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LAUMON’S RESOLUTION OF DRINFELD’S
COMPACTIFICATION IS SMALL

Alexander Kuznetsov

Let C be a smooth projective curve of genus 0. Let B be the variety of com-
plete flags in an n-dimensional vector space V . Given an (n − 1)-tuple α of
positive integers one can consider the space Qα of algebraic maps of degree α
from C to B. This space has drawn much attention recently in connection with
Quantum Cohomology (see e.g. [Giv], [Kon]). The space Qα is smooth but not
compact (see e.g. [Kon]). The problem of compactification of Qα proved very
important. One compactification QK

α was constructed in loc. cit. (the space
of stable maps). Another compactification QL

α (the space of quasiflags), was
constructed in [Lau]. However, historically the first and most economical com-
pactification QD

α (the space of quasimaps) was constructed by Drinfeld (early
80-s, unpublished). The latter compactification is singular, while the former
ones are smooth. Drinfeld has conjectured that the natural map π : QL

α → QD
α

is a small resolution of singularities. In the present note we prove this conjecture
after the necessary recollections. The arguments in the proof are rather similar
to those of [Lau], 3.3.2. In fact, the proof gives some additional information
about the fibers of π. It appears that every fiber has a cell decomposition, i.e.
roughly speaking, is a disjoint union of affine spaces. This permits to compute
not only the stalks of IC sheaf on QD

α but, moreover, the Hodge structure in
these stalks. Namely, the Hodge structure is a pure Tate one, and the generating
function for the IC stalks is just the Lusztig’s q-analogue of Kostant’s partition
function (see [Lus]).

In conclusion, let us mention that the Drinfeld compactifications are defined
for the space of maps into flag manifolds of arbitrary semisimple group, and it
would be very interesting to construct their small resolutions.

1. The space of maps into flag variety

1.1. Notations. Let G be a complex semisimple simply-connected Lie group,
H ⊂ B its Cartan and Borel subgroups, N the unipotent radical of B, Y the
lattice of coroots of G (with respect to H), l the rank of Y , I = {i1, i2, . . . il} the
set of simple coroots, R+ the set of positive coroots, X the lattice of weights,
X+ the cone of dominant weights, Ω = {ω1, ω2 . . . ωl} the set of fundamental
weights (〈ωk, ik′〉 = δkk′ , where 〈•, •〉 stands for the natural pairing X⊗Y → Z),
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B = G/B the flag variety and C a smooth projective curve of genus 0. Recall
that there are canonical isomorphisms

H2(B, Z) ∼= Y H2(B, Z) ∼= X.

For λ ∈ X let Lλ denote the corresponding G-equivariant line bundle on B.
The map ϕ : C → B has degree α ∈ N[I] ⊂ Y if the following equivalent

conditions hold:

(1) ϕ∗([C]) = α;
(2) for any λ ∈ X we have deg(ϕ∗Lλ) = 〈λ, α〉.

We denote by Qα the space of algebraic maps from C to B of degree α. It
is known that Qα is smooth variety and dimQα = 2|α| + dimB. In this paper
we compare two natural compactifications of the space Qα, which we presently
describe.

1.2. Drinfeld’s compactification. The Plücker embedding of the flag variety
B gives rise to the following interpretation of Qα.

For any irreducible representation Vλ (λ ∈ X+) of G we consider the trivial
vector bundle Vλ = Vλ ⊗OC over C.

For any G-morphism ψ : Vλ ⊗ Vµ −→ Vν we denote by the same letter the
induced morphism ψ : Vλ ⊗ Vµ −→ Vν .

Then Qα is the space of collections of line subbundles Lλ ⊂ Vλ, λ ∈ X+ such
that:

a) degLλ = −〈λ, α〉;
b) For any nonzero G-morphism ψ : Vλ ⊗ Vµ −→ Vν such that ν = λ + µ

we have ψ(Lλ ⊗ Lµ) = Lν ;
c) For any G-morphism ψ : Vλ ⊗ Vµ −→ Vν such that ν < λ + µ we have

ψ(Lλ ⊗ Lµ) = 0.

Remark 1.2.1. Certainly, the property b) guarantees that in order to specify
such a collection it suffices to give Lωk

for the set Ω of fundamental weights.
If we replace the curve C by a point, we get the Plücker description of the

flag variety B as the space of collections of lines Lλ ⊂ Vλ satisfying conditions of
type (b) and (c) (thus B is embedded into

∏
λ∈X+

P(Vλ)). Here, a Borel subgroup

B in B corresponds to a system of lines (Lλ, λ ∈ X+) if lines are the fixed points
of the unipotent radical of B, Lλ = (Vλ)N, or equivalently, if N is the common
stabilizer for all lines N =

⋂
λ∈X+

GLλ
.

The following definition in case G = SL2 appeared in [Dri].

Definition 1.2.2 (V. Drinfeld). The space QD
α of quasimaps of degree α from

C to B is the space of collections of invertible subsheaves Lλ ⊂ Vλ, λ ∈ X+

such that:

a) degLλ = −〈λ, α〉;
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b) For any nonzero G-morphism ψ : Vλ ⊗ Vµ −→ Vν such that ν = λ + µ
we have ψ(Lλ ⊗ Lµ) = Lν ;

c) For any G-morphism ψ : Vλ ⊗ Vµ −→ Vν such that ν < λ + µ we have
ψ(Lλ ⊗ Lµ) = 0.

Remark 1.2.3. Here is another version of the Definition, also due to V.Drinfeld.
The principal affine space A = G/N is an H-torsor over B. We consider its affine
closure A, that is, the spectrum of the ring of functions on A. The action of H
extends to A but it is not free anymore. Consider the quotient stack B̃ = A/H.
The flag variety B is an open substack in B̃. A map φ̃ : C → B̃ is nothing else
than an H-torsor Φ over C along with an H-equivariant morphism f : Φ → A.
The degree of this map is defined as follows.

Let χλ : H → C∗ be the character of H corresponding to a weight λ ∈ X.
Let Hλ ⊂ H be the kernel of the morphism χλ. Consider the induced C∗-torsor
Φλ = Φ/Hλ over C. The map φ̃ has degree α ∈ N[I] if

for any λ ∈ X we have deg(Φλ) = 〈λ, α〉.
Definition 1.2.4. The space QD

α is the space of maps φ̃ : C → B̃ of degree α
such that the generic point of C maps into B ⊂ B̃.

The equivalence of 1.2.2 and 1.2.4 follows immediately from the Plücker em-
bedding of A into

∏
λ∈X+

Vλ.

Proposition 1.2.5. QD
α is a projective variety.

Proof. The space QD
α is naturally embedded into the space

l∏
k=1

P(Hom(OC(−〈ωk, α〉),Vωk
))

and is closed in it.

1.3. The stratification of the Drinfeld’s compactification. In this sub-
section we will introduce the stratification of the space of quasimaps.

Configurations of I-colored divisors.

Let us fix α ∈ N[I] ⊂ Y, α =
l∑

k=1

akik. Consider the configuration space Cα of

colored effective divisors of multidegree α (the set of colors is I). The dimension

of Cα is equal to the length |α| =
l∑

k=1

ak.

Multisubsets of a set S are defined as elements of some symmetric power S(m)

and we denote the image of (s1, . . . , sm) ∈ Sm by {{s1, . . . , sm}}. We denote by
Γ(α) the set of all partitions of α, i.e. multisubsets Γ = {{γ1, . . . , γm}} of N[I]

with
m∑

r=1
γr = α, γr > 0.



352 ALEXANDER KUZNETSOV

For Γ ∈ Γ(α) the corresponding stratum Cα
Γ is defined as follows. It is formed

by configurations which can be subdivided into m groups of points, the r-th
group containing γr points; all the points in one group equal to each other, the
different groups being disjoint. For example, the main diagonal in Cα is the
closed stratum given by partition α = α, while the complement to all diagonals
in Cα is the open stratum given by partition

α =
l∑

k=1

(ik + ik + . . . + ik︸ ︷︷ ︸
ak times

).

Evidently, Cα =
⊔

Γ∈Γ(α)

Cα
Γ , for Γ = {{γ1, . . . , γm}} we have dim Cα

Γ = m.

Normalization and defect of subsheaves.
Let F be a vector bundle on the curve C and let E be a subsheaf in F . Let

F/E = T (E)⊕ L be the decomposition of the quotient sheaf F/E into the sum
of its torsion subsheaf and a locally free sheaf, and let Ẽ = Ker(F → L) be the
kernel of the natural map F → L. Then Ẽ is a vector subbundle in F which
contains E and has the following universal property:

for any subbundle E ′ ⊂ F if E ′ contains E then E ′ contains also Ẽ.

Moreover, rank Ẽ = rankE, Ẽ/E ∼= T (E) and c1(Ẽ) = c1(E) + ,(T (E)) (for
any torsion sheaf on C we denote by ,(T ) its length).

Definition 1.3.1. We will call Ẽ the normalization of E in F and T (E) the
defect of E.

Remark 1.3.2. If Ẽ is the normalization of E in F then Λk(Ẽ) is the normaliza-
tion of ΛkE in ΛkF .

For any x ∈ C and torsion sheaf T on C we will denote by ,x(T ) the length
of the localization of T in the point x.

Definition 1.3.3. For any quasimap ϕ = (Lλ ⊂ Vλ)λ∈X+ ∈ QD
α we define the

normalization of ϕ as follows:

ϕ̃ = (L̃λ ⊂ Vλ),

and the defect of ϕ as follows:

def(ϕ) = (T (Lλ)),

(the defect of ϕ is a collection of torsion sheaves).

Proposition 1.3.4. For any ϕ ∈ QD
α there exists β ≤ α ∈ N[I], partition

Γ = (γ1, . . . , γm) ∈ Γ(α− β) and a divisor D =
m∑

r=1
γrxr ∈ Cα−β

Γ such that

ϕ̃ ∈ Qβ , ,x(def(ϕ)λ) =

{
〈λ, γr〉, if x = xr

0, otherwise
.
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Proof. Clear.

Definition 1.3.5. The pair (β,Γ) will be called the type of degeneration of ϕ.
We denote by Dβ,Γ the subspace of QD

α consisting of all quasimaps ϕ with the
given type of degeneration.

Remark 1.3.6. Note that Dα,∅ = Qα.
We have

QD
α =

⊔
β≤α

Γ∈Γ(α−β)

Dβ,Γ.(1)

The map dβ,Γ : Dβ,Γ → Qβ × Cα−β
Γ which sends ϕ to (ϕ̃, D) (see 1.3.4)

is an isomorphism. The inverse map σβ,Γ can be constructed as follows. Let
ϕ = (Lλ) ∈ Qβ . Then

σβ,Γ(ϕ, D) def= (L′
λ) L′

λ
def=

m⋂
r=1

m〈λ,γr〉
xr

· Lλ,

where mx denotes the sheaf of ideals of the point x ∈ C.

1.4. Laumon’s compactification. Let V be an n-dimensional vector space.
From now on we will assume that G = SL(V ) (in this case certainly l = n− 1).
In this case there is the Grassmann embedding of the flag variety, namely

B={(U1, U2, . . . , Un−1)∈G1(V )×G2(V )×· · ·×Gn−1(V ) | U1⊂U2⊂ · · · ⊂Un−1},
where Gk(V ) is the Grassmann variety of k-dimensional subspaces in V . This
embedding gives rise to another interpretation of Qα.

We will denote by V the trivial vector bundle V⊗OC over C. Let α =
n−1∑
k=1

akik,

where ik is the simple coroot dual to the highest weight ωk of representation G
in ΛkV .

Then Qα is the space of complete flags of vector subbundles

0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ En−1 ⊂ V such that rank Ek = k

and c1(Ek) = −〈ωk, α〉 = −ak.

Definition 1.4.1 (Laumon, [Lau, 4.2]). The space QL
α of quasiflags of degree

α is the space of complete flags of locally free subsheaves

0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ En−1 ⊂ V such that rank Ek = k

and c1(Ek) = −〈ωk, α〉 = −ak.

It is known that QL
α is a smooth projective variety of dimension 2|α|+ dimB

(see loc. cit., Lemma 4.2.3).
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1.5. The stratification of the Laumon’s compactification. There is a
stratification of the space QL

α similar to the above stratification of QD
α .

Definition 1.5.1. For any quasiflag E• = (E1, . . . , En−1) we define its normal-
ization as

Ẽ• = (Ẽ1, . . . , Ẽn−1), where Ẽk is the normalization of Ek in V
and defect

def(E•) = (Ẽ1/E1, . . . , Ẽn−1/En−1).

Thus, the defect of E• is a collection of torsion sheaves.

Proposition 1.5.2. For any E• ∈ QL
α there exist β ≤ α ∈ N[I], partition

Γ = (γ1, . . . , γm) ∈ Γ(α− β) and a divisor D =
m∑

r=1
γrxr ∈ Cα−β

Γ such that

Ẽ• ∈ Qβ , ,x(def(Ek)) =

{
〈ωk, γr〉, if x = xr

0, otherwise
.

Definition 1.5.3. The pair (β,Γ) will be called the type of degeneration of E•.
We denote by Lβ,Γ the subspace in QL

α consisting of all quasiflags E• with the
given type of degeneration.

Remark 1.5.4. Note that Lα,∅ = Qα.
We have

QL
α =

⊔
β≤α

Γ∈Γ(α−β)

Lβ,Γ.(2)

1.6. The map from QL
α to QD

α . Consider the map π : QL
α → QD

α which sends
a quasiflag of degree α E• ∈ QL

α to a quasimap given by the collection (Lωk
)n−1
k=1

(see Remark 1.2.1) where Lωk
= ΛkEk ⊂ ΛkV = Vωk

.

Proposition 1.6.1. Let E• be a quasiflag of degree α and let (β,Γ) be its type of
degeneration. Then π(E•) is a quasimap of degree α and its type of degeneration
is (β,Γ).

Proof. Obviously we have degLωk
= deg ΛkEk = c1(Ek) = −〈ωk, α〉 which

means that π(E•) ∈ QD
α . According to the Remark 1.3.2, L̃ωk

= ΛkẼk (i.e.
(L̃ωk

) ∈ Qβ), hence

,x(L̃ωk
/Lωk

) = ,x(Ẽk/Ek).(3)

This proves the Proposition.

Remark 1.6.2. Note that (3) implies that π preserves not only β and Γ but also
D (see 1.3.4, 1.5.2).
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Recall that a proper birational map f : X → Y is called small if the following
condition holds: let Ym be the set of all points y ∈ Y such that dim f−1(y) ≥ m.
Then for m > 0 we have

codimYm > 2m.(4)

Main Theorem. The map π is a small resolution of singularities.

2. The fibers of π

2.1. We fix E• ∈ Qβ , a partition Γ ∈ Γ(α−β), and a divisor D ∈ Cα−β
Γ . Then

(E•, D) ∈ Dβ,Γ. We define F (E•, D) as π−1(E•, D).
Let D =

∑m
r=1 γrxr. We define the space F(E•, D) of commutative diagrams

E1 −−−−→ E2 −−−−→ . . . −−−−→ En−1

ε1

� ε2

� εn−1

�
T1

τ1−−−−→ T2
τ2−−−−→ . . .

τn−2−−−−→ Tn−1

such that
a) εk is surjective,
b) Tk is torsion,

c) ,x(Tk) =

{
〈ωk, γr〉, if x = xr

0, otherwise
.

Lemma 2.1.1. We have an isomorphism

F (E•, D) ∼= F(E•, D).

Proof. If E• ∈ F (E•, D) then by the 1.5.2 the collection (T1, . . . , Tn−1) = def(E•)
satisfies the above conditions.

Vice versa, if the collection (T1, . . . , Tk) satisfies the above conditions, then
consider

Ek = Ker(Ek
εk−→ Tk).

Since the square
Ek

εk−−−−→ Tk� τk

�
Ek+1

εk+1−−−−→ Tk+1

commutes, we can extend it to the commutative diagram

0 −−−−→ Ek −−−−→ Ek
εk−−−−→ Tk −−−−→ 0� � τk

�
0 −−−−→ Ek+1 −−−−→ Ek+1

εk+1−−−−→ Tk+1 −−−−→ 0
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The induced morphism Ek → Ek+1 is injective because Ek → Ek+1 is, and

c1(Ek) = c1(Ek)− ,(Tk) = −〈ωk, β〉 −
∑
x∈C

,x(Tk) =

= −〈ωk, β〉 −
m∑

r=1

〈ωk, γr〉 = −〈ωk, β + (α− β)〉 = −〈ωk, α〉.

This means that E• ∈ F (E•, D).

Proposition 2.1.2. If D =
m∑

r=1
γrxr is a decomposition into disjoint divisors

then

F (E•, D) ∼=
m∏

r=1

F (E•, γrxr).(5)

Proof. Recall that if T is a torsion sheaf on the curve C then

T =
⊕
x∈C

Tx,

where Tx is the localization of T in the point x. Given a locally free sheaf E
we have Hom(E , T ) =

⊕
x∈C Hom(E , Tx) and a morphism ε ∈ Hom(E , T ) is

surjective iff all its components εx ∈ Hom(E , Tx) are. This remark together with
Lemma 2.1.1 proves the Proposition.

The above Proposition implies, that in order to describe general fiber F (E•, D)
it is enough to have a description of the fibers F (E•, γx), which we will call simple
fibers.

2.2. The stratification of a simple fiber. We will need the following obvious
Lemma.

Lemma 2.2.1. Let E be a vector bundle on C. Let E ′ ⊂ E be a vector subbundle,
and let E ⊂ E be a (necessarily locally free) subsheaf. Then E′ = E ′ ∩ E is a
vector subbundle in E.

Moreover, the commutative square

E′ −−−−→ E� �
E ′ −−−−→ E
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can be extended to the commutative diagram

E′ −−−−→ E −−−−→ E/E′� � �
E ′ −−−−→ E −−−−→ E/E ′� � �

E ′/E′ −−−−→ E/E −−−−→ E/E

E ′/E′
∼= E/E ′

E/E′

in which both the rows and the columns form the short exact sequences.

The sheaf in the lower-right corner of the diagram will be called cointersection
of E and E ′ inside E and denoted by ∇E (E, E ′).

Let

γ =
n−1∑
k=1

ckik.

For every E• ∈ F (E•, γx) we define

µpq(E•)
def= ,

( Eq

Ep ∩ Eq

)
(1 ≤ q ≤ p ≤ n− 1),(6)

νpq(E•) =

{
µpq(E•)− µp+1,q(E•), if 1 ≤ q ≤ p < n− 1
µpq(E•), if 1 ≤ q ≤ p = n− 1

(7)

κpq(E•) =

{
νpq(E•)− νp,q−1(E•), if 1 < q ≤ p ≤ n− 1
νpq(E•), if 1 = q ≤ p ≤ n− 1

(8)

Remark 2.2.2. The transformations (7) and (8) are invertible, so the integers
µpq can be uniquely reconstructed from νpq or κpq. Namely,

νpq =
q∑

r=1

κpr; µpq =
n−1∑
s=p

νsq =
∑

r≤q≤p≤s

κsr.(9)

Lemma 2.2.3. We have

νpq(E•) = ,

(Eq ∩ Ep+1

Eq ∩ Ep

)
.(10)

κpq(E•) = ,
(∇Eq∩Ep+1 (Eq ∩ Ep, Eq−1 ∩ Ep+1)

)
.(11)
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Proof. The commutative diagram with exact rows

0 −−−−→ Eq ∩ Ep −−−−→ Eq −−−−→ Eq

Eq ∩ Ep
−−−−→ 0� ∥∥∥ �

0 −−−−→ Eq ∩ Ep+1 −−−−→ Eq −−−−→ Eq

Eq ∩ Ep+1
−−−−→ 0

implies (10). In order to prove (11) note that

Eq−1 ∩ Ep = (Eq ∩ Ep) ∩ (Eq−1 ∩ Ep+1),

and apply Lemma 2.2.1 and (10).

Corollary 2.2.4. Integers µpq, νpq and κpq satisfy the following inequalities:

0 ≤ κpq,(12)
0 ≤ νp1 ≤ νp2 ≤ · · · ≤ νpp,(13)

0 ≤ µn−1,q ≤ µn−2,q ≤ · · · ≤ µqq = cq.(14)

Proof. See (11),(8),(7) and compare the definition of µqq with 2.1.1.

We will denote by [p, q] the positive coroot

[p, q] def=
p∑

k=q

ik ∈ R+.(15)

Lemma 2.2.5. For any E• ∈ F (E•, γx) we have∑
1≤q≤p≤n−1

κpq(E•)[p, q] = γ.

Proof. Applying (8), (15) and (9) we get∑
1≤q≤p≤n−1

κpq[p, q] =
∑

1≤q≤p≤n−1

(νpq − νp,q−1)[p, q] =

∑
1≤q≤p≤n−1

νpq([p, q]− [p, q + 1])=
∑

1≤q≤p≤n−1

νpqiq =
n−1∑
q=1

(
n−1∑
p=q

νpq

)
iq =

n−1∑
q=1

µqqiq.

Now Lemma follows from (14).

Let K(γ) be the set of all partitions of γ ∈ N[I] into the sum of positive

coroots: γ =
t∑

s=1
δs, where δs ∈ R+ (note that K(γ) �= Γ(γ)). In other words,

since every positive coroot for G = SL(V ) is equal to [p, q] for some p, q,

K(γ) = {(κpq)1≤q≤p≤n−1 | κpq ≥ 0 and
∑

1≤q≤p≤n−1

κpq[p, q] = γ}.
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Let M(γ) denote the set of all collections (µpq) which can be produced from
some (κpq) ∈ K(γ) as in (9).

The Lemma 2.2.5 implies that for any E• ∈ F (E•, γx) we have (µpq(E•)) ∈
M(γ). Define the stratum S((µpq)1≤q≤p≤n−1, (Ek)n−1

k=1) as follows:

S((µpq)1≤q≤p≤n−1, (Ek)n−1
k=1) = {E• ∈ F (E•, γx) | µpq(E•) = µpq}.

To unburden the notations in the cases when it is clear which flag E• is used we
will write just Sµ. We have obviously

F (E•, γx) =
⊔

µ∈M(γ)

Sµ.(16)

Remark 2.2.6. We will also use the similar varieties S((µpq)1≤q≤p≤N , (Ek)N
k=1)

that can be defined in the same way for any short flag (Ek)N
k=1 (that is a flag of

subbundles E1 ⊂ · · · ⊂ EN with rank Ek = k: we want to emphasize that though
in all short flags appearing in this paper EN is a subsheaf in V, but it is not a
subbundle, nevertheless all Ek are subbundles in EN ).

2.3. The strata Sµ. In order to study Sµ we will introduce some more vari-
eties.

For every 1 ≤ N ≤ n − 1, a short flag of subbundles (Ek)N
k=1 (see Remark

2.2.6) and a collection of integers (νk)N
k=1 such that 0 ≤ ν1 ≤ · · · ≤ νN , we define

the space T((νk)N
k=1, (Ek)N

k=1) as follows:

(17) T((νk)N
k=1, (Ek)N

k=1) = {E ⊂ EN | rank(E) = N and

supp
( Ek

Ek ∩ E

)
= {x}, ,

( Ek

Ek ∩ E

)
= νk}.

We define pseudoaffine spaces by induction in dimension. First, the affine line
A1 is a pseudoaffine space. Now a space A is called pseudoaffine if it admits a
fibration A → B with pseudoaffine fibers and pseudoaffine B.

Theorem 2.3.1. The space T((νk)N
k=1,(Ek)N

k=1) is pseudoaffine of dimension
N−1∑
k=1

νk.

Proof. We use induction in N . The case N = 1 is trivial. There is only one
subsheaf E in the line bundle E1 with supp(E1/E) = {x} and ,(E1/E) = ν1,
namely E = mν1

x · E1. This means that T(ν1, E1) is a point and the base of
induction follows.

If N > 1 then consider the map

τ : T((νk)N
k=1, (Ek)N

k=1) → T((νk)N−1
k=1 , (Ek)N−1

k=1 ),

which sends E ∈ T((νk)N
k=1, (Ek)N

k=1) to E′ = E ∩ EN−1 ∈ T((νk)N−1
k=1 , (Ek)N−1

k=1 ).
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Lemma 2.3.2. Let L=m
νN−νN−1
x ·

( EN

EN−1

)
. For any E′∈T((νk)N−1

k=1 , (Ek)N−1
k=1 )

there is an isomorphism

τ−1(E′) ∼= Hom(L, EN−1/E′) ∼= A�(EN−1/E′) = AνN−1 .

Thus, the space T((νk)N
k=1, (Ek)N

k=1) is affine fibration over a pseudoaffine
space, hence it is pseudoaffine and its dimension is equal to

dim
(
T((νk)N−1

k=1 , (Ek)N−1
k=1 )

)
+ νN−1 =

N−2∑
k=1

νk + νN−1 =
N−1∑
k=1

νk.

The Theorem is proved.

Proof of Lemma 2.3.2. Let E ∈ τ−1(E′). Since E′ = E ∩ EN−1 we can apply
Lemma 2.2.1 which gives the following commutative diagram:

E′ −−−−→ E −−−−→ L� � �
EN−1

j−−−−→ EN
ψ−−−−→ EN/EN−1� � �

TN−1 −−−−→ TN −−−−→ TN/TN−1

(Note that since EN/EN−1 is a line bundle and ,(TN/TN−1) = ,(TN )−,(TN−1) =
νN − νN−1 the kernel of natural map EN/EN−1 → TN/TN−1 is isomorphic to
L.) Let ẼN = ψ−1(L). Then E is contained in ẼN and we have the following
commutative diagram:

E′ −−−−→ E −−−−→ L� � ∥∥∥
EN−1

j−−−−→ ẼN
ψ−−−−→ L� ε

�
TN−1 TN−1

This means that the points of τ−1(E′) are in one-to-one correspondence with
maps ε : ẼN → TN−1 such that ε · j is equal to the canonical projection from
EN−1 to TN−1. Applying the functor Hom(•, TN−1) to the middle row of the
above diagram we get an exact sequence:

0 → Hom(L, TN−1) → Hom(ẼN , TN−1)
j∗
−→Hom(EN−1, TN−1) → Ext1(L, TN−1).

The last term in this sequence is zero because L is locally free and TN−1 is
torsion. This means that the space of maps ε which we need to describe is a
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torsor over the group Hom(L, TN−1). Hence this space can be identified with the
group. Thus, we have proved that τ−1(E′) ∼= Hom(L, TN−1) is an affine space.

Now,

dim(τ−1(E′)) = dim Hom(L, TN−1) = dim H0(TN−1) = ,(TN−1) = νN−1.

The Lemma is proved.

Theorem 2.3.3. The space S((µpq)1≤q≤p≤N , (Ek)N
k=1) is a pseudoaffine space

of dimension µ21 + µ32 + · · ·+ µN,N−1.

Proof. We use induction in N . If N = 1 then Sµ is a point and the base of
induction follows.

If N > 1 consider the map

σ : S((µpq)1≤q≤p≤N , (Ek)N
k=1) → T((µN,k)N

k=1, (Ek)N
k=1),

which sends (Ek)N
k=1 to EN ⊂ EN .

Lemma 2.3.4. Let E ∈ T((µN,k)N
k=1, (Ek)N

k=1). Consider Ẽk = Ek ∩ E (1 ≤
k ≤ N − 1) and set µ̃pq = µpq − µNq (1 ≤ q ≤ p ≤ N − 1). Then (Ẽk)N−1

k=1 is a
short flag of subbundles and for any E ∈ T((µN,k)N

k=1, (Ek)N
k=1) we have

σ−1(E) ∼= S((µ̃pq)1≤q≤p≤N−1), (Ẽk)N−1
k=1 ).(18)

Thus S((µpq)1≤q≤p≤N , (Ek)N
k=1) is a fiber space with pseudoaffine base and

fiber, therefore it is pseudoaffine.
Now, the calculation of the dimension

dim
(
S((µpq)1≤q≤p≤N , (Ek)N

k=1)
)

=
N−1∑
k=1

µN,k +
N−2∑
k=1

µ̃k+1,k =

=
N−1∑
k=1

µN,k +
N−2∑
k=1

(µk+1,k − µN,k) = µN,N−1 +
N−2∑
k=1

µk+1,k =
N−1∑
k=1

µk+1,k,

finishes the proof of the Theorem.

Proof of Lemma 2.3.4. Assume that (Ek)N
k=1 ∈ Sµ and EN = E. The commu-

tative diagram

0 −−−−→ Eq ∩ Ep −−−−→ Eq −−−−→ Eq

Eq ∩ Ep
−−−−→ 0� ∥∥∥ �

0 −−−−→ Eq ∩ E −−−−→ Eq −−−−→ Eq

Eq ∩ E
−−−−→ 0

implies that

l

( Eq ∩ E

Eq ∩ Ep

)
= l

( Eq

Eq ∩ Ep

)
− l

( Eq

Eq ∩ E

)
= µpq − µNq = µ̃pq,(19)
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hence (Ek)N−1
k=1 ∈ Sµ̃.

Vice versa, if (Ek)N−1
k=1 ∈ Sµ̃ then the above commutative diagram along with

(19) implies that (Ek)N
k=1 ∈ Sµ, where we have put EN = E.

2.4. The cohomology of the simple fiber. Now we will compute the di-
mension of the strata Sµ in terms of the partition κ.

Definition 2.4.1. A space X is called cellular if it admits a stratification with
pseudoaffine strata.

Suppose X =
⊔

ξ∈Ξ

Sξ is a pseudoaffine stratification of a cellular space X . For

a positive integer j we define χ(j) def= #{ξ ∈ Ξ | dimSξ = j}.
Lemma 2.4.2. The Hodge structure H•(X , Q) is a direct sum of Tate struc-
tures, and Q(j) appears with multiplicity χ(j). In other words,

H•(X , Q) = ⊕j∈NQ(j)χ(j).

Proof. Evident.

Given a Tate structure H = ⊕j∈NQ(j)χ(j) we consider a generating function

P (H, t) =
∑
j∈N

χ(j)tj ∈ N[t].

For κ ∈ K(γ) we define K(κ) def=
∑

1≤q≤p≤n−1

κpq as the number of summands

in the partition κ. For γ ∈ N[I] the following q-analog of the Kostant’s partition
function was introduced in [Lus]:

Kγ(t) = t|γ|
∑

κ∈K(γ)

t−K(κ).(20)

Lemma 2.4.3. Let κ ∈ K(γ) and µ ∈ M(γ) be defined as in ( 9). Then

dimSµ =
n−2∑
k=1

µk+1,k = |γ| −K(κ),(21)

Proof. The first equality follows from 2.3.3. Applying (9) we get

n−2∑
k=1

µk+1,k =
n−2∑
k=1


 ∑

1≤q≤k
k+1≤p≤n−1

κpq


 =

∑
1≤q≤p≤n−1

(p− q)κpq =

∑
1≤q≤p≤n−1

(|[p, q]| − 1)κpq = |γ| −
∑

1≤q≤p≤n−1

κpq = |γ| −K(κ).
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Corollary 2.4.4. For any γ ∈ N[I], x ∈ C, the simple fiber F (E•, γx) is a cel-
lular space, and the generating function of its cohomology is equal to the Lusztig–
Kostant polynomial

P (H•(F (E•, γx)), t) = Kγ(t).

Proof. Apply (16), 2.3.3, 2.4.2 and 2.4.3.

Corollary 2.4.5. Let D =
m∑

r=1
γrxr ∈ Cα−β

Γ . The fiber F (E•, D) is a cellular

space and

P (H•(F (E•, D)), t) = KΓ(t)
def
=

m∏
r=1

Kγr
(t).(22)

Proof. Apply 2.1.2, 2.4.2 and 2.4.4.

Lemma 2.4.6. Let D =
m∑

r=1
γrxr. We have

dimF (E•, D) ≤
∣∣∣∣∣

m∑
r=1

γr

∣∣∣∣∣−m.

Proof. Note that for any κ ∈ K(γr) we have K(κ) ≥ 1, hence degKγr
≤ |γr| − 1.

Now, the Lemma follows from 2.4.5.

Proof of Main Theorem. Consider the stratum Dβ,Γ of QD
α . Its dimension is

2|β| + dimB + m and codimension is 2|α − β| −m. The Lemma 2.4.6 implies
that the dimension of the fiber of π over the stratum Dβ,Γ is less than or equal
to |α − β| −m, which is strictly less then the half codimension of the stratum.

2.5. Applications. Let Q denote the smooth constant irreducible Hodge mod-
ule on QL

α (as a constructible complex it lives in cohomological degree −2|α| −
dimB). Let IC denote the minimal extension of a smooth constant irreducible
Hodge module from Qα to QD

α . It is well known that the smallness of π implies
the following corollary.

Corollary 2.5.1.
IC = π∗Q.

Now we can compute the stalks of IC as cohomology of fibers of π: for ϕ ∈ QD
α

we have
IC•

(ϕ) = H•(π−1(ϕ), Q)

as graded Hodge structures.

Corollary 2.5.2 (Parity vanishing).

ICj
(ϕ) = 0 if j − dimB is odd.
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Proof. Use 2.4.5.

Corollary 2.5.3. For ϕ ∈ Dβ,Γ we have

IC
−2|α|−dimB+2j
(ϕ) = Q(j)kΓ(j),

where kΓ(j) is the coefficient of tj in KΓ(t).
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