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THE ABSOLUTELY CONTINUOUS SPECTRUM OF
ONE-DIMENSIONAL SCHRÖDINGER OPERATORS

WITH DECAYING POTENTIALS

Michael Christ, Alexander Kiselev, and Christian Remling

In this announcement, we are interested in the spectral theory of one-dimen-
sional Schrödinger operators

H = − d2

dx2
+ V (x),(1)

acting on the Hilbert space L2(0,∞). One also needs a boundary condition at
x = 0 in order to obtain self-adjoint operators. The operator (1) describes the
motion of a quantum mechanical particle, and the spectral properties of H are
intimately connected to the physics of this system (see, e.g., [19]).

We will view V as a perturbation of the free Hamiltonian H0 = −d2/dx2. It is
natural to expect that suitable smallness assumptions on V guarantee stability of
the absolutely continuous part of H0. This problem is one of the basic questions
in quantum mechanics, and it has been studied extensively. It has been known
for a long time that the spectrum of H is purely absolutely continuous on (0,∞) if
V ∈ L1. More information is available for potentials satisfying certain additional
assumptions. We mention the classical result of Weidmann [27] on potentials of
bounded variation, a series of works on oscillating potentials of the type sin xα

xβ

[2, 3, 9, 15, 28], and works on potentials satisfying additional conditions on the
derivatives, see, e.g., [1, 4, 10]. However, in all these results, the potential is
required to have further properties, in addition to decaying sufficiently rapidly.
In fact, a result going back to von Neumann and Wigner says that potentials
V (x) = O(1/x) can already have positive eigenvalues [26], and one can construct
potentials with decay arbitrarily close to O(1/x) and dense point spectrum in
(0,∞) [18, 24]. In other words, decay conditions that are essentially weaker than
V ∈ L1 do not imply purely absolutely continuous spectrum on (0,∞).

However, as was first noticed by one of us [11, 12], it is still true that the
absolutely continuous spectrum is preserved if V (x) = O(x−α) (α > 2/3) (see
[12]), although, according to the above remarks, embedded singular spectrum
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can occur. Subsequently, Molchanov presented an alternate proof of the same
result [17].

Our first result is a sharp version of this theorem. Recall that S is called an
essential support of the measure µ if µ(R\S) = 0 and µ(T ) > 0 for every subset
T ⊂ S of positive Lebesgue measure.

Theorem 1. [5, 21] Suppose |V (x)| ≤ C(1 + x)−α with α > 1/2. Then Σac =
(0,∞) is an essential support of the absolutely continuous part of the spectral
measure. Moreover, for almost every E > 0, one can find solutions to the
Schrödinger equation Hy = Ey with WKB asymptotic behavior :

y±(x, E) = exp±
(

i
√

Ex − i

2
√

E

∫ x

0

V (t) dt

)
(1 + o(1)) (x → ∞).

This result is optimal, because the work on decaying random potentials [6, 7,
13, 14, 22] has shown that there are potentials |V (x)| ≤ C(1+x)−1/2, such that
the corresponding Schrödinger operator has purely singular spectrum.

We have independently found two different proofs of Theorem 1. These proofs
will be given in two separate publications [5, 21]. The approach of [5] is based on
ideas developed in [11, 12] and, in particular, on new norm estimates for certain
multilinear transformations which may be of independent interest. The method
of [21] uses ideas from both proofs of the 2/3 result [12, 17].

Actually, our methods also yield a number of extensions and generalizations
of Theorem 1. For example, we do not really need a pointwise bound on V ;
we prove the result under considerably more general assumptions which allow,
among other things, local singularities of V . However, we do need a certain
amount of regularity in the decay of V ; we are as yet unable to treat general Lp

potentials (see also the open questions below). We refer the reader to [5, 21] for
details.

We also obtain a general criterion for the stability of the absolutely continuous
spectrum of perturbed Schrödinger operators. We now consider the following
situation: Given a Schrödinger operator H0 = −d2/dx2 + U with absolutely
continuous spectrum on some set S, we ask under what conditions this spectrum
is stable under perturbations by V . Again, we give the result in the simplest
form.

Hypothesis 2. Assume that for all E ∈ S, the Schrödinger equation

− y′′ + Uy = Ey(2)

has only bounded solutions. Assume further that one can choose a solution
θ(·, E) (E ∈ S) of (2), such that the operator K : L2((0,∞), dx) → L2(S, dE),
defined for bounded functions f of compact support by

(Kf)(E) =
∫ ∞

0

θ(x, E)2 exp
(

i

Im θθ
′

∫ x

0

V (t)|θ(t, E)|2 dt

)
f(x) dx,(3)

is norm bounded.
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Note that Hypothesis 2 in particular implies that Σac(H0) ⊃ S [23, 25]. The
quantity Im θθ

′
is independent of x, since it is a multiple of the Wronskian of

the two solutions θ, θ. Moreover, it is non-zero precisely if θ and θ are linearly
independent. We have the following result, first obtained by methods of [5] (it
can also be shown by methods of [21]):

Theorem 3. Suppose that Hypothesis 2 holds. If |V (x)| ≤ C(1 + x)−α with
α > 1/2, then Σac(H0 + V ) ⊃ S. Moreover, for almost every E ∈ S, one can
find solutions y, y to the Schrödinger equation (H0 + V )y = Ey with WKB type
asymptotic behavior :

y(x, E) = θ(x, E) exp
(

i

2 Im θθ
′

∫ x

0

V (t)|θ(t, E)|2 dt

)
(1 + o(1)) (x → ∞).

Hypothesis 2 can be verified for U = 0 and for periodic U (see [12]). Given
this, it is clear that, in particular, Theorem 1 follows from Theorem 3.

We also have a result on decay conditions which imply purely absolutely con-
tinuous spectrum on (0,∞). This result improves the elementary remark on
L1 potentials (on the power scale). This problem was brought to our attention
by S. Molchanov, who has independently obtained related (but weaker) results
using different methods [17].

Theorem 4. [21] If C := lim supx→∞ x |V (x)| < ∞, then Hα is purely abso-
lutely continuous on ((2C/π)2,∞). In particular, if V (x) = o(1/x), then Hα is
purely absolutely continuous on (0,∞).

The point of this Theorem is the absence of singular continuous spectrum.
That E = (2C/π)2 is a (sharp) bound on possible embedded eigenvalues appears
already in [8, Section 3.2]. See also [13, Theorem 4.1] for further information on
embedded eigenvalues.

We would like to conclude this paper with some open questions. We think
that these questions are interesting, but they also look rather difficult at present.

1. Does Theorem 1 still hold under the assumption V ∈ L2 (or V ∈ Lp for
some p < 2)? Currently, we can show that if xεV ∈ Lp for some ε > 0 and p ≤ 2,
Theorem 1 holds. Still extending this result to Lp seems hard.

2. Are there potentials V (x) = O(x−α), α > 1/2 with embedded singular
continuous spectrum? We expect that the answer is yes. In this case, it would
be interesting to construct such potentials.

We would also like to point out that in recently constructed examples with
embedded singular continuous spectrum [16, 20], the essential support of the
absolutely continuous part Σac does not have full measure in the absolutely
continuous spectrum σac (which is the essential closure of the set Σac).

3. Formulate general conditions on U which imply boundedness of the integral
operator from (3).

These problems will be the subject of continuing research.
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