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TORSION INVARIANTS OF

Spinc-STRUCTURES ON 3-MANIFOLDS

Vladimir Turaev

Introduction

Recently there has been a surge of interest in the Seiberg-Witten invariants
of 3-manifolds, see [3], [4], [7]. The Seiberg-Witten invariant of a closed oriented
3-manifold M is a function SW from the set of Spinc-structures on M to Z.
This function is defined under the assumption b1(M) ≥ 1 where b1(M) is the
first Betti number of M ; in the case b1(M) = 1 the function SW depends on the
choice of a generator of H1(M ; Z) = Z. The definition of SW runs parallel to the
definition of the SW-invariant of 4-manifolds: one counts the gauge equivalence
classes of solutions to the Seiberg-Witten equations.

It was observed by Meng and Taubes [4] that the function SW (M) is closely
related to a Reidemeister-type torsion of M . The torsion in question was intro-
duced by Milnor [5]; the refined version used by Meng and Taubes is due to the
author [12]. Considered up to sign, this torsion is equivalent to the Alexander
polynomial of the fundamental group of M , see [5], [8].

The aim of this paper is to discuss relationships between Spinc-structures
and torsions. We use the torsions introduced by the author in [9], [12], [13] to
define a numerical invariant of Spinc-structures on closed oriented 3-manifolds.
Presumably, in the case b1 ≥ 1, this invariant is equivalent to the one arising in
the Seiberg-Witten theory.

A related question of finding topological invariants of Spin-structures on 3-
manifolds was studied in [11] in connection with a classification problem in the
knot theory. It was observed in [11] that an orientation of a link in the 3-
sphere S3 induces a Spin-structure on the corresponding 2-sheeted branched
covering of S3. To distinguish Spin-structures on 3-manifolds one can use tor-
sions, see [13]. As a specific application, note the homeomorphism classification
of Spin-structures on 3-dimensional lens spaces: a lens space L(p, q) with even p
admits an orientation-preserving self-homeomorphism permuting the two Spin-
structures on L(p, q) if and only if q2 = p + 1(mod 2p), see [13], Theorem C.3.1.
This implies (the hard part of) the classification of oriented links with two bridges
in S3 first established by Schubert in a different way.
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The technique introduced in [13] applies in any dimension; it associates tor-
sion invariants with so-called Euler structures on manifolds. Our main obser-
vation here is that in dimension 3 the Euler structures are equivalent to the
Spinc-structures. This allows us to use torsions to study Spinc-structures on
3-manifolds.
Notation. Throughout the paper the homology and cohomology of manifolds
and CW spaces are taken with integer coefficients unless explicitly indicated to
the contrary.
Organization of the paper. In Sect. 1 we review the theory of smooth Euler
structures on manifolds following [13] and establish the equivalence between
Spinc-structures and Euler structures on 3-manifolds. In Sect. 2 we recall the
definition of the Reidemeister-Franz torsion of a CW space and review the refined
torsions following [12], [13]. In Sect. 3 we review the torsion τ introduced in
[9]. In Sect. 4 we show that the torsion τ of a 3-manifold is a finite linear
combination of homology classes. In Sect. 5 we define a numerical invariant of
Spinc-structures on 3-manifolds.

1. Spinc-structures and Euler structures

1.1. The group SpinC(3). Recall that SO(3) = SU(2)/{±1} = U(2)/U(1)
where U(1) lies in U(2) as the diagonal subgroup. The projection U(2) → SO(3)
is a principal circle bundle over SO(3). Remember that the isomorphism classes
of principal circle bundles over a CW space X are numerated by the elements
of [X, BU(1)] = [X, K(Z, 2)] = H2(X). The circle bundle U(2) → SO(3) is
nontrivial and corresponds to the nonzero element of H2(SO(3)) = H2(RP 3) =
Z/2Z. Recall finally that Spin(3) = SU(2) and

SpinC(3) = (U(1) × Spin(3))/{±1} = (U(1) × SU(2))/{±1} = U(2).

1.2. Spinc-structures on 3-manifolds. Let M be a closed oriented 3-mani-
fold. Endow M with a Riemannian metric and consider the associated principal
SO(3)-bundle of oriented orthonormal frames fM : Fr → M . A Spinc-structure
on M is a lift of fM to a principal U(2)-bundle. More precisely, a Spinc-structure
on M is an isomorphism class of a pair (a principal U(2)-bundle F → M , an
isomorphism α of the principal SO(3)-bundle F/U(1) → M onto fM : Fr → M).

An equivalent definition: a Spinc-structure on M is an element of H2(Fr)
whose reduction to every fiber is the nonzero element of H2(SO(3)) = Z/2Z. To
observe the equivalence of these definitions, it suffices to associate with any pair
(F → M , α) as above the element of H2(Fr) corresponding to the circle bundle
α ◦ proj : F → F/U(1) ≈ Fr. The set of Spinc-structures on M is denoted by
S(M).

The group H1(M) = H2(M) acts on H2(Fr) via the pull-back homomor-
phism f∗

M : H2(M) → H2(Fr) and addition. This action preserves S(M) ⊂
H2(Fr). The induced action of H1(M) on S(M) is free and transitive. This fol-
lows from the fact that M is parallelisable, so that Fr = M ×SO(3) and by the
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Künneth theorem, H2(Fr) = H2(M)⊕ (Z/2Z). The notion of a Spinc-structure
on M is essentially independent of the choice of a Riemannian metric on M .

1.3. Smooth Euler structures. (cf. [13]). Let M be a smooth closed con-
nected oriented manifold of dimension m ≥ 2 with χ(M) = 0. By a vector field
on M we mean a nonsingular tangent vector field on M . Vector fields u and v
on M are called homologous if for some closed m-dimensional ball D ⊂ M the
restrictions of u and v to M\IntD are homotopic in the class of (nonsingular)
vector fields. The homology class of a vector field u on M is denoted by [u] and
called an Euler structure on M . The set of Euler structures on M is denoted by
vect(M).

If u, v are two vector fields on M , then the first obstruction to their homo-
topy lies in Hm−1(M) = H1(M) and depends only on [u], [v] ∈ vect(M). This
obstruction is denoted by [u]/[v]. It is easy to show that for any h ∈ H1(M),
e ∈ vect(M) there is a unique Euler structure he ∈ vect(M) such that he/e = h.
Thus, H1(M) acts freely and transitively on vect(M). This action and the group
operation in H1(M) will be written multiplicatively.

For e = [u] ∈ vect(M), consider the opposite vector field −u on M and set
e−1 = [−u] ∈ vect(M). Clearly, (e−1)−1 = e. Set c(e) = e/e−1 ∈ H1(M). One
can show that the class c(e) is dual to the Euler class of the (m−1)-dimensional
vector bundle u⊥ formed by the tangent vectors orthogonal to u. Note that
(he)−1 = hεe−1 and c(he) = h1−εc(e) for h ∈ H1(M) and ε = (−1)m.

An equivalent definition of Euler structures on M can be given in terms of the
spherical fiber bundle of unit tangent vectors SM → M . An Euler structure on
M is an element of Hm−1(SM) whose reduction to every fiber SxM , x ∈ M is the
generator of Hm−1(SxM) = Hm−1(Sm−1) = Z determined by the orientation
of M at x. The group H1(M) = Hm−1(M) acts on such elements freely and
transitively via the pull-back homomorphism Hm−1(M) → Hm−1(SM) and
addition. The equivalence of definitions is established as follows. Let u be a
vector field of M . The mapping x �→ u(x)/|u(x)| : M → SM defines an m-
cycle in SM . We orient SM so that the intersection number of this cycle with
every oriented fiber SxM equals +1 (for any u). The element of Hm−1(SM)
represented by this cycle is an Euler structure on M in the sense of the second
definition.

1.4. Lemma. Let M be a closed oriented 3-manifold. There is a canonical
H1(M)-equivariant bijection vect(M) = S(M).

Proof. Consider the mapping p : SO(3) → S2 assigning to an orthonormal triple
of vectors (e1, e2, e3) in R3 the first vector e1 ∈ S2. This mapping is a circle
fiber bundle whose fiber represents the nonzero element of H1(SO(3)) = Z/2Z.
The pull-back homomorphism p∗ : H2(S2) → H2(SO(3)) sends any generator
g of H2(S2) = Z to the nonzero element of H2(SO(3)) = Z/2Z. Indeed, the
Poincaré dual of g in H0(S2) = Z is represented by a point x ∈ S2 so that the
Poincaré dual of p∗(g) is represented by the circle p−1(x).
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Endow M with a Riemannian metric. Consider the principal SO(3)-bundle
fM : Fr → M and the spherical bundle SM → M . Denote by p the bundle
morphism Fr → SM assigning to an orthonormal frame (e1, e2, e3) at a point of
M the vector e1. It follows from the results of the previous paragraph that the
pull-back homomorphism p∗ : H2(SM) → H2(Fr) sends vect(M) ⊂ H2(SM)
to S(M) ⊂ H2(Fr). The resulting mapping vect(M) → S(M) is H1(M)-
equivariant and therefore bijective.

1.5. Remarks. 1. One can see directly that a vector field u on an oriented
3-manifold M gives rise to a Spinc-structure on M . The tangent vector bundle
TM splits as a direct sum u⊥ ⊕Ru. This reduces the structure group of TM to
U(1) = U(1) ⊕ (1) ⊂ U(2).

2. For a Spinc-structure s on a 3-manifold M , one can consider the first Chern
class c1(s) ∈ H2(M) = H1(M) of the associated 2-dimensional complex vector
bundle on M . This class equals (at least up to sign) to c(es) where es ∈ vect(M)
corresponds to s.

2. Torsion invariants of Euler structures

2.1. Torsions of chain complexes. (cf. [6]). Let C = (Cm → Cm−1 → ... →
C0) be a finite dimensional chain complex over a field F . We suppose that for
each i we have fixed a basis ci for Ci and a basis hi for Hi(C). (A 0-dimensional
vector space has an empty basis.) For each i, let ĥi be a sequence of vectors in
Ker(∂i−1 : Ci → Ci−1) which is a lift of hi. Let bi be a sequence of vectors in Ci

whose image under ∂i−1 is a basis in Im ∂i−1. Set b0 = bm+1 = ∅. The torsion
of C is defined by

(2.1.a) τ(C) =
m∏

i=0

[∂i(bi+1)ĥibi/ci](−1)i+1 ∈ F\0,

where [∂i(bi+1)ĥibi/ci] is the determinant of the matrix transforming ci into the
basis ∂i(bi+1), ĥi, bi of Ci. The torsion τ(C) depends only on C, {ci, hi}i.

We need a version of τ(C) defined by τ̂(C) = (−1)N(C)τ(C) ∈ F\0 where

N(C) =
m∑

i=0

(
i∑

j=0

dimCj) (
i∑

j=0

dimHj(C))

(cf. [12]). Note that if C is acyclic, then τ̂(C) = τ(C).

2.2. The Reidemeister-Franz torsion. The torsion is defined for a triple (a
finite connected CW space X, a field F , a group homomorphism ϕ : H1(X) →
F\0). Consider the maximal abelian covering X̃ of X with its induced CW

structure. The group H = H1(X) acts on X̃ via covering transformations per-
muting the cells in X̃ lying over any cell in X. A family of cells in X̃ is said to be
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fundamental if over each cell of X lies exactly one cell of this family. Choose a
fundamental family of cells in X̃ and orient and order these cells in an arbitrary
way. This yields a basis for the cellular chain complex C∗(X̃) = C∗(X̃; Z) over
the group ring Z[H]. Consider the induced basis for the chain complex

Cϕ
∗ (X) = F ⊗Z[H] C∗(X̃).

If this based chain complex is acyclic, then we have its torsion τ(Cϕ
∗ (X)) ∈ F\0.

A different choice of the fundamental family, cell orientations and the order
would replace τ(Cϕ

∗ (X)) with a product ±ϕ(h) τ(Cϕ
∗ (X)) where h ∈ H. The set

of all such products is denoted by ±τϕ(X). Thus, ±τϕ(X) = ±ϕ(H) τ(Cϕ
∗ (X))

is an element of F\0 defined up to multiplication by −1 and elements of ϕ(H).
If the chain complex Cϕ

∗ (X) is not acyclic then we set τϕ(X) = 0 ∈ F .

2.3. The sign-refined torsions. (cf. [12]). Assume that the CW space
X is homology oriented in the sense that an orientation of the vector space
H∗(X; R) = ⊕i≥0Hi(X; R) is given. We define a refined version of the
Reidemeister-Franz torsion getting rid of the sign indeterminacy. Choose a fun-
damental family of cells ẽ in X̃ and orient and order these cells in an arbitrary
way. As above, this yields a basis in the chain complex Cϕ

∗ (X) and allows to
consider its torsion τ ∈ F (equal to 0 if the complex is not acyclic). Since the
cells of ẽ bijectively correspond to the cells of X, the orientation and the order
for the cells of ẽ induce an orientation and an order for the cells of X. This
yields a basis of the cellular chain complex C∗(X; R) over R. Provide the ho-
mology of C∗(X; R) with a basis determining the given homology orientation
of X. Compute the torsion τ̂ ∈ R\{0} of the resulting based chain complex
with based homology. Consider the sign sign(τ̂) = ±1 of τ̂ . It turns out that
the product sign(τ̂) τ ∈ F is well defined up to multiplication by ϕ(H). This
yields a sign-refined torsion τϕ(X) ∈ F/ϕ(H). Considered up to sign, this is the
torsion discussed in Sect. 2.2. The opposite choice of the homology orientation
leads to multiplication of τϕ(X) by −1.

Note that any closed oriented manifold M of odd dimension m has a canonical
homology orientation determined by any basis in ⊕i<m/2Hi(M ; R) followed by
the Poincaré dual basis in ⊕i>m/2Hi(M ; R).

The sign-refined torsions were introduced in [12] in order to construct the
multivariable Conway polynomial of oriented links in S3. This polynomial is a
sign-refined version of the multivariable Alexander polynomial of links.

2.4. Combinatorial Euler structures. (cf. [13]). Let X be a finite connected
CW space with χ(X) = 0. An Euler chain in X is a 1-dimensional singular chain
ξ in X with

∂ξ =
∑

a

(−1)dim aαa,

where a runs over all (open) cells of X and αa is a point in a. For Euler chains
ξ, η in X, we define a homology class ξ/η ∈ H1(X) as follows. For each cell a,
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choose a path xa : [0, 1] → a from the point αa = a ∩ ∂ξ to the point a ∩ ∂η.
The class ξ/η ∈ H1(X) is represented by the 1-cycle ξ − η +

∑
a(−1)dim axa.

The Euler chains ξ, η define the same Euler stucture on X if ξ/η = 1. The
group H1(X) acts on the set of Euler structures Eul(X) on X: if [h] ∈ H1(X) is
represented by a 1-cycle h and [ξ] ∈ Eul(X) is represented by an Euler chain ξ
then [h][ξ] ∈ Eul(X) is represented by the Euler chain ξ + h. This action is free
and transitive.

An Euler structure on X induces an Euler structure on any cell subdivision
X ′ of X. Moreover, there is a canonical H1(X)-equivariant bijection Eul(X) =
Eul(X ′). This allows us to define the set of combinatorial Euler structures
Eul(M) on a smooth compact connected manifold M with χ(M) = 0; it is
obtained by identification of the sets {Eul(X)}X where X runs over C1-triangu-
lations of M . In the case ∂M = ∅, there is a canonical H1(M)-equivariant
bijection Eul(M) = vect(M). The idea is as follows. Fix a C1-triangulation X
of M . There is a natural singular vector field ν on M defined in terms of the
barycentric coordinates of X, see [2]. The singularities of ν are the barycenters
of the simplices of X. Any Euler structure on X can be presented by a spider-like
Euler chain consisting of oriented arcs joining a point of X with the barycenters
of the simplices. The vector field ν is nonsingular outside a ball neighborhood of
such a spider. Since χ(M) = 0, this nonsingular vector field on the complement
of a ball extends to a nonsingular vector field on M . This yields a bijection
Eul(M) = vect(M).

In the case ∂M �= ∅, we define smooth Euler structures on M as the homotopy
classes of nonsingular tangent vector fields on M directed outwards on ∂M . As
above, the group H1(M) acts on vect(M) freely and transitively and there is a
canonical H1(M)-equivariant bijection Eul(M) = vect(M).

2.5. The torsion of Euler structures. (cf. [13]). Let X be a homology
oriented finite connected CW space with χ(X) = 0. Let F be a field and
ϕ : H = H1(X) → F\0 be a group homomorphism. For every Euler structure
e ∈ Eul(X) we define a refinement τϕ(X, e) ∈ F of the torsion τϕ(X) ∈ F/ϕ(H).

Any fundamental family of cells ẽ in the maximal abelian covering X̃ gives
rise to an Euler structure on X: consider a spider in X̃ formed by arcs in X̃
connecting a certain point x ∈ X̃ to points in these cells; the arc joining x to
a point of an odd-dimensional (resp. even-dimensional) cell should be oriented
towards x (resp. out of x). Projecting this spider to X we obtain an Euler chain
in X. Its class in Eul(X) depends only on ẽ and does not depend on the choice
of x and the arcs. It is clear that any Euler structure e on X arises in this way
from a fundamental family of cells ẽ in X̃. Now, to define τϕ(X, e) ∈ F we
proceed as in Sect. 2.3 using such ẽ.

It follows from definitions that τϕ(X, he) = ϕ(h) τϕ(X, e) for any
e ∈ Eul(X), h ∈ H. Clearly, τϕ(X) = {τϕ(X, e) | e ∈ Eul(X)}.

The main point of these definitions is that τϕ(X, e) is invariant under cell
subdivisions of X. Combining the constructions of this section with those of
Sect. 2.4, we obtain the torsions of smooth Euler structures on manifolds.
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2.6. Relative torsions. The constructions of Sections 2.2-2.5 extend to any
finite CW pair (X, Y ) with connected X and χ(X, Y ) = 0. A homology ori-
entation in (X, Y ) is an orientation in H∗(X, Y ; R). Euler chains and Euler
structures on (X, Y ) are defined as in Sect. 2.4 where a runs over the cells of X
not lying in Y . The group H = H1(X) acts freely and transitively on the set of
Euler structures Eul(X, Y ).

Let F be a field and ϕ : H → F\0 be a group homomorphism. For a homology
orientation of (X, Y ) and e ∈ Eul(X, Y ), we define a torsion τϕ(X, Y, e) ∈ F as
above using the chain complex

Cϕ
∗ (X, Y ) = F ⊗Z[H] C∗(X̃)/C∗(p−1(Y )),

where p : X̃ → X is the maximal abelian covering of X.
We state a theorem of multiplicativity for torsions refining the classical mul-

tiplicativity due to Whitehead [14]. Observe that the sum of an Euler chain in
(X, Y ) and an Euler chain in Y is an Euler chain in X. This induces a pairing
(e, e′) �→ ee′ from Eul(X, Y ) × Eul(Y ) to Eul(X). Assume that X and Y are
homology oriented and provide the pair (X, Y ) with the induced homology ori-
entation such that the torsion of the exact homology sequence of (X, Y ) with
coefficients in R with respect to the bases in homologies determining these ho-
mology orientations is positive. Assume that χ(X) = χ(Y ) = 0 and denote by j
the inclusion homomorphism H1(Y ) → H1(X).

2.6.1. Theorem. If τϕ(X, Y ) �= 0 or τϕ◦j(Y ) �= 0, then

τϕ(X, ee′) = (−1)µ τϕ(X, Y, e) τϕ◦j(Y, e′)

for any e ∈ Eul(X, Y ), e′ ∈ Eul(Y ) and

µ =
dim X∑
i=0

[(βi + 1)(β′
i + β′′

i ) + β′
i−1β

′′
i ] (mod 2) ∈ Z/2Z,

where

βi =
i∑

r=0

br(X), β′
i =

i∑
r=0

br(Y ), β′′
i =

i∑
r=0

br(X, Y ).

For a proof, see ([12], Sect. 3.4.) Note that if H∗(X, Y ; R) = 0 then µ = 0.

2.7. The duality. One of the fundamental properties of torsions is the duality
due to Franz [1] and Milnor [5]. We state a refined version following [12], [13].
Let M be a smooth closed connected oriented manifold of odd dimension m ≥ 3.
Let F be a field with involution f �→ f : F → F . Let ϕ : H1(M) → F\0 be a
group homomorphism such that ϕ(h) = ϕ(h−1) for any h ∈ H1(M). Then for
every e ∈ vect(M) = Eul(M),

τϕ(M, e) = (−1)z τϕ (M, e−1) = (−1)z ϕ(c(e)) τϕ(M, e),

where e−1 is the opposite Euler structure on M , c(e) ∈ H1(M) is the Euler class
of e, and z = 0 for m = 3 (mod 4) and z =

∑
i<m/2 bi(M) for m = 1 (mod 4).
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3. The torsion τ

3.1. Preliminaries. Let H be a finitely generated abelian group. Denote by
Q(H) the classical ring of quotients of the rational group ring Q[H], i.e., the
localization of Q[H] by the multiplicative system of all non-zerodivisors. We
show here that Q(H) splits as a finite direct sum of fields. (Such a splitting
is unique: the fields in question may be characterized as the minimal ideals of
Q(H).)

Set T = Tors H. Each character σ : T → S1 ⊂ C extends to a Q-linear ring
homomorphism σ̃ : Q[T ] → C. Its image is a cyclotomic field, Kσ. Two charac-
ters σ1 and σ2 of T are said to be equivalent if Kσ1 = Kσ2 and σ̃1 is a composition
of σ̃2 and a Galois automorphism of Kσ1 over Q. It is well known that for any
complete family of representatives σ1, ..., σn of the equivalence classes, the ho-
momorphism (σ̃1, ..., σ̃n) : Q[T ] → ⊕n

i=1Kσi is an isomorphism. This implies
that Q(T ) = Q[T ] and proves our claim in the case rankH = 0.

In the general case consider the free abelian group G = H/T . Then

Q[H] = Q[T ⊕ G] = (Q[T ])[G] = ⊕n
i=1Kσi

[G].

The group ring Kσi [G] is an integral domain. An element of Q[H] is a non-
zerodivisor if and only if its projections to all the summands Kσi [G] are nonzero.
Inverting all non-zerodivisors in Q[H] we obtain

(3.1.a) Q(H) = ⊕n
i=1Fi,

where Fi is the field of fractions of Kσi [G]. We can view Fi as the field of
rational functions in rankH = rankG variables with coefficients in Kσi . Note
that H ⊂ Q[H] ⊂ Q(H).

3.2. Definition of τ . Let X be a homology oriented finite connected CW space
(or a homology oriented smooth compact connected manifold) with χ(X) = 0.
Set H = H1(X). Denote by ϕi the composition of the inclusion H ↪→ Q(H)
and the projection Q(H) → Fi on the i-th term in (3.1.a). By Sect. 2, for any
e ∈ Eul(X), we have τϕi(X, e) ∈ Fi. Set

τ(X, e) =
n∑

i=1

τϕi(X, e) ∈ ⊕n
i=1Fi = Q(H).

This is a well defined element of Q(H). Clearly τ(X, he) = h τ(X, e), for h ∈ H.
Set τ(X) = {τ(X, e) | e ∈ Eul(X)}. We view τ(X) as an element of Q(H)/H.

3.3. The Milnor torsion. Let us numerate the fields {Fi} in (3.1.a) so that
F1 corresponds to the trivial character T → 1 of T = Tors H. Then F1 is the
field of fractions of the group ring Q[G] where G = H/T . The projection proj :
Q(H) → F1 along ⊕i≥2Fi is induced by the projection H → G. The inclusion
Q(G) = F1 ↪→ Q(H) is the composition of the ring homomorphism Q(G) →
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Q(H) induced by any section of the projection H → G and multiplication by
|T |−1

∑
g∈T g ∈ Q[H].

The torsion ±τproj(X) = ±proj (τ(X)) ∈ Q(G)/ ± G was introduced by
Milnor [5] for compact 3-manifolds with boundary. He computed this torsion in
terms of the Alexander polynomial. This was extended to closed 3-manifolds in
[8], cf. [12] and Sect. 4.4 below.

If rankH = 0, then Q(H) = Q[H] and proj = aug : Q[H] → Q is summation
of coefficients. Clearly proj (τ(X)) = τproj(X) = 0 where the last equality
follows from the fact that the chain complex Cproj

∗ (X) = C∗(X; Q) has nontrivial
homology.

3.4. Duality for τ . The projection Q(H) → Fi in (3.1.a) is equivariant with
respect to the ring involution a �→ a : Q(H) → Q(H) induced by the inversion
h �→ h−1 : H → H and the ring involution in Fi extending the complex conjuga-
tion in Kσi and the inversion h �→ h−1 : G → G. The duality theorem of Sect. 2.7
applies to each summand in the definition of τ(M, e) where M is a smooth closed
connected oriented manifold of odd dimension and e ∈ vect(M) = Eul(M). We
obtain
(3.4.a) τ(M, e) = (−1)z τ(M, e−1) = (−1)z c(e) τ(M, e).

4. The torsion τ for 3-manifolds

Throughout Sections 4 and 5 the symbol M denotes a smooth compact con-
nected oriented homology oriented 3-manifold whose boundary is either empty
or consists of 2-tori. If ∂M = ∅ then we assume that the homology orientation
of M is induced by the orientation of M as in Sect. 2.3. Set H = H1(M),
G = H/Tors H, and Σ =

∑
h∈TorsH h ∈ Z[H].

4.1. Theorem. If b1(M) ≥ 2, then τ(M, e) ∈ Z[H] for any e ∈ Eul(M).

Note that if the inclusion τ(M, e) ∈ Z[H] holds for one Euler structure then
it holds for all the others and for the opposite homology orientation.

4.1.1. Lemma. Let x be an element of Q(H) such that x(h − 1) ∈ Z[H] for
any h ∈ H. If rankH ≥ 2, then x ∈ Z[H].

Proof. The lemma is obvious if H is torsion-free, since in this case Q(H) is
the ring of rational functions on rankH ≥ 2 variables with integer coefficients.
Set x′ = proj(x) ∈ Q(G) where proj : Q(H) → Q(G) is the projection. It
is clear that x′(g − 1) ∈ Z[G] for any g ∈ G. Hence x′ ∈ Z[G]. Under the
inclusion Q(G) ↪→ Q(H) the ring Z[G] is mapped into Q[H] and x′ is mapped
into y = xn−1Σ where n = |Tors H| (cf. Sect. 3.3). Therefore y ∈ Q[H]. Set
z = x−y. For h ∈ Tors H, we have y(h−1) = 0 and z(h−1) = x(h−1) ∈ Z[H].
Summing up over h ∈ Tors H, we obtain z(Σ − n) ∈ Z[H]. On the other hand

zΣ = x(1 − n−1Σ)Σ = x(Σ − n−1Σ2) = x · 0 = 0.

Thus, nz ∈ Z[H] so that z ∈ Q[H]. This implies x = y+z ∈ Q[H]. For a suitable
h ∈ H, all the coefficients of the formal sum x ∈ Q[H] appear as coefficients of
x(h − 1). Therefore, x ∈ Z[H].
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4.1.2. Proof of Theorem 4.1. Consider first the case ∂M = ∅. It is well
known that M admits a cell decomposition X consisting of one 0-cell, one 3-cell,
and equal number, say m, of 1-cells and 2-cells. Consider the maximal abelian
covering X̃ of X. Choose a fundamental family of cells ẽ in X̃ and orient and
order these cells in an arbitrary way. This yields a basis for the cellular chain
complex C∗(X̃) = (C3 → C2 → C1 → C0) where C0 = Z[H], C1 = (Z[H])m,
C2 = (Z[H])m, and C3 = Z[H] with H = H1(M) = H1(X). We can choose ẽ so
that:

(i) the boundary homomorphism ∂0 : C1 → C0 is given by an (m× 1)-matrix
(h1 − 1, h2 − 1, ..., hm − 1) where h1, ..., hm are the generators of H represented
by the oriented 1-cells of X;

(ii) the boundary homomorphism ∂2 : C3 → C2 is given by an (1×m)-matrix
(g1−1, g2−1, ..., gm−1) where gr ∈ H is represented by a loop in X which pierces
once the r-th 2-cell of X and is contained in the (open) 3-cell of X otherwise.

Denote by ∆r,s the determinant of the matrix obtained from the (m × m)-
matrix, A, of the boundary homomorphism C2 → C1 by deleting the r-th row
and s-th column. Let e be the Euler structure on X corresponding to ẽ. Consider
the cellular chain complex C∗(X; R) with the basis determined by ẽ and the basis
in homology determining the homology orientation of M . Let ξ = ±1 be the
sign of the corresponding torsion τ̂ ∈ R\{0}. We claim that for any r, s,

(4.1.a) τ(X, e)(gr − 1)(hs − 1) = (−1)m+r+s+1 ξ ∆r,s ∈ Z[H].

To prove this, consider splitting (3.1.a). Let ϕi denote the projection Q(H) →
Fi. It suffices to show that for every i,

(4.1.b) ϕi(τ(X, e))ϕi(gr − 1) ϕi(hs − 1) = (−1)m+r+s+1 ξ ϕi(∆r,s).

We distinguish four cases.
(1). Let ϕi(gr − 1) = 0. Since any loop in M may be deformed into a

loop transversal to the 2-skeleton of X, the elements g1, ..., gm generate H. The
assumption b1(M) ≥ 2 implies that ϕi(H) �= 1. Therefore ϕi(gu) �= 1 for a
certain u �= r. The equality ∂1∂2 = 0 yields a linear relation between the rows
of A. Apply ϕi to all terms of this relation. The resulting relation is nontrivial
because the u-th row appears with coefficient ϕi(gu−1) �= 0. On the other hand
the r-th row does not appear in this relation because ϕi(gr − 1) = 0. Therefore
ϕi(∆r,s) = 0.

(2). Let ϕi(hs − 1) = 0. Since ϕi(H) �= 1, we have ϕi(hu) �= 1 for a certain
u �= s. The equality ∂0∂1 = 0 yields a linear relation between the columns of
A. Applying ϕi we obtain a nontrivial relation because ϕi(hu − 1) �= 0. The
s-th column does not appear in this relation because ϕi(hs − 1) = 0. Hence
ϕi(∆r,s) = 0.

(3). Let ϕi(gr − 1) �= 0, ϕi(hs − 1) �= 0, and ϕi(∆r,s) = 0. It is easy to see
that rankA ≤ m − 2. Therefore H2(Cϕi(X)) �= 0 and ϕi(τ(X, e)) = 0.
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(4). Let ϕi(gr − 1) �= 0, ϕi(hs − 1) �= 0, and ϕi(∆r,s) �= 0. In this case
the complex Cϕi(X) = Fi ⊗ C∗(X̃) is acyclic. By definition, ϕi(τ(X, e)) =
ξ τ(Cϕi(X)). We compute the latter torsion using (2.1.a) where: m = 3; c0, ..., c3

are the bases for the chain modules of Cϕi(X) defined by ẽ; the bases in homology
are empty; b1 is the s-th vector of c1, b2 is obtained from c2 by omitting the
r-th vector, and b3 = c3. We have [∂0(b1)b0/c0] = ϕi(hs − 1), [∂1(b2)b1/c1] =
(−1)m−sϕi(∆r,s), [∂2(b3)b2/c3] = (−1)r−1ϕi(gr − 1), and [b3/c3] = 1. This
implies

τ(Cϕi(X)) = (−1)m+r+s+1ϕi (∆r,s) (ϕi(gr − 1))−1( ϕi(hs − 1))−1.

This is equivalent to (4.1.b).
Since g1, ..., gm (resp. h1, ..., hm) generate H, τ(X, e)(g−1)(h−1) ∈ Z[H] for

any g, h ∈ H. Applying Lemma 4.1.1 twice, we obtain τ(M, e) = τ(X, e) ∈ Z[H].
Let ∂M �= ∅. We can collapse M onto a 2-dimensional CW complex X ⊂ M

with one 0-cell and m one-cells. By χ(X) = χ(M) = 0, the number of 2-cells
of X is equal to m − 1. As above, we present the boundary homomorphisms
C3(X̃) → C2(X̃) → C1(X̃) by an ((m − 1) × m)-matrix, A, and (m × 1)-
matrix (h1 − 1, ..., hm − 1) where h1, ..., hm ∈ H are generators represented by
the 1-cells of X. The rest of the argument goes as in the case of closed M ;
instead of (4.1.a) we have τ(X, e)(hs − 1) = (−1)m+s ξ ∆s where ∆s is the
determinant of the matrix obtained from A by deleting the s-th column. By
Lemma 4.1.1, τ(X) ∈ Z[H]/H. The invariance of τ under simple homotopy
equivalences implies τ(M) ∈ Z[H]/H.

4.2. The case b1(M) = 1. Fix an element t ∈ H whose image modulo Tors H
is a generator [t] of the infinite cyclic group G = H/Tors H. Observe that 1 − t
is invertible in Q(H). Recall that Σ =

∑
h∈Tors H h ∈ Z[H].

4.2.1. Theorem. Let b1(M) = 1 and ∂M = S1 × S1. Assume that the homol-
ogy orientation of M is given by the basis [pt] ∈ H0, t ∈ H1. For e ∈ Eul(M),
set τt(M, e) = τ(M, e) − (1 − t)−1Σ. Then τt(M, e) ∈ Z[H].

It is clear that τth(M, e) = τt(M, e) for h ∈ Tors H. If we replace t with t−1

then the homology orientation of M is inversed so that

τt−1(M, e) + (1 − t−1)−1Σ = −τt(M, e) − (1 − t)−1Σ.

Thus, τt(M, e) + τt−1(M, e) = −Σ.

Proof of Theorem. An argument used in Lemma 4.1.1 yields the following.

(4.2.2) Let x be an element of Q(H) such that x(h − 1) ∈ Z[H] for any h ∈ H.
Then x = xt + r(1 − t)−1Σ with xt ∈ Z[H] and r ∈ Z.

Using this proposition and the argument of Sect. 4.1.2, we obtain τ(M, e) =
xt(M, e)+ r(1− t)−1Σ with xt(M, e) ∈ Z[H] and r ∈ Z. It remains to show that
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r = 1. Note that the image of τ(M, e) under the projection proj : Q(H) → Q(G)
is the torsion τproj(M, e) ∈ Q(G). It suffices to prove that the sum of coefficients
of τproj(M, e)(1 − [t]) ∈ Z[G] equals |Tors H|. This sum does not change if
τproj(M, e) is multiplied by an element of G. Therefore we can forget about e
and deal just with the sign-refined torsion τproj(M).

As in Sect. 4.1.2 we collapse M onto a 2-dimensional CW complex X ⊂ M
with one 0-cell and m ≥ 1 one-cells. We can assume that the closure of one
of the 1-cells of X is a circle representing t±1 ∈ H = H1(X) = H1(M). De-
note this circle by Y . We orient Y so that it represents t and provide it with
homology orientation [pt] ∧ [Y ]. We use Theorem 2.6.1 to compute τproj(M) =
τproj(X). A direct computation shows that µ = 0 and τproj◦j(Y ) = (1 − [t])−1.
Hence τproj(X)(1 − [t]) = τproj(X, Y ). Observe that the cellular chain complex
Cproj

∗ (X, Y ) is nontrivial only in dimensions 1 and 2. The boundary homo-
morphism C2 → C1 is given by a ((m − 1) × (m − 1))-matrix, A, over Z[G].
The integral matrix A0 obtained from A by replacing every term with the sum
of its coefficients is the matrix of the boundary homomorphism in the cellular
chain complex C∗(X, Y ). Hence detA0 = ±|H1(X, Y )| = ±|Tors H|. It follows
from definitions that τproj(X, Y ) = sign(detA0) detA. The sum of coefficients of
τproj(X, Y ) is equal to sign(detA0) detA0 = |Tors H|. Therefore r = 1.

4.2.3. Theorem. Let b1(M) = 1 and ∂M = ∅. Let e ∈ vect(M) = Eul(M)
and K = Kt(e) be an integer such that c(e) ∈ tKTorsH. Set

τt(M, e) = τ(M, e) − K − 2
2

(1 − t)−1Σ − (1 − t)−2Σ.

Then τt(M, e) ∈ Z[H].

The number K is even: this follows from the identity c(he) = h2c(e) and the
parallelisability of M which implies the existence of an Euler structure e on M
with c(e) = 1. Note that Kt−1(e) = −Kt(e) and τth(M, e) = τt(M, e) for h ∈
Tors H. An easy computation shows that τt−1(M, e) = τt(M, e) + (Kt(e)/2) Σ.

Proof of Theorem. We begin with an analogue of (4.2.2).

(4.2.4) Let x be an element of Q(H) such that x(g − 1)(h − 1) ∈ Z[H] for any
g, h ∈ H. Then x = xt + r(1− t)−1Σ + s(1− t)−2Σ with xt ∈ Z[H] and r, s ∈ Z.

Using this proposition and the argument of Sect. 4.1.2, we obtain

(4.2.a) τ(M, e) = xt(M, e) + r(1 − t)−1Σ + s(1 − t)−2Σ

with xt(M, e) ∈ Z[H] and r, s ∈ Z. Let us prove that s = 1. The number s does
not change if τ(M, e) is multiplied by an element of H. Therefore we can forget
about e and deal just with τ(M) = {τ(M, e) | e ∈ Eul(M)} ∈ Q(H)/H.

Choose an embedded circle ; ⊂ M representing t and denote by E its ex-
terior, i.e., the complement in M of its open regular neighborhood. Note that
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E is a compact connected orientable 3-manifold with H1(E) = H1(M) = H
and H2(E) = H3(E) = 0. We provide E with homology orientation [pt] ∧ t.
Since M\IntE is a solid torus, the pair (M, E) has a relative cell decomposition
consisting of one 2-cell, α2, and one 3-cell, α3. The orientation of M induces an
orientation of α3; we orient α2 so that α2 · ; = +1. It is easy to compute that
the homology orientation of the pair (M, E) induced by those in M and E is
given by [α2] ∧ [α3].

The image of τ(M) under the projection proj : Q(H) → Q(G) is the torsion
τproj(M) ∈ Q(G)/G. To compute the latter torsion we apply Theorem 2.6.1
to the pair (M, E). It is easy to check that µ = 0. For an appropriate lift of
the oriented cells α2, α3 to the maximal abelian covering of M , the boundary
homomorphism C3 → C2 of the cellular chain complex Cproj

∗ (M, E) is given by
the (1 × 1)-matrix [t] − 1. By a direct computation, τproj(M, E) = (1 − [t])−1.
Theorem 2.6.1 implies that

τproj(E) = (1 − [t]) τproj(M) = (1 − [t]) proj(τ(M)) = z + s(1 − [t])−1Σ,

where z ∈ Z[G]. Now, Theorem 4.2.1 applied to E yields s = 1.
By Sect. 3.4, τ(M, e) = c(e) τ(M, e). Substituting (4.2.a), using the equalities

c(e)Σ = tKΣ,Σ = Σ and computing modulo Z[H] one obtains r = (K − 2)/2.

4.3. The case b1(M) = 0. Under our assumptions on M , the condition
b1(M) = 0 implies that ∂M = ∅. Since H = H1(M) is finite, τ(M, e) ∈ Q(H) =
Q[H] for any e ∈ Eul(M). By Sect. 3.3, aug(τ(M, e)) = 0.

Recall the linking form L : H × H → Q/Z. To compute L(g, h) for g, h ∈ H
one represents g, h by disjoint 1-cycles, say x, y. Take a nonzero integer n such
that ny is the boundary of a 2-chain, α. One counts the intersection number
x ·α ∈ Z and sets L(g, h) = n−1(x ·α) mod Z ∈ Q/Z. This is well defined because
H2(M) = 0 so that the intersection number of x with any 2-cycle is 0. Note that
L is a non-degenerate symmetric bilinear form.

4.3.1. Theorem. For any e ∈ Eul(M) and g, h ∈ H,

(4.3.a) τ(M, e)(g − 1)(h − 1) = −L(g, h) Σ (mod Z[H]).

Theorem 4.3.1 implies that in general τ(M, e) does not lie in Z[H]. This the-
orem can be reformulated in terms of the coefficients of τ(M, e) =

∑
h∈H q(h)h

where q(h) ∈ Q. Namely, for any g, h ∈ H,

q(gh) − q(g) − q(h) + q(1) = −L(g, h) (mod Z).

Proof of Theorem. We shall use the notation of Sect. 4.1.2. Set n = |H|. The
argument of Sect. 4.1.2 gives (4.1.b) for the projection ϕi : Q[H] → Fi induced
by any nontrivial character of H. Clearly, aug(τ(M, e)(gr − 1)(hs − 1)) = 0.
Hence

(4.3.b) τ(M, e)(gr − 1)(hs − 1) = (−1)m+r+s+1ξ (∆r,s − aug(∆r,s)n−1Σ).
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We compute ξ. By definition, ξ is the sign of the torsion τ̂ of the cellular chain
complex C = C∗(X; R) with respect to the basis determined by the oriented and
ordered cells of the fundamental family of cells ẽ. It is clear that C0 = R,
C1 = Rm, C2 = Rm, and C3 = R. The boundary homomorphisms C3 → C2 and
C1 → C0 are zero. The boundary homomorphism C2 → C1 is an isomorphism
given by an integer (m×m)-matrix, A0. It is clear that detA0 = ±n. As a basis in
H∗(C) we take ([pt], [M ]). We also assume that the orientation of the only 3-cell
of X is induced by the orientation of M . It is easy to compute from definitions
that N(C) = m+1 (mod 2) and τ(C) = det(A0). Thus, τ̂(C) = (−1)m+1det(A0)
and ξ = (−1)m+1sign(detA0).

Let (α̃1, ..., α̃m) be the oriented and ordered 2-cells of ẽ. Let (β̃1, ..., β̃m) be
the oriented and ordered 1-cells of ẽ. Fix s = 1, ..., m and consider the cellular
2-chain α̃ =

∑
i(−1)i+s∆i,sα̃i ∈ C2(X̃; Z). It is clear that

∂(α̃) =
∑
i,j

(−1)i+s∆i,sai,j β̃j =
∑

j

δj
s det(A) β̃j = det(A) β̃s,

where A = (ai,j) is the (m × m)-matrix of the boundary homomorphism ∂ :
C3(X̃; Z) → C2(X̃; Z) and δ is the Kronecker delta. Projecting α̃ into X we
obtain a cellular 2-chain α =

∑
i(−1)i+saug(∆i,s) αi where αi is the i-th ori-

ented 2-cell in X. Clearly, ∂α = aug(detA)ys where ys is the oriented circle in
X formed by the s-th 1-cell and the only 0-cell and representing hs ∈ H. Ob-
serve that summation of coefficients transforms A into A0 so that aug(detA) =
detA0 = (−1)m+1ξn. Therefore ∂α = (−1)m+1ξnys.

We present gr by a loop xr in M piercing once the r-th 2-cell of X and
contained in the open 3-cell otherwise. By definition,

L(gr, hs) = ((−1)m+1ξn)−1(xr · α) =
∑

i

(−1)m+1+i+sξn−1 aug(∆i,s)(xr · αi)

=
∑

i

(−1)m+1+i+sξn−1 aug(∆i,s) δr
i = (−1)m+r+s+1ξn−1 aug(∆r,s).

Comparing with (4.3.b), we obtain (4.3.a) with g = gr, h = hs. Since g1, ..., gm

(resp. h1, ..., hm) generate H and L is bilinear, this yields the claim of the
theorem.

4.4. Remarks. 1. The torsion τ is closely related to the first elementary ideal
E of the fundamental group of M . This is the ideal in Z[H] generated by the
determinants {∆r,s} (resp. {∆s}) appearing in Sect. 4.1.2 for ∂M = ∅ (resp.
for ∂M �= ∅). Denote by I the ideal of Z[H] generated by {h − 1, h ∈ H}.
For b1(M) ≥ 1, the proof of Theorem 4.1 yields E = τ(M)I2 if ∂M = ∅ and
E = τ(M)I if ∂M �= ∅. If b1(M) = 0, then E is the pre-image of τ(M)I2 under
the homomorphism Z[H] → Q[H] sending h ∈ H to h−|H|−1Σ. (The key point
is the inclusion Σ ∈ E which follows from the equality Σ = ±detA essentially
proven in Sect. 4.1.2.) For more on this, see [9], [10].
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2. The Alexander polynomial ∆(M) of π1(M) is defined for b1(M) ≥ 1 as
the greatest common divisor of the elements of proj(E(π)) ⊂ Z[H/Tors H]. This
implies

∆(M) =




±proj (τ(M)), if b1(M) ≥ 2,

±proj (τ(M)(t − 1)2), if b1(M) = 1 and ∂M = ∅,
±proj (τ(M)(t − 1)), if b1(M) = 1 and ∂M �= ∅.

3. The results of this section extend to nonorientable 3-manifolds. In partic-
ular, if M is a compact connected homology oriented nonorientable 3-manifold
with b1(M) ≥ 2 then τ(M) ∈ Z[H1(M)]/H1(M).

5. The torsion function T

We adhere to the notation introduced at the beginning of Sect. 4.

5.1. The case b1(M) ≥ 2. Let e0 ∈ Eul(M) = vect(M). By Theorem 4.1,
τ(M, e0) =

∑
qe0(h)h where h runs over a finite subset of H = H1(M) and

qe0(h) ∈ Z. Composing the function h �→ qe0(h) : H → Z with the bijection
e �→ e0/e : Eul(M) → H we obtain a function T : Eul(M) → Z with finite
support. By definition, for e ∈ Eul(M),

(5.1.a) T (e) = qe0(e0/e) ∈ Z.

In fact, T does not depend on the choice of e0. Indeed, for e1 ∈ Eul(M),

∑
h∈H

qe1(h)h = τ(M, e1) = (e1/e0) τ(M, e0) = (e1/e0)
∑
h∈H

qe0(h)h.

Therefore qe0(h) = qe1((e1/e0)h). Substituting h = e0/e, we obtain qe0(e0/e) =
qe1(e1/e). Setting e0 = e in (5.1.a), we obtain T (e) = qe(1).

Assume that ∂M = ∅. By (3.4.a), qe(h−1) = qe−1
(h) for any e ∈ Eul(M), h ∈

H. Setting h = 1 we obtain T (e−1) = T (e). By the results of Sections 1 and 2,
S(M) = vect(M) = Eul(M) so that T is an integer-valued function on S(M).
The results of Menge and Taubes [4] imply an intimate connection between the
Seiberg-Witten invariant SW : S(M) → Z and T . We conjecture that SW = T .

5.2. The case b1(M) = 1. Fix an element t ∈ H as in Sect. 4.2. Let us call an
element h ∈ H negative if h ∈ tkTors H with k < 0. Denote by Λ the Novikov
ring of H consisting of integral series

∑
h∈H q(h)h such that q(h) = 0 for all

but a finite number of negative h. Multiplication in Λ is induced by the group
operation in H. It is clear that 1 − t is invertible in Λ. Using Theorems 4.2.1
and 4.2.3 we can view the torsion τ(M, e) with e ∈ Eul(M) = vect(M) as an
element

∑
h∈H qe(h)h of Λ. We define a function Tt : Eul(M) → Z as in Sect.

5.1 or by Tt(e) = qe(1).
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It is easy to compute Tt in terms of τt(M, e) ∈ Z[H], see Theorems 4.2.1
and 4.2.3. Let τt(M, e) =

∑
h∈H qe

t (h)h with qe
t (h) ∈ Z. If ∂M �= ∅, then

Tt(e) = qe
t (1) + 1. If ∂M = ∅, then Tt(e) = qe

t (1) + Kt(e)/2.
In distinction to the case b1 ≥ 2, the function Tt has an infinite support. It

is easy to compute that Tt = Tth for h ∈ Tors H, Tt−1 = 1 − Tt if ∂M �= ∅ and
Tt−1 = Tt − Kt/2 if ∂M = ∅.

If ∂M = ∅, then S(M) = vect(M) = Eul(M) so that Tt is an integer-
valued function on S(M). Note that both SW and Tt depend on the choice
of a generator of H/Tors H.

5.3. The case b1(M) = 0. The constructions of Sect. 5.1 apply word for word
with the only difference that here the function T takes values in Q. By Sect. 3.3
and 4.3,

∑
e T (e) = 0 and T (ghe)−T (ge)−T (he)+T (e) = −L(g, h) (mod Z) for

any g, h ∈ H, e ∈ Eul(M). It would be interesting to extend the SW-invariant
to the case b1(M) = 0 and to compare it with T .

5.4. Examples. The function T may happen to be identically zero. For in-
stance, if M is a connected sum of two closed connected oriented 3-manifolds
with b1 ≥ 1 then τ(M) = 0 and T = 0. In some cases the function T
can be used to distinguish Spinc-structures on 3-manifolds up to homeomor-
phism. Consider for instance a closed connected oriented 3-manifold M with
H1(M) = Z/2Z = (a | a2 = 1). There are two Spinc-structures on M , say e
and e′ = ae. We have τ(M, e) = k − ka and τ(M, e′) = a(k − ka) = ka − k
with k ∈ Q. Theorem 4.3.1 implies that k �= 0. Then T (e) = k �= T (e′) = −k.
This implies that there is no orientation preserving homeomorphism M → M
transforming e into e′.

5.5. Manifolds with boundary re-examined. Let ∂M �= ∅. Following [4],
denote by S the set of Spinc-structures on M whose first Chern class c1 ∈ H2(M)
restricts to zero on every component of ∂M . (This is no constraint when ∂M
is connected.) Denote by S the set of pairs (s, x) ∈ S × H2(M, ∂M)/Tors such
that the cohomology class c1(s)(mod Tors) ∈ H2(M)/Tors equals the image of
x under the natural homomorphism H2(M, ∂M)/Tors → H2(M)/Tors. The
Seiberg-Witten invariant of M is a function SW : S → Z. The following lemma
suggests a relationships between SW and T : vect(M) → Z.

5.5.1. Lemma. There is a canonical embedding vect(M) ↪→ S.

Proof. By assumption, each component of ∂M is homeomorphic to S1 × S1.
Therefore it bears a nonsingular tangent vector field whose trajectories are the
circles [pt] × S1. The homotopy class of this vector field is independent of the
homeomorphism of the component onto S1×S1. (It is preserved under the Dehn
twists along [pt] × S1 and S1 × [pt]; cf. also [13], Sect. 9.3.) Denote by v0 the
resulting nonsingular tangent vector field on ∂M .

Let u be a nonsingular tangent vector fields on M directed outwards on ∂M .
The constructions of Sections 1.3, 1.4 yield a Spinc-structure on M . The ob-
struction to the extension of v0 to a nonsingular vector field on M transversal
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to u is an element of H2(M, ∂M) and we project it into H2(M, ∂M)/Tors. This
gives an embedding vect(M) ↪→ S.
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