^2 + (x^2 + y^2)D_y^2$, C. R. Acad. Sci. Paris **292** (1981), 401–404.
- 12. F. Treves, Symplectic geometry and analytic hypo-ellipticity, preprint.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720 $E\text{-mail}\ address:\ mchrist@math.berkeley.edu$