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ON THE POINCARÉ POLYNOMIAL OF

A COMPLEMENT OF HYPERPLANES

Roberto Silvotti

1. Introduction

In this note we study the Poincaré polynomial

Poin(Y ; t) =
n∑

i=1

ti dimC Hi(Y, C),

where Y = Cn − ∪IAI is the complement of a union of hyperplanes—an ar-
rangement of hyperplanes. Two are our main goals. The first objective is to
find natural geometric conditions in order for the Poincaré polynomial to fac-
torize, that is

(1) Poin(Y ; t) =
∏
j

Pj(t),

where the Pj(t) are polynomials with positive integer coefficients. The second
goal is to identify the coefficients of the polynomials Pj(t) — hence also the Betti
numbers of Y — with natural characteristic numbers.

The Poincaré polynomial plays a prominent role in the study of the topology
of complements of hyperplanes (see [7]). A motivation for our work is in fact
a theorem of Terao [10: Main Theorem] stating that, for the complement of a
central and essential free arrangement, the factorization (1) occurs into linear
polynomials. Here an arrangement ∪IAI ⊂ Cn is said to be central and essential
when the total intersection ∩IAI = {0}, the origin in Cn. As for the notion of
freeness, recall the general definition of the sheaves of logarithmic p–forms on
a complex manifold X with poles along any hypersurface D ⊂ X. These are
the OX–sheaves Ωp

X(log D) of meromorphic forms ω on X which satisfy the
following local property on any U ⊂ X: If f is a local defining function for
D on U , both fω and fdω are holomorphic throughout U . Accordingly, an
arrangement ∪IAI ⊂ Cn is free if Ω1

Cn(log∪IAI) is a locally free OCn–module.
As pointed out by Saito in [8], this property should be related to the vanishing
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of the higher homotopy groups of Y in a manner whose precise extent is yet to
be understood.

In order to calculate the cohomology of Y we shall consider any smooth com-
pactification X of Y , birationally isomorphic to Pn and in which Y is realized
as the complement of a hypersurface D with normal crossings. For the sake of
brevity, we shall henceforth refer to such X

σ−→ Pn as to a good compactification;
it can be constructed via a composite σ of blow–ups along multiple intersections
of the hyperplanes in Pn obtained by completing at infinity the components AI

of the arrangement. Since D is normal crossing, the sheaves Ωp
X(log D) of loga-

rithmic p–forms are automatically locally free, i.e., holomorphic vector bundles
on X. Our interpretation of the factorization property is suggested by the el-
ementary observation that the occurrence of (1) for a hyperplane complement
Y might be the manifestation of a product structure—however disguised in the
complexity of the arrangement—of some complex computing H∗(Y, C). The
obvious model of a factorizable polynomial Poin(C∗, t) =

∑
ti dimHi(C∗) is

in fact that of the cohomology of a product complex C∗ = ⊗jC
∗
j , for which a

formula like (1) holds with Pj(t) = Poin(C∗
j , t). For an affine algebraic manifold

like Y , (1) would be a trivial consequence of Künneth formula if, for example,
Y were topologically a product of ×jYj of affine manifolds Yj

∼= Xj − Dj . The-
orem 1 below shows that a natural weakening of this factorization scheme is in
fact provided by the notion of decomposability of Ω1

X(log D) into holomorphic
subbundles Ej .

The following theorem applies directly to the complement of an essential ar-
rangement, that is a union of affine hyperplanes whose lowest dimensional mul-
tiple intersections consist of isolated points. Note that this is in effect no loss of
generality, for the complement Y of any non–empty arrangement in Cn is always
isomorphic to the cartesian product Y ′ ×Cn−m, where Y ′ is the complement of
an essential arrangement in Cm (for some m ≤ n).

Theorem 1.1. Let X be a good compactification of the complement Y of an
essential arrangement of hyperplanes in Cn. Let D denote the normal crossing
hypersurface X − Y . If Ω1

X(log D) is isomorphic to the direct sum ⊕jEj of
holomorphic vector bundles Ej, then

(i) For all j, the higher cohomology groups of the exterior powers of Ej

vanish, i.e., Hi(X,∧pEj) = 0 for i > 0 and all p;
(ii) The complex cohomology of Y is given by the global sections of the exte-

rior powers of the Ej’s,

Hp(Y, C) ∼=
⊕

∑
pj=p

⊗
j

Γ(X,∧pjEj)

for all p.
(Convention: ∧0Ej ≡ OX , the trivial line bundle).

Notice that, as an immediate consequence of (i) together with Hirzebruch–
Riemann–Roch theorem, one has dim Γ(∧iEj) = χ(∧iEj) =

∫
X

todd(X) ch(∧iEj)
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for all i and j. It is now a matter of straighforward algebra to verify that the
following corollary holds true.

Corollary 1.2. Under the same assumptions as in Theorem 1.1, the Poincaré
polynomial of Y factorizes,

Poin(Y ; t) =
∏
j

Pj(t), Pj(t) = 1 + βj,1t + · · · + βj,rk(Ej)t
rk(Ej),

where rk(Ej) denotes the rank of Ej and the various coefficients are given by the
Riemann–Roch formula

βj,i = χ
(
∧iEj

)
=

∫
X

todd(X) ch(∧iEj).

In order to illustrate the content of the theorem and of its corollary, let us
consider the following two limiting situations.

Example 1.3. When Ω1
X(log D) does not necessarily decompose, Theorem 1.1

states that Hi
(
X, Ω1

X(log D)
)

= 0 for i > 0 and that H∗(Y, C) ∼= Γ
(
X, Ω∗

X(log D)
)
,

a result of Esnault, Schechtman and Viehweg [4]. Corollary 1.2 gives the Betti
numbers of Y in terms of the Chern classes of Ω1

X(log D),

Poin(Y ; t) =
n∑

i=1

ti
∫

X

todd(X) ch
(
Ωi

X(log D)
)
.

Example 1.4. If the splitting Ω1
X(log D) ∼= L1 ⊕ · · · ⊕Ln is into line bundles Lj ,

then one concludes that all higher cohomology groups of the Lj vanish, and

Hp(Y, C) ∼=
⊕

1≤j1<···<jp≤n

Γ(X,Lj1) ⊗ · · · ⊗ Γ(X,Ljp)

for all p. In this case the Poincaré polynomial of Y factorizes into polynomials
of degree 1,

Poin(Y ; t) =
n∏

j=1

(1 + βj t),

where the numbers β1, . . . , βn are

βj = χ(Lj) =
∫

X

todd(X) ch
(
Lj).

The factorization theorem of [9][10] thus follows from the observation that the
splitting property of Ω1

X(log D) into line bundles is verified whenever Y is the
complement of a central and essential free arrangement. We write OPn(1) for the
hyperplane line bundle on Pn, OPn(m) = OPn(1)⊗m for the m–th power. Let
also the integers α1, . . . , αn ≥ 1 denote the “exponents” of the free arrangement
(see [7: Definition 4.25] and Section 5 below). The sharper statement is as
follows:
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Theorem 1.5. Let Y be the complement of a central and essential free arrange-
ment. Then there is a good compactification X

σ−→ Pn of Y so that Ω1
X(log D)

splits into line bundles. Explicitly, let E1, . . . , Eν be the exceptional components
of D. Then there are non–negative integers µa,i (see Section 5) so that

Ω1
X(log D) ∼=

n⊕
j=1

(
σ∗OPn(αj − 1) ⊗

(
−

ν∑
a=1

µa,jEa

))
︸ ︷︷ ︸

Lj

.

Corollary 1.6. The cohomology of the complement Y of a central and es-
sential free arrangement decomposes, Hp(Y, C) ∼= ⊕1≤j1<···<jp≤n Γ(X,Lj1) ⊗
· · · ⊗ Γ(X,Ljp), with Lj as in Theorem 1.5. Thus, in particular, Poin(Y ; t) =∏n

j=1 (1 + βj t) with βj = χ (σ∗OPn(αj − 1) ⊗ (−
∑ν

a=1 µa,jEa)).

Comparing with [10], one deduces that in effect βj = αj for all j. It should be
possible, applying the analysis of Sections 4 and 5 below to a concrete resolution
σ, to give a direct general proof of these equalities. In Section 6 we carry out
such computation for a general central and essential arrangement in C2.

Section 2 is a brief summary of the relevant properties of logarithmic forms.
Section 3 contains our proof of Theorem 1.1. In Section 4 we study the behaviour
of logarithmic forms under blow–ups. The splitting theorem of Section 5 is due
to H. Terao.

2. The complex of logarithmic forms

Let D be a normal crossing hypersurface in a smooth algebraic variety X
(dimC X = n) so that the complement X − D is affine. On a sufficiently small
open set U ⊂ X of a point where precisely m (m = 0, . . . , n) irreducible compo-
nents of D intersect one can choose local coordinates (z1, . . . , zn) so that a local
defining equation for D ∩ U is given by f = z1 · · · zm = 0. It directly follows
from the definition that

(i) Ω1
X(log D) is the sheaf of OX–modules generated on U by{
dz1

z1
, . . . ,

dzm

zm
, dzm+1, . . . , dzn

}
;

(ii) For p ≥ 1, Ωp
X(log D) =

∧p Ω1
X(log D);

(iii) When provided with the holomorphic de Rham differential d, the
Ωp

X(log D) form the differential complex of sheaves

0 −→ Ω0
X(log D) d−→ Ω1

X(log D) d−→ · · · d−→ Ωn
X(log D) −→ 0,

where we put Ω0
X(log D) = OX .
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One should note that the sheaves Ωp
X(log D) are locally free and are generated

by closed differential forms.
Upon introducing, as usual, complexes of Čech cochains C∗(X, Ωp

X(log D)
)

with coboundary δ, and in view of the anticommutativity of d with δ, one easily
verifies that d induces a well–defined differential d1 on Čech cohomology groups

0−→Hq
(
X, Ω0

X(log D)
) d1−→Hq

(
X, Ω1

X(log D)
) d1−→· · · d1−→Hq

(
X, Ωn

X(log D)
)
−→0

for every q. It is a well–known result of [3] that these complexes, which appear
as the E1–term in the Hodge–Deligne spectral sequence

Epq
1 = Hq

(
X, Ωp

X(log D)
)

=⇒ Hp+q(X − D, C),

are all trivial , i.e., d1 ≡ 0. Hence the spectral sequence degenerates at E1 and
the complex cohomology of Y is given by

(2) Hi(X − D, C) =
⊕

p+q=i

Hq
(
X, Ωp

X(log D)
)
.

However—as observed by Esnault, Schechtman and Viehweg—the case of
present interest affords the following remarkable simplification. (For related
work, see also [2]).

[4: Lemma on page 558]. Let X be a good compactification of the complement
Y of an arrangement of hyperplanes in Pn; D = X − Y . Then one has the
cohomology vanishing

Hq
(
X, Ωp

X(log D)
)

= 0 for q > 0 and all p,

so that Hi(Y, C) = Γ
(
X, Ωi

X(log D)
)

for i = 0, . . . , n.

We briefly recall the simple argument, especially to the purpose of pointing
out a feature (Remark 2.1) which will be required in the next section. Let Y
be the complement in Cn of a union of affine hyperplanes AI defined as the
zero loci of some linear holomorphic functions fI (I = 1, . . . , N). In view of
a result of Brieskorn [1] and of Orlik and Solomon [6], the cohomology alge-
bra H∗(Y, C) is identified with a quotient of the exterior algebra E (over C)
generated by the deRham classes

{
1,

[
1

2πid log fI

]}
I=1,...,N

. (In fact, the same
identification holds true also over Z). One can easily verify that every p–fold
wedge d log fI1 ∧ · · · ∧ d log fIp is a section of Ωp

Y on the open subset Y ⊂ X
extending to a differential form on X with logarithmic poles along D, i.e., to
a section—a fortiori global—of Ωp

X(log D). It follows that the global sections
Γ
(
X, Ωp

X(log D)
)

generate Hp(Y, C); thus, in view of the decomposition (2), that
necessarily Hq

(
X, Ωp

X(log D)
)

= 0 for q > 0 and Γ
(
X, Ωp

X(log D)
)

= Hp(Y, C).

Remark 2.1. Clearly the same argument also shows that the natural map

∧pH1(Y, C) = ∧pΓ
(
X, Ω1

X(log D)
) π−→ Γ

(
X, Ωp

X(log D)
)

= Hp(Y, C)

is surjective for every p ≥ 1. (The kernel of π is generated by the ideal of
relations in E = ∧∗Γ

(
X, Ω1

X(log D)
)
).
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3. Splitting and factorization

Throughout this section we shall be working under the hypotheses of The-
orem 1.1. By the splitting assumption Ω1

X(log D) ∼= ⊕k
j=1 Ej , where of course∑k

j=1 rk(Ej) = n. One has

Ωp
X(log D) = ∧pΩ1

X(log D) ∼=
⊕

1≤j1≤···≤jp≤k

Ej1 ∧ · · · ∧ Ejp

∼=
⊕

∑
pj=p

k⊗
j=1

∧pjEj

for all p. In view of Esnault–Schechtman–Viehweg vanishing, then all wedge
products of vector bundles Ej must have vanishing higher cohomologies,

Hq
(
X,⊗k

j=1 ∧pj Ej

)
= 0 for q > 0 and all p1, . . . , pk,

and

Hp(Y, C) ∼=
⊕

1≤j1≤···≤jp≤k

Γ
(
X, Ej1 ∧ · · · ∧ Ejp

)
∼=

⊕
∑

pj=p

Γ(X,⊗k
j=1 ∧pj Ej

)
.

Consider now the natural maps

(3)
k⊗

j=1

Γ(X,∧pjEj)
ψ−→ Γ

(
X,⊗k

j=1 ∧pj Ej

)

sending γ = s1 ⊗C · · · ⊗C sk ∈
⊗k

j=1 Γ(X,∧pjEj) �→ ψ(γ) ∈ Γ
(
X,⊗k

j=1 ∧pj Ej

)
,

the section such that ψ(γ)x = (s1)x ⊗Ox · · · ⊗Ox (sk)x at every x ∈ X. In order
to prove Theorem 1.1 one must show that, for all p1, . . . , pk, the maps ψ are
isomorphisms.

Surjectivity of (3) is a consequence of Remark 2.1. For, in view of the decom-
position of the Γ

(
X, Ω1

X(log D)
) ∼=

⊕k
j=1 Γ(X, Ej) of log 1–forms, one obtains

∧pΓ
(
X, Ω1

X(log D)
) ∼=

⊕∑
pj=p

⊗k
j=1 ∧pj Γ(X, Ej), whereas Γ

(
X, Ωp

X(log D)
)∼=⊕∑

pj=p Γ
(
X,⊗k

j=1 ∧pj Ej

)
. By Remark 2.1, then, the various maps

k⊗
j=1

∧pj Γ(X, Ej)
π−→ Γ

(
X,⊗k

j=1 ∧pj Ej

)
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are surjective. Note that π factors through ψ as shown in the following commu-
tative diagram ⊗k

j=1 ∧pj Γ(X, Ej)
π−−−−→ Γ

(
X,⊗k

j=1 ∧pj Ej

)
π′

� ∥∥∥⊗k
j=1 Γ(X,∧pjEj)

ψ−−−−→ Γ
(
X,⊗k

j=1 ∧pj Ej

)
.

Since π = ψπ′ is surjective, so must be ψ.
In order to extablish the injectivity of ψ in (3) we shall need a couple of

preparatory lemmas. Recall that a holomorphic vector bundle EX on X is said to
be generated by global sections if the sheaf map Γ(X, EX)⊗COX

ϕ−→ EX , defined
at every point x ∈ X by ϕ(s ⊗ f)x = fxsx, is surjective. For an arrangement
∪IHI = {

∏
I fI = 0} ⊂ Cn the pull–backs σ∗d log fI to X

σ−→ Pn furnish a
basis of global sections of Ω1

X(log D). One easily sees that at every x ∈ X there
are n of them such that σ∗(d log fI1)x ∧ · · · ∧ σ∗(d log fIn)x �= 0 if and only if
arrangement is essential:

Lemma 3.1. Let X be a good compactification of the complement Y of an
arrangement of hyperplanes in Cn; D = X −Y Then Ω1

X(log D) is generated by
global sections if and only if the arrangement is essential.

Under the assumptions of Theorem 1.1, then Ω1
X(log D) ∼= E1 ⊕ · · · ⊕ Ek is

generated by global sections. This implies that also the maps

Γ(X, Ej) ⊗C OX
ϕ−→ Ej , ϕ(s ⊗ f)x = fxsx

are surjective for all j, i.e., each Ej is globally generated. Observe that, since the
global sections in Γ(X, Ej) are d–closed by Deligne degeneration, the bundles Ej

are generated by closed 1–forms. As a wedge of local frames consisting of closed
1-forms is also a closed form, the latter conclusion applies to any wedge product
of the Ej ’s. This observation has the following consequence.

Lemma 3.2. On any open set U ∼= Cn in X, not intersecting D, there are local
analytic coordinates

(
y

ij

j

)ij=1,..., rk(Ej)

j=1,..., k
such that any global section s ∈ Γ(X, Ej)

takes the local form

s|U =
rk(Ej)∑
i=1

f i dyi
j ,

where the f i ≡ f i(y1
j , . . . , y

rk(Ej)
j ) are functions of y1

j , . . . , y
rk(Ej)
j only. Analo-

gously, let J be any subset of the index set {1, . . . , k}. Then, any global section
s ∈ Γ(X,⊗j∈J ∧pj Ej) takes the local form

s|U =
∑
{i}

f{i}
∧
j∈J

dyi1
j ∧ · · · ∧ dy

ipj

j ,
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where the f{i} depend on the variables
(
y

ij

j

)ij=1,..., rk(Ej)

j∈J
only.

Proof. Let
{
σ

ij

j

}ij=1,..., rk(Ej)

j=1,..., k
be a local frame of Ω1

X(log D) on an open set U ⊂
X so that, for each j, (σ1

j , . . . , σ
rk(Ej)
j ) is a local frame of Ej . By the previous

observation, the σ
ij

j can be chosen to be the restrictions to U of suitable global
sections of Ω1

X(log D), in which case they are closed 1–forms. If U ∩ D = ∅,
then the σ

ij

j are holomorphic and, by the Poincaré lemma, σ
ij

j = dy
ij

j for some
holomorphic functions y

ij

j . Since the Jacobian determinant ∧j,ij σ
ij

j is nowhere

zero on U , the n functions
(
y

ij

j

)ij=1,..., rk(Ej)

j=1,..., k
define local analytic coordinates on

U . The restriction to U of any global section s ∈ Γ(X, Ej) is written as s =∑rk(Ej)
i=1 f i dyi

j . But both s and the dyi
j are d–closed, 0 = ds =

∑rk(Ej)
i=1 df i ∧dyi

j ,

which implies—by Cartan lemma—that df i =
∑

i gi dyi
j ∈ Ej , i.e.,

∂f i

∂yi′
j′

= 0

whenever j′ �= j. In other words, the f i must be functions of y1
j , . . . , y

rk(Ej)
j only.

Finally, a quite analogous argument applied to the global sections of ⊗j∈J ∧pj Ej

yields the second part of the statement.

Injectivity of (3) results from an inductive application of our next proposition.

Lemma 3.3. For any sequence p1, . . . , pk, the natural map of global sections

φ : Γ(X,∧piEi) ⊗C Γ
(
X,⊗j =i ∧pj Ej

)
→ Γ

(
X,⊗j ∧pj Ej

)
induced from Γ(X,∧piEi) ⊗C

(
⊗j =i ∧pj Ej

) ϕ−→ ⊗j ∧pj Ej, with ϕ(s ⊗C s′)x =
sx ⊗Ox

s′x, is injective.

Proof. In order to simplify notations, in the course of this proof we shall usually
write E for ∧piEi and E ′ for ⊗j =i ∧pj Ej . Let s and s′ be elements of Γ(X, E)
and Γ(X, E ′) respectively. In terms of local frames {σa

x}, {σ′b
x } of E , E ′ at

x ∈ X, they have the local expressions sx =
∑

a fa
xσa

x and s′x =
∑

b f ′b
x σ′b

x for
some fa

x , f ′b
x ∈ Ox. As observed above, we can and will choose the local frames

to be given by closed forms. The image of a general element γ =
∑

t st ⊗C

s′t ∈ Γ(X, E) ⊗C Γ(X, E ′) is the section φ(γ) ∈ Γ(X, E ⊗ E ′) such that φ(γ)x =∑
t

∑
a,b fa

t,xσa
x ⊗Ox f ′b

t,xσ′b
x . The kernel of φ is thus given by

(kerφ)x =


∑

t

∑
a,b

fa
t,xσa

x ⊗C f ′b
t,xσ′b

x �= 0 |
∑

t

fa
t,xf ′b

t,x = 0 for all a, b


 .

By Lemma 3.2, around any point x disjoint from D there is an open neighbor-
hood U with local analytic coordinates

(
y

ij

j

)ij=1,..., rk(Ej)

j=1,..., k
centered at x so that

the functions fa
t,x depend on the rk(Ei) coordinates yi only and the functions f ′b

t,x

on the
∑

j =i rk(Ej) coordinates yj with j �= i. Denoting by {z} and {z′} the two
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respective collections of coordinates, the fa
t,x are f ′b

t,x are, respectively, identified
with elements of the local rings of convergent power series C{z} and C{z′}. But
then the condition that, for all a, b,

∑
t fa

t,x({z})f ′b
t,x({z′}) = 0 as an element of

Ox = C{y}, is equivalent to the vanishing of
∑

t

∑
a,b fa

t,xσa
x ⊗C f ′b

t,xσ′b
x . This

argument being valid at all points x of an open set U ⊂ X, one concludes that
a section in ker φ would have to identically vanish on U , hence also on all of X.
So φ is injective.

Theorem 1.1 has now been proved.

4. Blow–up of logarithmic forms

Let X be a smooth algebraic variety of complex dimension n. For any hy-
persurface D = ∪IDI in X, the sheaves Ωp

X(log D) of logarithmic forms, as
defined in the Introduction, are coherent and their direct sum is closed both
under wedge multiplication and under exterior differentiation. (For the former
two properties see [8: (1.3)]; the last fact is clear by definition). They are gener-
ally not locally free. The following result reduces the question as to when they
are locally free to a single condition. Let us denote by D the divisor

∑
I DI

given by the irreducible components of D each counted with multiplicity 1; we
will implicitly identify D with the associated line bundle on X. Note that, by
definition, Ωn

X(log D) is always the line bundle Ωn
X ⊗D.

Saito criterion [8:Theorem 1.8]. Ω1
X(log D) is locally free if and only if the

top exterior power ∧nΩ1
X(log D) = Ωn

X ⊗ D. In this case one has Ωp
X(log D) =

∧pΩ1
X(log D), all locally free.

In order to compute with logarithmic forms we shall need the following ob-
servation.

Remark 4.1: Local presentation. Consider a sufficiently small open U ⊂ X in
which the hypersurface D ∩ U = {f = 0} is reducible, i.e., f = gh, where
{g = 0} and {h = 0} may well be further reducible. From the definition, a
p–form ω on U is logarithmic with poles along D ∩ U if and only if ghω and
d(gh) ∧ ω are holomorphic. Putting ω′ = gω, one easily verifies that these are
equivalent conditions to ω′ being a logarithmic p–form with poles along {h = 0}
and such that both h (d log g ∧ ω′) ∈ Ωp+1

U and dh ∧ (d log g ∧ ω′) ∈ Ωp+2
U . Let

hence Ωp
U

(
log{h = 0}

)
denote the logarithmic p–forms on U with poles along

{h = 0}.

Locally over U , Ωp
X(log D)(U) is given by the forms ω = 1

g ξ, with ξ ∈

Ωp
U

(
log{h = 0}

)
such that

dg

g
∧ ξ ∈ Ωp+1

U

(
log{h = 0}

)
.

Though this local presentation does not make it evident that Ωp
X(log D) ∧

Ωq
X(log D) ⊂ Ωp+q

X (log D), see [8].
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In this section we consider the blow–up X̂
σ−→ X of X along a submanifold V ⊂

D. Thus σ leaves the complement X−D ⊂ X−V unchanged; the inverse image
D̂ = σ−1(D) = D̃ ∪ E is the union of the proper transform D̃ = σ−1(D − V )
of D and the exceptional hypersurface E = σ−1(V ). Note that, as a rule, the
pull–back of a form ω ∈ Ωp

X(log D) will no longer be logarithmic, in the sense
that σ∗ω /∈ Ωp

X̂
(log D̂). Proposition 4.2 and Lemma 4.4 below measure to which

precise extent the pull–back of a logarithmic form fails to remain logarithmic. If
multV D denotes the multipilcity of D along V and codimV is the codimension
of V in X , let us introduce the integer

µ = multV D − codim V.

One can explicitly compute the pull–back of the logarithmic forms of top degree:

Proposition 4.2. σ∗Ωn
X(log D) = Ωn

X̂
(log D̂) ⊗ µE.

Proof. Since Ωn
X(log D) = Ωn

X ⊗ D, one has σ∗Ωn
X(log D) = σ∗Ωn

X ⊗ σ∗D. A
simple local computation (see, e.g., [5: p. 605, 608]) gives, on the one hand

σ∗Ωn
X = Ωn

X̂
⊗ (1 − codim V ) E.

On the other hand, for D =
∑

I DI , let D̂ =
∑

I D̃I + E be the divisor on X̂

given by the components of D̂ = D̃ ∪ E =
(
∪ID̃I

)
∪ E. One has

σ∗D =
∑

I

D̃I + (multV D) E = D̂ + (multV D − 1)E,

and the result follows from the fact that Ωn
X̂

(log D̂) = Ωn
X̂
⊗ D̂.

It will suffice for the problem at hand to work—in the remainder of this
section—under the

Assumption 4.3. V is a multiple intersection of components of D, a number
codim V of which are smooth along V and intersect there like hyperplanes in Cn.

Note that in this case µ = multV D − codim V ≥ 0, where µ = 0 precisely
when D has normal crossings along V . Put l = codim V and let U ⊂ X be a
sufficiently small neighborhood of a point on V . By Assumption 4.3 there are
on U local coordinates (z1, . . . , zn) so that V ∩ U = {z1 = · · · = zl = 0}, a local
defining function for D on U being given by

f = z1 · · · zl g,

with g analytic. Let Ωp
U

(
log{z1 · · · zl = 0}

)
denote the logarithmic p–forms

on U with poles along the normal crossing hypersurface {z1 · · · zl = 0}, i.e.,
the free module generated over OX(U) by the p–fold wedge products of the
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elements
dz1

z1
, . . . ,

dzl

zl
, dzl+1, . . . , dzn. In view of Remark 4.1, Ωp

X(log D)(U) is

the subsheaf of 1
g Ωp

U

(
log{z1 · · · zl = 0}

)
given by those forms ω = 1

g ξ such that

dg

g
∧ ξ ∈ Ωp+1

U

(
log{z1 · · · zl = 0}

)
.

For ω ∈ Ωp
X(log D), let 1

g ξ be its local form on U . We say that ω vanishes
to order k along V if so does ξ; that is if ξ is a linear combination of p–fold

wedge products of
dz1

z1
, . . . ,

dzl

zl
, dzl+1, . . . , dzn with coefficients in (mk

V OX)(U),

the holomorphic functions on U which vanish to order at least k along V .

Lemma 4.4. If ω ∈ Ωp
X(log D) vanishes to order k along V , then its pull–back

σ∗ω ∈ Ωp

X̂
(log D̂) ⊗ (µ − k)E.

Proof. Since σ is an isomorphism outside σ−1(V ), it is sufficient to analyze σ∗ω
on the preimage Û of U . In local coordinates on an open set Û1 ⊂ Û , the map
Û

σ−→ U is given by (w1, . . . , wn) �→ (z1, . . . , zn) with z1 = w1, zi = w1wi for
i = 2, . . . , l and zi = wi for i = l + 1, . . . , n. The pull–back of the local defining
function f of D is σ∗f = wmultV D−1

1 f̂ on Û1, where multV D = l + µ and

f̂ = w1w2 · · ·wl ĝ, with ĝ = w−µ
1 σ∗g,

is a local defining function of D̂ on Û1. Here {w1 = 0} is a local defining equation
for the exceptional divisor E on Û1. Locally on U , ω = 1

g ξ and its pull–back is

σ∗ω =
1

σ∗g
σ∗ξ =

1
wµ

1 ĝ
σ∗ξ.

Suppose now ξ vanishes to order k along V . Since σ∗d log z1 = d log w1,
σ∗d log zi = d log w1+d log wi for i = 1, . . . , l and σ∗dzi = dwi for i = l+1, . . . , n,
one immediately sees that ξ̂ = w−k

1 σ∗ξ ∈ Ωp

Û1

(
log{w1w2 · · ·wl = 0}

)
. But then

wµ−k
1 σ∗ω = ξ̂

ĝ is in Ωp

X̂
(log D̂)(Û1), for

dĝ

ĝ
∧ ξ̂ = −µ

dw1

w1
∧ ξ̂ +

dσ∗g

σ∗g
∧ ξ̂

= −µ
dw1

w1
∧ ξ̂ + w−k

1 σ∗
(

dg

g
∧ ξ

)
∈ Ωp+1

Û1

(
log{w1w2 · · ·wl = 0}

)
.

The lemma has been proven.

By Lemma 4.4, for any form ω ∈ Ωp
X(log D) there is thus a minimal in-

teger µω with 0 ≤ µω ≤ µ so that σ∗ω ∈ Ωp

X̂
(log D̂) ⊗ µωE. Assume now

that Ω1
X(log D) is locally free on U . If ω1, . . . , ωn is a local frame on U , let

µi = µωi for i = 1, . . . , n. The wedge ω1 ∧ · · · ∧ ωn pulls back under σ to an
element of ∧n

i=1

(
Ω1

X̂
(log D̂) ⊗ µiE

)
=

(
∧nΩ1

X̂
(log D̂)

)
⊗ (

∑
i µiE) generating

σ∗Ωn
X(log D) = Ωn

X̂
(log D̂)⊗ µE over σ−1(U). (Note that since ∧nΩ1

X̂
(log D̂) ⊂

Ωn
X̂

(log D̂), one always has
∑n

I=1 µi ≥ µ).
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Proposition 4.5. Suppose that Ω1
X(log D) splits into line bundles L1, . . . ,Ln.

Then Ω1
X̂

(log D̂) also splits: there are non–negative integers µ1, . . . , µn so that

Ω1
X̂

(log D̂) ∼= (σ∗L1 ⊗ (−µ1E)) ⊕ · · · ⊕ (σ∗Ln ⊗ (−µnE)) .

Proof. Choose a local frame so that ωi generates Li over U . Multiplication of
a section hωi (h ∈ OX̂) of σ∗Li by a section of (−µiE) defines a map σ∗Li ⊗
(−µiE) → Ω1

X̂
(log D̂) for every i, and hence an injective homomorphism

t : (σ∗L1 ⊗ (−µ1E)) ⊕ · · · ⊕ (σ∗Ln ⊗ (−µnE)) → Ω1
X̂

(log D̂),

(51 ⊗ e1, . . . , 5n ⊗ en) �→
n∑

i=1

ei5i.

Consider the map induced on n–fold wedges,

det t : ⊗n
i=1 (σ∗Li ⊗ (−µiE)) = σ∗Ωn

X(log D) ⊗
(
−

n∑
i=1

µiE
)

︸ ︷︷ ︸
Ωn

X̂
(log D̂)⊗(µ−

∑
i µi) E

→ ∧nΩ1
X̂

(log D̂).

Since
∑n

i=1 µi = µ, det t is an isomorphism; hence t is an isomorphism.

5. The case of free arrangements: Proof of Theorem 1.5

Let Y be the complement in Cn of a central and essential arrangement A =
∪N

I=1 AI . For every I = 1, . . . , N , let HI denote the hyperplane in Pn obtained by
completing AI at infinity. Thus Y = Pn−H is the complement of the projective
arrangement H = ∪N

I=0 HI where we write H0 for the hyperplane at infinity. In
homogeneus coordinates [Z0 : · · · : Zn] a defining function for H has the form

F (Z) = Z0

N∏
I=1

FI(Z1, . . . , Zn)

where the FI(Z1, . . . , Zn) are N ≥ n linear homogeneus polynomials. On each
open set U(i) = {Zi �= 0} of the standard cover of Pn we shall use local coor-
dinates (z(i)0, . . . , z(i)n) given by z(i)j = Zj

Zi
and the local defining function for

H

f(i)(z(i)) =
F (Z)
ZN+1

i

∣∣∣∣
{Zj=Zi·z(i)j}

.

Note in particular that f(0) is a homogeneus polynomial of degree N in
z(0)1, . . . , z(0)n.
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If the arrangement is free, a frame for the holomorphic vector bundle
Ω1

Pn(log H) over U(0) is given by n logarithmic forms ω(0)1, . . . , ω(0)n on U(0)

such that
ω(0)1 ∧ · · · ∧ ω(0)n =

1
f(0)

dz(0)1 ∧ · · · ∧ dz(0)n.

By [7: Corollary 4.77] each ω(0)i can be chosen to have the form

(4) ω(0)i =
1

f(0)

n∑
j=1

Pi,j(z(0)1, . . . , z(0)n) dz(0)j ,

where the Pi,j are homogeneus polynomials of degree deg Pi,1 = · · · = deg Pi,n =
N − αi. Here the integers α1, . . . , αn (the exponents of the free arrangement)
must be strictly positive; they satisfy the condition

∑n
i=1 αi = N .

After these preliminaries, the first step toward proving Theorem 1.5 was pro-
vided to us by H. Terao in the form of an explicit splitting of the bundle of
logarithmic forms before blowing–up. The proof given below is a version of [11].

Proposition 5.1 [Terao]. If Y is the complement of a central and essential free
arrangement in Cn, let H = Pn − Y as above. Then

ΩPn(log H) ∼=
n⊕

j=1

OPn(αj − 1).

Proof. We shall argue by explicitly computing the transition functions of
ΩPn(log H) relative to the cover

{
U(i)

}
0≤i≤n

. We first construct local frames
on each of the U(i) in terms of the given local frame (4) on U(0). For each i �= 0,
let ω(i)1, . . . , ω(i)n be the forms on U(i) obtained by extending ω(0)1, . . . , ω(0)n

from U(0) ∩ U(i) to all of U(i), i.e.,

ω(i)j

∣∣
U(0)∩U(i)

= ω(0)j .

From the relations among local coordinates z(0)k = Zk

Z0
= Zk

Zi

Zi

Z0
= z(i)k z−1

(i)0 on

U(0) ∩ U(i), the relations among defining equations f(0) = z
−(N+1)
(i)0 f(i), and in

view of the homogeneity of the polynomial coefficients in (4), one computes

ω(i)j =
z

αj−1

(i)0

f(i)

[
−

(
n∑

k=1

Pj,k(z(i)1, . . . , z(i)n) z(i)k

)
dz(i)0

+
n∑

k=1
k =i

Pj,k(z(i)1, . . . , z(i)n) z(i)0 dz(i)k


 .

Now:
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Claim. The forms defined as

ω′
(i)1 = z1−α1

(i)0 ω(i)1, . . . , ω′
(i)n = z1−αn

(i)0 ω(i)n

give a local frame of ΩPn(log H) over U(i) for each i.

Proof of the claim. We must first verify that they are logarithmic, i.e., that both
f(i) ω′

(i)j and df(i) ∧ω′
(i)j are holomorphic throughout U(i). This is certainly true

on U(i)∩U(0), since the ω′
(i)j are by definition local sections of ΩPn(log H) there.

The fact that f(i) ω′
(i)j is holomorphic on U(i) is evident. On the other hand,

notice that

df(i) ∧ ω′
(i)j =

df(i)

f(i)
∧

(
−

n∑
k=1

Pj,k(z(i)1, . . . , z(i)n) z(i)k

)
dz(i)0 +

+ non–singular “at infinity”, i.e., along {z(i)0 = 0} ⊂ U(i),

with f(i) = z(i)0

∏N
I=1 FI(z(i)1, . . . , z(i)n). Thus df(i) ∧ ω′

(i)j is holomorphic also
at infinity. Moreover, we have

ω(i)1 ∧ · · · ∧ ω(i)n

∣∣
U(i)∩U(0)

= ω(0)1 ∧ · · · ∧ ω(0)n

∣∣
U(i)∩U(0)

=

1
f(0)

dz(0)1∧· · ·∧dz(0)n

∣∣∣∣
U(i)∩U(0)

=
zN−n
(i)0

f(i)
dz(i)0∧· · ·∧d̂z(i)i∧· · ·∧dz(i)n

∣∣∣∣∣
U(i)∩U(0)

.

Since the sum
∑

j αj = N , then ω′
(i)1∧· · ·∧ω′

(i)n = 1
f(i)

dz(i)0∧· · ·∧ d̂z(i)i ∧· · ·∧
dz(i)n on U(i). Hence ω′

(i)1, . . . , ω
′
(i)n are linearly independent, which proves the

claim.

Finally notice that for each j = 1, . . . , n, the collection {ω′
(0)j , . . . , ω

′
(n)j} is a

section of the line bundle OPn(αj − 1), as one sees from the transition functions

ω′
(i)j

ω′
(k)j

=
z
1−αj

(i)0

z
1−αj

(k)0

· ω(i)j

ω(k)j
=

(
Zi

Zk

)αj−1

on U(i) ∩ U(k). The proposition has been proven.

Next, consider a good compactification X
σ−→ Pn of X − D

∼−→ Y , where
D = σ−1(H). The birational map σ = σν · · ·σ1 is the composite of a number of
blow–ups,

X = Xν σν−→ Xν−1 σν−1−−−→ · · · σ2−→ X1 σ1−→ X0 = Pn,

along submanifolds V a ⊂ Xa such that V a ⊂ Da = σ−1
a · · ·σ−1

1 (H) for every
a = 0, 1, . . . , ν. One computes the hypersurface D = σ−1(H) ⊂ X following
step by step through the sequence of blow–ups. At every step, Da ⊂ Xa is the
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union of the proper transform σ−1
a (Da−1 − V a−1) of Da−1 under σa and the

exceptional divisor σ−1
a (V a−1). Let us denote by H̃I ⊂ X the proper transforms

of the hyperplanes HI under the total blow–up σ; also, denote by Ea ⊂ X
(a = 1, . . . , ν) the proper transform of the exceptional divisor σ−1

a (V a−1) under
the subsequent blow–ups σν · · ·σa+1. Then

D = σ−1(H) =
(
∪N+1

I=1 H̃I

)
∪ (∪ν

a=1 Ea)

= H̃ ∪ (∪ν
a=1 Ea) .

Note that in order to produce a good compactification it is of course permitted
but unnecessary to blow–up along submanifolds in which the components of Da

already have normal crossings. We can hence assume that each V a is the pre–
image under σa−1 · · ·σ1 of a multiple intersection of components of H so that
codim V a ≥ 2 and

µa = multDa V a − codim V a ≥ 0

for all a. Using Proposition 4.5 at each step of the resolution gives immediately
Theorem 1.5, where the integers µa,i are such that

∑
i µa,i = µa.

6. Example: arrangements of lines in C2

A general central and essential arrangement A of N lines in C2 is isomorphic to
the locus defined by f = z1z2

∏N−2
I=1 (z1+cIz2), where the cI are pairwise distinct

constants. Let hence H =
{
Z0Z1Z2

∏N−2
I=1 (Z1 + cIZ2) = 0

}
⊂ P2. In this case

Ω1
P2(log H) is the vector bundle generated by ω1 = dz1

z1
, ω2 = 1

f (−z2dz1 + z1dz2)
over the open set {Z0 �= 0}. The exponents are thus α1 = 1 and α2 = N − 1; by
Theorem 5.1

ΩP2(log H) ∼= OP2 ⊕OP2(N − 2)︸ ︷︷ ︸
(N−2)H

.

In this section we shall write H for the hyperplane line bundle OP2(1); also, we
shall use the same symbol to denote either a divisor, or a line bundle, or its
first Chern class. The additive notation for tensor products of line bundles will
henceforth be assumed.

A good compactification of the complement Y = C2−A = P2−H is given by
the blow–up X

σ−→ P2 at the origin O = {Z1 = Z2 = 0} in {Z0 �= 0}. Notice that
µ = multO H − codim O = N − 2. Let E = σ−1(O) and D = σ−1(H). We apply
the analysis of Section 4 to this single blow–up: writing g =

∏N−2
I=1 (z1+cIz2) and

ω1 = 1
g

(
g dz1

z1

)
, ω2 = 1

g

(
−dz1

z1
+ dz2

z2

)
, one sees that µ1 = 0 and µ2 = µ = N −2.

Thus the decomposition of Theorem 1.5 has the form

Ω1
X(log D) ∼= OX ⊕ ((N − 2)σ∗H− (N − 2)E)︸ ︷︷ ︸

(N−2)H̃

.
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Notice that, for any divisor L on P2, σ∗L = L̃+(multO L)E where L̃ is the proper
transform of L. Since the multiplicity of the trivial line bundle is obviously
zero and that of the hyperplane section is equal to 1, then σ∗OP2 = OX and
σ∗H = H̃ + E.

Since in this case only one of the splitting line bundles is non–trivial, Theorem
1.1 is in effect a mere immediate consequence of Esnault–Schechtman–Viehweg
vanishing:

H1(Y, C) ∼= Γ(X,OX) ⊕ Γ
(
X, (N − 2)H̃

)
= C ⊕ Γ

(
X, (N − 2)H̃

)
,

H2(Y, C) ∼= Γ(X,OX) ⊗ Γ
(
X, (N − 2)H̃

)
= Γ

(
X, (N − 2)H̃

)
.

We now show that the Euler characteristics of the splitting line bundles coin-
cide with the exponents of the arrangement. The first equality χ(OX) = 1 = α1

is clear. From the Riemann–Roch formula

χ
(
(N − 2)H̃

)
=

∫
X

todd(X) ch
(
(N − 2)H̃

)
=

∫
X

(
1
12

(
c1(X)2 + c2(X)

)
+

(N − 2)2

2
H̃2 +

N − 2
2

c1(X) H̃
)

= χ(OX) +
(N − 2)2

2
H̃ · H̃ +

N − 2
2

c1(X) · H̃.

But χ(OX) = 1 and H̃ · H̃ = 0. Moreover c1(X) = −c1(Ω1
X) = −Ω2

X , the dual
to the canonical bundle, and

Ω2
X = σ∗ΩP2 + (codimO − 1)E = −3σ∗H + E = −3H̃ − 2E.

Therefore c1(X) · H̃ = 2E · H̃ = 2 and χ
(
(N −2)H̃

)
= χ(OX)+ N−2

2 c1(X) · H̃ =
N − 1 = α2, as claimed.
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