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RIESZ TRANSFORMS ON SPHERES

Nicola Arcozzi and Xinwei Li

0. Introduction

This note explores, on the sphere S
n−1 = {x ∈ R

n : |x| = 1}, several analogues
of the classical Riesz transforms on R

n. Recall that, if f ∈ L1(Rn), then

Rf(x) = p.v. cn

∫
Rn

f(x − y)
y

|y|n+1
dy(0.1)

is the vector valued Riesz transform of f . cn is a constant that only depends on
the dimension and that is chosen so that (Rjf )̂ (ξ) = i

ξj

|ξ| f̂(ξ), where Rjf is the

j-th component of Rf, ξ = (ξ1, . . . , ξn), and f̂ is the Fourier transform of f .
It is well known that there are several equivalent ways to define R. One way

is related to a Neumann problem. Let F be the solution in the upper half space
R

n+1
+ = R

n × [0,∞) of

∆Rn+1F = 0 in R
n+1
+ ,

∂F

∂ν
= f in R

n,(0.2)

where f is a Schwartz function, F (x, t) is bounded for t ≥ t0 > 0, ∀t0 > 0,
and ∂

∂ν is the outward normal derivative to R
n+1
+ at the boudary ∂R

n+1
+ = R

n.
Then, Rf = ∇Rn (F |Rn) or, formally,

Rf = ∇Rn ◦
(

∂

∂ν

)−1

f,(0.3)

where
(

∂
∂ν

)−1
f means the restriction to R

n of the solution F of (0.2). An
easy argument (for example, via Fourier transforms) shows that (−∆Rn)

1
2 = ∂

∂ν .
Thus, formally, R = ∇Rn ◦ (−∆Rn)−

1
2 (see, for example, Stein [St1]).

We can naturally identify S
n−1 as the boundary of two Riemannian manifolds.

On the one hand, S
n−1 = ∂B̄

n, where B
n is the open unit ball in R

n. On the
other hand, S

n−1 is the boundary of the cylinder S
n−1 × [0,∞). By replacing

∇Rn in (0.3) with the spherical gradient ∇Sn−1 , one obtains two nonequivalent
definitions of Riesz transforms on S

n−1, that we call of ball type and cylinder
type (see Rb and Rc in §1).
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The Riesz transform on R
n can also be characterized in terms of invariance

properties with respect to dilations and translations. This suggests yet a third
definition on S

n−1, where the invariance is in relation to some unitary represen-
tations of SO(n). See §1.

In the three transforms on S
n−1, it is natural to replace ∇Sn−1 with left

invariant vector fields in the Lie algebra of SO(n). This leads to a new version
for each Riesz transform on the sphere.

Another equivalent way to define Riesz transforms on R
n is by means of

Riesz systems, or systems of conjugate harmonic functions, on R
n+1
+ (see [St2]

and [SW]). Riesz systems can be defined on the unit ball B
n as well, giving rise

to operators that do not belong to our family of Riesz transforms on the unit
sphere.

In §1, we give the three definitions, each in two versions. In §2, we discuss
some results about their Lp norms, for 1 < p < ∞, some of which are new. In
§3, we relate Riesz transforms on S

n−1 and SO(n), with applications to their
Lp estimates. In §4, we summarize some known results about Riesz systems on
S

n−1 and we announce some better Lp estimates and a weak L1 estimate that
seems to be new.

Most operators survived in this note already appear in the literature, but
the constants we announce in the corresponding Lp estimates improve on the
ones previously known. Their proofs will appear elsewhere ([A1] and [A2]).
Several problems concerning the Riesz transforms on S

n−1 remain open, as can
be assumed by the results that we present.

1. Different Riesz transforms on S
n−1 and their L2 norms

As already mentioned in the introduction, there are at least two natural ways
to “fill in” S

n−1 so that it is the boundary of an n-dimensional Riemannain
manifold. The first is to consider

M = B̄
n = {x ∈ R

n : |x| ≤ 1}, with S
n−1 = ∂B

n = ∂M.(1.1)

The second way is to define

M = S
n−1 × [0,∞), with S

n−1 ≡ S
n−1 × {0} = ∂M,(1.2)

endowed with the product Riemannian metric.
The manifold in (1.2) was considered with more general spaces instead of

S
n−1 by many authors, for example, P.A.Meyer [Me], Stein [St1], Bakry [Ba],

Coifman and Weiss [CW1].
We have, as well, two different vectors of first order differential operators

associated with S
n−1. The first is, simply, the spherical gradient:

Df = ∇Sn−1f,(1.3)
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defined as the gradient on S
n−1, when this is considered as a Riemannian sub-

manifold of R
n. This was the choice of Koranyi and Vagi [KV1] and [KV2] (see

also Ricci and Weiss [RW]).
We now discuss the second operator. Let x = (x1, . . . , xn) ∈ R

n, and for each
j < k consider :

Tjk = xj
∂

∂xk
− xk

∂

∂xj
=

∂

∂xθjk

.(1.4)

where θjk = arctg xk

xj
is the angular coordinate in the (xj , xk) plane. Tjk can

also be thought of as a Casimir operator in the Lie algebra of the orthogonal
group, SO(n).

The link between these operators and the geometry of the sphere can be
expressed in several ways. For instance,∑

j<k

TjkTjk = ∆Sn−1 .(1.5)

See Bakry [Ba].
We can then consider

Df = (Tjkf)1≤j<k≤n ,(1.6)

which is a vector in R
n(n−1)/2. Denote T = (Tjk)1≤j<k≤n. From (1.6) and the

fact that the operators Tjk are self adjoint, it follows that

|Tf | = |∇Sn−1f | .
Now, let M be as in (1.1) or (1.2) and f in C1(Sn−1) with

∫
Sn−1 fdσ = 0, dσ

being the Hausdorff measure on S
n−1. Consider the Neumann problem

∆MF = 0 and
∂F

∂ν
|∂M = f,(1.7)

where F tends to zero as t → ∞ when M = S
n−1 × [0,∞), ν is the outward

normal vector and ∆M is the Laplace-Beltrami operator on M .
In the sequel we use the convention that, if X denotes a space of integrable

functions on S
n−1, then X0 = {f ∈ X :

∫
Sn−1 fdσ = 0} is the subspace of the

functions in X having null mean.

Definition. We say that a Riesz transform of gradient type on S
n−1 is an

operator of the form Rf = ∇Sn−1F |Sn−1 , where F is the solution of (1.7). More
specifically, we have:

(i) Rc = ∇Sn−1 ◦ (−∆Sn−1)−
1
2 , is a Riesz transform of cylinder type and

gradient type. Here, M = S
n−1 × [0,∞) (see Stein [St1]);

(ii) Rb = ∇Sn−1 ◦ (
∂
∂r

)−1
, is a Riesz transform of ball type and gradient

type. Here M = Dn and ∂
∂r is the derivative in radial direction (see

Koranyi-Vagi [KV1]).
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If we replace ∇Sn−1 by T in (i) (resp., (ii)), we obtain the Riesz transform
of cylinder (resp., ball) type and rotational type Qc = T ◦ (−∆Sn−1)−

1
2 (resp.,

Qb = T
(

∂
∂r

)−1
).

Notice that Qc in (iii) is defined componentwise by Qc
jk = Tjk ◦ (−∆Sn−1)−

1
2 ,

1 ≤ j < k ≤ n, where Qc = (Qc
jk)1≤j<k≤n. Qb is defined similarly.

Next, we consider two other transforms. Let ωn−1 be the volume of S
n−1.

Let Rt and Rs be the principal value integral operators on S
n−1 having kernels

kt(x, y) and ks(x, y), respectively, where

kt(x, y) = (kt
jk(x, y))1≤j<k≤n, with kt

jk(x, y) =
1

ωn−1

xkyj − xjyk

|x − y|n ,

and

ks(x, y) =
1

ωn−1

y − (x · y)x
|x − y|n , x, y ∈ S

n−1.

These operators are generalizations of the Hilbert transform on the circle,
with a good behavior with respect to the action of SO(n) (see (1.8) below).
First, observe that, since there is a bijection between all upper triangular n× n
matrices and all skew-symmetric n × n matrices, we may identify kt(x, y) with
a skew-symmetric matrix for x, y ∈ S

n−1. Let u ∈ SO(n) and σ be a skew-
symmetric n × n matrix. Then the mapping u → τ t

u defined by τ t
uσ = uσu∗

induces a unitary representation of SO(n) acting on the Hilbert space of the
skew-symmetric n × n matrices with the Hilbert-Schmidt norm (see [CW2]).
One can easily show that

kt(ux, uy) = τ t
ukt(x, y), x, y ∈ S

n−1, u ∈ SO(n).(1.8)

By choosing the unitary representation u → (τ s
u) = u, u ∈ SO(n), we obtain

an expression similar to (1.8) for ks(x, y) and (τ s
u) as well. Moreover, Rs itself

commutes with the action τ s
u.

Now suppose n ≥ 3. Let G(x, y) be the Green’s function of R
n at y; that is

G(x, y) =
1

(2 − n)ωn−1
|x − y|2−n,

where ωn−1 is the Hausdorff measure of S
n−1. Let G̃ be the operator defined by

G̃f(x) =
∫

Sn−1
G(x, y)f(y)dy, x ∈ R

n.

Then we can reformulate Rs and Rt as follows:

(iii) Rs = ∇Sn−1 ◦ G̃, is a Riesz transform of invariant type and gradient type
(see [KV1], [CW2], and [Li]).
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Similarly, Rt = T ◦ G̃ is the Riesz transform of invariant type and rotational
type.

We note that the operator Rb of Korányi and Vági can be written as the sum
of two parts. The first part is just Rs and the second part is a sort of average
of the first part.

We will see that the six operators just defined are related to each other in
several ways. First, we make a simple observation.

Remark 1. When acting on a function f , the images of the operators Qb and Rb

are vectors of different dimensions, but |Qb| = |Rb|. Similarly, |Qc| = |Rc| and
|Rt| = |Rs|.

As one would expect, the definitions of the Riesz transforms (i)-(iii) and their
rotational counterparts coincide in the case n = 2. In fact, an inspection of
multipliers and kernels implies the following.

Proposition 1. On S
1, the operators Rc, Rb, Qc, Qb, Rt and Rs coincide

with the conjugate function operator H - the Hilbert transform on the cirle.

The following results about the L2 norms are useful when studying the size
properties of the transforms (i)-(iii). The proofs are easy, and they can be found
in [St1], [KV2], [Bak], [A1] and [Li].

Proposition 2. With the same notation as above, we have
(a) Rc is an isometric imbedding of L2

0(S
n−1) into L2(Sn−1, Rn) and Qc is

an isometric imbedding of L2
0(S

n−1) into L2(Sn−1, R
n(n−1)

2 );
(b) Rb maps L2

0(S
n−1) into L2(Sn−1, Rn) and Qb maps L2

0(S
n−1) into

L2(Sn−1, R
n(n−1)

2 ). Moreover,

‖|Qb|‖2,2 = ‖|Rb|‖2,2 =
√

n − 1;

(c) ‖Qc
lm‖2,2 = ‖Qb

lm‖2,2 = 1;
(d) Rs maps L2

0(S
n−1) into L2(Sn−1, Rn) and Rt maps L2

0(S
n−1) into

L2(Sn−1, R
n(n−1)

2 ). Moreover,

‖Rs‖2,2 = ‖Rt‖2,2 =




1
2 , n = 3

(n−1)1/2

n(n−2) , n ≥ 4.

Notice that the constant for Rt or Rs is bounded by 1/2 for all n ≥ 3.

2. Lp- norms (1 < p < ∞)

All the operators we called “spherical Riesz transforms” are bounded as op-
erators from Lp

0(S
n−1) to itself. This fact is well known; hence, the main bound-

edness questions concern the best or, at least, “reasonable” constants for these
Lp inequalities. We present below the best known constants for some of these
estimates. The proofs and some more estimates can be found in [A1] and [Li].
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The techniques in [A1] are probabilistic and we do not discuss them here. They
are modelled on methods of Bañuelos and Wang [BW] and Burkholder [Bu],
who worked with Riesz transforms on R

n. All of the functions considered in this
section are real valued. We will see in §3 how the Lp estimates involving Qc can
be deduced from analogous estimates involving Riesz transforms on SO(n).

Let p∗ be the maximum of p and q, where q is the conjugate exponent of p,
1 < p < ∞. Let Cp be the best constant in the Lp inequality for the classical
Hilbert transform H on R (see [Pic]). Then Cp = cot π

2p∗ . Let Ep be the best

constant in the Lp inequality for the operator f → [f2 + |Hf |2] 1
2 , which was

identified by Essén [Es] as Ep = [1 + C2
p ]

1
2 .

Theorem 1.[A1] If f ∈ Lp
0(S

n−1), then the following inequalities hold :

1
2(p∗ − 1)

‖f‖p ≤ ‖Qcf‖p ≤ 2(p∗ − 1)‖f‖p ;(2.1)

1√
n − 1(p∗ − 1)

‖f‖p ≤ ‖Qbf‖p ≤ √
n − 1(p∗ − 1)‖f‖p ;(2.2)

‖Qc
lmf‖p ≤ Cp‖f‖p ;(2.3)

‖Qb
lmf‖p ≤ Cp‖f‖p ;(2.4)

‖[f2 + |Qc
lmf |2] 1

2 ‖p ≤ Ep‖f‖p ;(2.5)

and

‖[f2 + |Qb
lmf |2] 1

2 ‖p ≤ Ep‖f‖p .(2.6)

Moreover, the constants in (2.3), (2.4), (2.5) and (2.6) are best possible.

Some remarks are in order. First of all, the constant in (2.1) cannot be the
best one, as we see from Proposition 2 in §1. The constant in the right hand
side of (2.2) gives the right value for p = 2. We also remark that the constants
in (2.1) and in the second inequality in (2.2) have the expected rate of growth
with respect to both p and n.

The first inequality in (2.2) does not exhibit the right asymptotic in n. In fact,
an analysis of the case p = 2 on the lines of §2 shows that for all f ∈ L2

0(S
n−1)

we have that ‖f‖2 ≤ ‖Qbf‖2, and that this estimate is best possible.
A consequence of (2.1) and of the fact that (2.3) is best possible is that

2
π ≤ limp→∞

Ap

p ≤ 2, and 2
π ≤ limp→1 Ap(p − 1) ≤ 2.

The first proof of (2.1) with a constant independent of the dimension n is
in [Bak], where a probabilistic Littlewood-Paley theory is used. So far, no one
has given a direct analytic proof of Lp estimates for Qc which produces a bound
independent of the dimension n. The constant in (2.1) is the same as that
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obtained for the vector Riesz transform on R
n by Bañuelos and Wang [BW]. The

first claim of a dimension free Lp estimate for the vector valued Riesz transform
in the Euclidean case was given by E. M. Stein [St3]. But the proof of this result
was implied in his earlier books, [St1] and [St2]. Later proofs, with increasingly
better constants, were given by Duoandikoetxea and Rubio de Francia [DF],
Bañuelos [Bañ], Pisier [Pi], Bañuelos and Wang [BW], Iwaniec and Martin [IM].
In the case discussed in [IM] the arguments apply only to the range 2 ≤ p < ∞.
In this range their results are the best known.

Observe that the Lp constants in inequalities involving just one of the com-
ponents of Qc or Qb are the same as one finds in the corresponding inequalities
for the Hilbert transform. This phenomenon occurs also for each component of
the Euclidean Riesz transform in R

n ([IM] and [BW]). Bañuelos and Wang dis-
covered deep martingale inequalities which seem to explain “why” the constants
Cp and Ep are so ubiquitous in the Lp theory of singular integrals endowed with
a great degree of symmetry. They use Burkholder’s method of differential sub-
ordination of martingales, which is at the root of many sharp inequalities for
martingales [Bu]. An important application of these probabilistic techniques, to
be found in [BW], are some good Lp estimates for the Beurling-Ahlfors trans-
form. See also [IM] for an approach through transference and Lindeman’ s article
[Lin] for related results in higher dimension.

Observe that, in view of Remark 1 in §1, estimates (2.1) and (2.2) hold with
Rc and Rb instead of Qc and Qb respectively, with the same constants.

One can show that the Lp operator norms of Rs and Rt are dimension free.
More precisely, we have the following

Proposition 3.[Li] The Lp operator norm of Rs (thus also Rt) is bounded above
by

π1/2

2
√

2

(
p

p − 1

)1/2

Bp,

where Bp = CM,p+Cp and CM,p is the Lp norm of the maximal truncated Hilbert
transform on S

1.

The proof makes use of a transference argument from the circle group to
SO(n).

It would be interesting to know more about the Lp norms of single components
of Rc and Rb. More explicitly, the imbedding of S

n−1 in R
n identifies X = ∇Sn−1

with a vector in R
n: X = (X1, . . . , Xn). It is then reasonable to call Xj ◦O the

jth component of Rc (resp. Rb), where O = (−∆Sn−1)−
1
2 (resp. O = ( ∂

∂r )−1).

3. SO(n), S
n−1 and Qc

A notion of Riesz transform can be defined on Lie groups. The analysis of
these transforms is easier if the Lie group G is compact, the case that we are
going to discuss in this section, following [St1 Chapt.I, II].



408 NICOLA ARCOZZI AND XINWEI LI

Let G be a compact Lie group of dimension m and let G be its Lie algebra,
the linear space of all left invariant vector fields X on G. G can be identified
with the tangent space TeG to G at e, the identity of G.

There exists a differential operator ∆G such that

(i) ∆G is the Laplace-Beltrami operator for a biinvariant metric on G;
(ii) ∆G =

∑m
j=1 aj,kXjXj , where {X1, . . . Xm} is an orthonormal basis for

G with respect to the metric in (i).

For j = 1, . . . , m, we can formally define a Riesz transform Pj = Xj ◦
(−∆G)−

1
2 . In order to see that this definition agrees with the general “cylindri-

cal” definition given in § 0, for a ∈ G let Pf(a) =
∑m

j=1 Pjf(a)Xj(a), which is

a vector in TaG, easily identified as Pf = ∇G ◦ (−∆G)−
1
2 f .

E. M. Stein proved that, for 1 < p < ∞, P is bounded from Lp(G) to itself
and that the constant cp in the inequality ‖Pjf‖p ≤ cp‖f‖p can be chosen to
be independent of the particular compact Lie group G. An integration by parts
shows that

Remark 3. ‖Pf‖2 = ‖f‖2.

We are interested in G = SO(n), in view of its connections with S
n−1. Con-

sider SO(n) as a group of n×n matrices. Then SO(n) ↪→ R
n2

and this imbedding
induces on SO(n) a metric which is biinvariant under the action of SO(n) on
itself.

The Lie algebra so(n) of SO(n) can be identified with the space of all n × n

skew symmetric matrices. If we rescale the metric on SO(n) by a factor of
√

2
2 ,

we see that an orthonormal basis of so(n) is provided by {Xlm = [alm
j,k]j,k :

1 ≤ l < m ≤ n}, where the matrix [alm
j,k]j,k is defined by alm

l,m = −1, alm
m,l = 1

and all other entries are 0. The gradient of a function F on SO(n) is given by
∇SO(n)F =

∑
l<m Xlm(F )Xlm.

An integration by parts shows that Xlm
∗ = −Xlm, where ( )∗ is the ad-

joint. We then have ∆SO(n) =
∑

l<m XlmXlm, the Laplace-Beltrami operator
associated with our metric and the Riesz transform Plm on SO(n) is given by

Plm = Xlm ◦ (−∆SO(n)

)− 1
2 .(3.1)

In the special case of SO(n) we can say something more precise about the Lp

size of the Riesz transform. Let Cp, Ep and p∗ be the constants defined in §2
and let Lp

0(SO(n)) be the space of those F ∈ Lp(SO(n)) with null average on
SO(n).

Theorem 2.[A1] If F ∈ Lp
0(SO(n)) is a real valued function, then the following

inequalities hold :

1
2(p∗ − 1)

‖F‖p ≤ ‖PF‖p ≤ 2(p∗ − 1)‖F‖p;(3.2)
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‖PlmF‖p ≤ Cp‖F‖p;(3.3)

‖[F 2 + |PlmF |2] 1
2 ‖p ≤ Ep‖F‖p.(3.4)

Moreover, the constants in (3.3) and (3.4) are best possible.

The proof of this theorem is, again, based on the probabilistic methods of
[BW]. We will omit the proof here (see [A1] for the proof); instead, we sketch
now a proof that Theorem 2 implies (2.1), (2.3) and (2.5) in Theorem 1.

As we mentioned before, we can view S
n−1 as the homogeneous space

SO(n)/SO(n − 1), where SO(n − 1) is the Lie group of rotation that fix the
north pole en = (0, . . . , 0, 1) ∈ S

n−1. Let π be the projection: SO(n) → S
n−1,

defined by π(a) = aen, a ∈ SO(n). Recall that the adjoint representation Ad
of a Lie group G associates to each a ∈ G a linear map Ad(a) : G → G by
Ad(a)X = d

dt |t=0a exp(tX)a−1. Since the metric on G is biinvariant, Ad(a) is
an isometry for each a ∈ G.

Elementary arguments in Lie theory show that, if f : S
n−1 → R,

∆SO(n)(f ◦ π)(a) = (∆Sn−1f)(π(a))(3.5)

and

(Tlmf)(π(a)) = (Ad(a−1)Xlm)(f ◦ π)(a).(3.6)

Hence, by definition of Qc
lm,

(Qc
lmf)(π(a)) = [Ad(a−1)Xlm ◦ (−∆SO(n))−1/2]f(π(a)),(3.7)

which is a “twisted version” of P .
Using the fact that the Hausdorff measure on S

n−1 is proportional to the push
forward of the Haar measure on SO(n), i.e., that there exists µ > 0 such that∫

SO(n)
(f ◦ π) = µ

∫
Sn−1 f, it is not too difficult to check that, for instance, (3.3)

together with (3.7) implies (2.3). This argument, in the same way, shows that
the sharpness of Cp in (2.3) implies that Cp is best possible in (3.3) as well.

4. Spherical Riesz transforms and system of conjugate harmonic
functions

Consider a system of conjugate harmonic functions in unit ball B
n which are

continuous on B̄
n, and then restrict the functions to S

n−1. Namely, suppose that
u1, . . . , un are functions in B

n which satisfy
n∑

j=1

∂uj

∂xj
= 0,

∂uj

∂xk
=

∂uk

∂xj
, for all j �= k, j, k = 1, . . . , n(4.1)

in B
n and are such that u1(0) = · · · = un(0) = 0. Let fj = uj |Sn−1 . Then

f1, . . . , fn can be called a Riesz system on S
n−1. Observe that none of the Riesz

transforms we introduced in §1 leads to such a Riesz system. In fact, solutions
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of (4.1) are in a bijection with the space of harmonic functions h in B
n such

that h(0) = 0, the correspondence being that which associates to h the n-tuple
uj = ∂h

∂xj
, j = 1, . . . , n. The Riesz transform Rb corresponds to the tangential

part of ∇h, while the Riesz system corresponds to ∇h itself. More specifically, if
f is a function defined on S

n−1 and if ej = (0, . . . , 0, 1, 0, . . . , 0), where 1 appears
in the jth coordinate, then

fj =
(

ej , R
bf +

x

|x|f
)

,

j = 1, . . . , n, is a Riesz system, ( , ) being the inner product in R
n.

Several Lp inequalities tell us that n−1 components of a Riesz system control
all others; for example,

‖fn‖Lp(Sn−1) ≤ Ap,n

∥∥∥∥∥∥
[ n−1∑

j=1

|fj |2
] 1

2

∥∥∥∥∥∥
Lp(Sn−1)

,(4.2)

and

‖fn‖Lp(Sn−1) ≤ Bp

n−1∑
j=1

‖fj‖Lp(Sn−1),(4.3)

where 1 < p < ∞.
Inequality (4.2) was first proved by Kuran [Ku]. The fact that Ap,n must

grow with n can be verified on uj = ∂h0
∂xj

, where h0(x) = − 1
2

∑
j �=n x2

j + (n−1)
2 x2

n.
This gives a value Ap,n ≥ Kp

√
n, where Kp is a constant that only depends on

p. Essén [Es] obtained that, for 1 < p ≤ 2, Ap,n ≤
(

n+1
p−1

) 1
p

. This estimate can

be improved. The first author proved that Ap,n ≤ (p∗ − 1)
√

n − 1, 1 < p < ∞.
See [A2].

Bennett [Be] used a probabilistic Littlewood-Paley theory to prove that for all
p > 1 (4.3) holds with a constant Bp, which does not depend on the dimension.
Bennett also shows that in an inequality similar to (4.3),

‖fn‖Lp(Sn−1) ≤ Dp,n


n−1∑

j=1

‖fj‖p
Lp(Sn−1)




1
p

,(4.4)

the constant Dp,n will tend to infinity with n at least as fast as n
1
p , for all p > 1.

His example is, again, h0.
In order to compare estimates (4.2)-(4.4) it is useful to know the following

inequalities

Bp ≤ Dp,n ≤ Ap,n, if 1 < p ≤ 2 and Bp ≤ Ap,n ≤ Dp,n, if 2 ≤ p < ∞.
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Moreover, Ap,n ≤ √
nBp if 1 < p ≤ 2. For a proof, it suffices to compare

the right hand sides of (4.2)-(4.4) by making use of Minkowsky’s and Hölder’s
inequalities.

In order to control the nth component of a Riesz system we need all other
n − 1 components. Examples are provided by Riesz systems of the form f1 =
∂h
∂x1

, . . . , fn = ∂h
∂xn

, where h is a harmonic function that only depends on x1, x2.
Estimate (4.2) has a weak L1 counterpart. Let σ be the natural Hausdorff

measure on S
n−1.

Theorem 3.[A2] Let f1, . . . , fn be a Riesz system on S
n−1. Then for λ > 0,

λ σ({ξ ∈ S
n−1 : |fn(ξ)| > λ}) ≤ 4

√
n

∥∥∥∥∥∥∥


 n∑

j=2

|fj |2



1
2

∥∥∥∥∥∥∥
1

.

Furthermore, there exists a universal constant C > 0 such that, for any n there
exist λ > 0 and a Riesz system f1, . . . , fn such that

λ σ({ξ ∈ S
n−1 : |fn(ξ)| > λ}) ≥ C

√
n

∥∥∥∥∥∥∥


 n∑

j=2

|fj |2



1
2

∥∥∥∥∥∥∥
1

.

It would be interesting to have similar weak L1 analogues of (4.3) and (4.4).
It seems that there is only scant connection between estimates (4.2)-(4.4) and

the ones stated in §1 for Qc, Qb, Rs and Rt.
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