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MAXIMAL NILPOTENT QUOTIENTS
OF 3-MANIFOLD GROUPS

Peter Teichner

Abstract. We show that if the lower central series of the fundamental group
of a closed oriented 3-manifold stabilizes then the maximal nilpotent quotient
is a cyclic group, a quaternion 2-group cross an odd order cyclic group, or a
Heisenberg group. These groups are well known to be precisely the nilpotent
fundamental groups of closed oriented 3-manifolds.

1. Introduction

There are many different approaches to the study of 3-manifolds. There is
a flourishing combinatorial school from Dehn, Papakryiakopoulos, Haken and
Waldhausen to Gordon and Luecke, which has shown that many 3-manifold
questions can be reduced to questions about the fundamental group. A co-equal
off-shoot of the combinatorial school folds in dynamics and complex analysis.
This is Thurston’s program on geometrizing certain characteristic and simple
pieces of 3-manifolds by showing that each is modelled locally on one of the
eight 3-dimensional geometries (of which only the hyperbolic case is not fully
understood). A third perspective on 3-manifolds is through quantuum field
theory. The ideas of Witten, Jones, Vassiliev and many others have inspired
tremendous activity and, in time, may contribute substantially to the topological
understanding of 3-manifolds.

This paper takes a fourth perspective by looking at a 3-manifold through
nilpotent eyes, observing only the tower of nilpotent quotients of the fundamental
group, but never the group itself. This point of view has a long history in
the study of link complements and it arises naturally if one studies 3- and 4-
dimensional manifolds together. For example, Stallings proved that for a link in
S3 certain nilpotent quotients of the fundamental group of the link complement
are invariants of the topological concordance class of the link. These quotients
contain the same information as Milnor’s µ̄-invariants which are generalized
linking numbers. For precise references about this area of research and the most
recent applications to 4-manifolds see [5].

Turaev [11] seems to have been the first to consider nilpotent quotients of
closed 3-manifold rather than link complements. Much earlier, the nilpotent
fundamental groups of closed 3-manifolds were classified. Thomas [10] showed in
particular that statements (1) and (2) in the following Theorem 1 are equivalent.
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Theorem 1. For a nilpotent group N the following statements are equivalent:

(1) N is a (finite or infinite) cyclic group Z/n, a product Q2n ×Z/(2k +1),
or a Heisenberg group Hn.

(2) N is the fundamental group of a closed orientable 3-manifold.
(3) N is finitely generated and there exists a class m ∈ H3(N) such that the

cap-product with m induces an epimorphism H1(N) → H2(N) and an
isomorphism TorsionH2(N)→ TorsionH1(N).

(4) N is the maximal nilpotent quotient of the fundamental group of a closed
orientable 3-manifold.

(5) N is the maximal nilpotent quotient of the fundamental group of a closed
orientable 3-dimensional Poincaré complex.

Recall that a group has a maximal nilpotent quotient if and only if its lower
central series stabilizes. In (1) above the Heisenberg groups Hn are the central
extensions of Z2 by Z classified by the Euler class n ∈ Z ∼= H2(Z2; Z). They occur
as the fundamental groups of orientable circle bundles over the 2-torus. Euler
class n = 0 corresponds to the 3-torus. The infinite cyclic group is π1(S1 × S2)
and the finite cyclic and generalized quaternion groups Q4k are subgroups of
SU(2). (Here Q4k := 〈x, t | txt−1 = x−1, xk = t2〉 has order 4k.) Finally, a
product Q2n × Z/(2k + 1) can be embedded into SO(4) such that it acts freely
on S3, see [12]. Thus these finite groups are fundamental groups of 3-dimensional
homogenous spaces.

This shows that (1) implies (2) in the above theorem. The other easy fact
is that (2) implies (3): If N is the fundamental group of a closed oriented 3-
manifold then m can be taken to be the image of its fundamental class. From
[11, Thm.2] it easily follows that statement (3) implies (4). It is clear that (4)
implies (5) and thus the aim of this paper is to show that (5) implies (1).

Theorem 1 can be read in two essentially different ways: A group theorist
may take (3) as a homological characterization of the family of groups in (1). A
3-manifold topologist would probably prefer the point of view of (4), i.e. that
there are very few possibilities for the lower central series of the fundamental
group of a closed oriented 3-manifold: Either it descends forever or it stabilizes
with the maximal nilpotent quotient being one of the groups in (1).

It is easy to construct examples exhibiting both phenomena: For example,
take any surgery description of one of the 3-manifolds described above. Tying a
local knot into one of the components does not change the lower central series of
the 3-manifold group but it drastically changes the 3-manifold itself. Conversely,
if H1(M) has more than 3 generators then it has no maximal nilpotent quotient:
This follows from the fact that H1(Hn) ∼= Z2 × Z/n and H1(Q2n) ∼= Z/2× Z/2
for n > 2 (and Q4 = Z/4). Moreover, the only groups in list (1) that have
nilpotency class > 3 are the one containing Q2n , n > 3. In this single case it
might be more difficult to decide whether π1M has a maximal nilpotent quotient
because Q2n modulo the k-th term of the lower central series is the group Q2k

for all k > 2.



MAXIMAL NILPOTENT QUOTIENTS OF 3-MANIFOLD GROUPS 285

This problem disappears if one considers a rational version of Theorem 1. We
will prove it in analogy to the integral case. This rational result was first ob-
tained in [4] using completely different methods, namely methods from rational
homotopy theory. This approach however does not seem to provide a proof of
Theorem 1 but it motivated the research in this paper.

Theorem 2. For a torsionfree nilpotent group N the following statements are
equivalent:

(1) N is trivial, infinite cyclic or a Heisenberg group.
(2) N is the fundamental group of a closed orientable 3-manifold.
(3) N is finitely generated and there exists a class m ∈ H3(N ; Q) such that

the cap-product with m induces an epimorphism H1(N ; Q)→ H2(N ; Q)
(4) N is the maximal torsionfree nilpotent quotient of the fundamental group

of a closed orientable 3-manifold.
(5) N is the maximal tosionfree nilpotent quotient of the fundamental group

of a closed orientable 3-dimensional Poincaré complex.

Recently, Stong [8] obtained a different generalization of this rational result:
If a 3-manifold group does not have a maximal torsionfree nilpotent quotient
then the ranks of the succesive quotients of the terms in the lower central series
grow exponentially. In a further related direction, Cochran and Orr [2] obtained
examples of 3-manifold groups whose transfinite lower central series does not
stabilize at the first infinite cardinal.

Our paper is organized as follows: In Section 2 we give the necessary defini-
tions and prove some (probably well-known) results on nilpotent groups. Sec-
tion 3 contains the proof of Theorem 1 modulo three Propositions. Our proof is
modelled on a proof of Thomas’ theorem which we give as a “warm up”. Finally,
Section 4 contains the proofs of the three Propositions used in Section 3 and the
proof of Theorem 2.

2. Some nilpotent group theory

The lower central series of a group G is defined by G1 := G and Gk+1 :=
[G, Gk] for k > 1. G is nilpotent if Gk = 1 for some k and the smallest such k, if
it exists, is called the class of G. Thus abelian groups are precisely the groups
of class 2. Any group G has the nilpotent quotients G/Gk and it has a maximal
nilpotent quotient if and only if Gk = Gk+1 for some k. We define the rank of
an abelian group A to be the dimension of A⊗Q. For a nilpotent group N we
define it’s rank to be the sum of the ranks of the abelian groups Nk/Nk+1.

Lemma 1. A nilpotent group N is finite if and only if H1(N) is finite.

Proof. The proof is an induction on the class of N . If the class is 2 the statement
is true because N ∼= H1(N). Assume that N/Nk is finite. Then H2(N/Nk) is
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also a finite group, see [1]. The same reference explains the 5-term exact sequence
for groups: Given a short exact sequence

1 −→ N −→ G −→ Q −→ 1

of groups, the bottom part of the corresponding Leray-Serre spectral sequence
is an exact sequence of homology groups (with integral coefficients)

H2(G) −→ H2(Q) −→ N
/
[N, G] −→ H1(G) −→ H1(Q) −→ 0.

Applying this to the central extension

1 −→ Nk/Nk+1 −→ N/Nk+1 −→ N/Nk −→ 1

implies that N/Nk+1 is also finite.

Corollary 2. For a nilpotent group N , the set of all elements of finite order is
a (characteristic) subgroup of N .

Proof. Let g, h be elements of finite order in N . We need to show that their
product g · h is still of finite order. Let G be the subgroup of N generated by g
and h. It suffices to show that G is finite. Clearly, H1(G) is finite and since G
is nilpotent the result follows from Lemma 1.

The above subgroup is called the torsion subgroup Tor(N) of N . N is torsion-
free if Tor(N) = 1. In the following lemma we will use a commutator identity
which holds in any group G. Namely, for elements a, b ∈ G and n ∈ N one has

[an, b] = [a, b](a
n−1) · [a, b](a

n−2) · . . . · [a, b]

if one uses the conventions [a, b] := a · b · a−1 · b−1 and ba := a · b · a−1.

Lemma 3. A nilpotent group N is torsionfree if and only if it’s center C and
N/C are torsionfree.

Proof. The only thing to show is that if N is torsionfree and x ∈ N satisfies
xn ∈ C for some n ∈ N then x ∈ C. Take any element g ∈ N and define xk by
x1 := [x, g] and xk+1 := [x, xk]. Since N is nilpotent, we know that xc+1 = 1 for
some c. This means that x commutes with xc and thus the above commutator
identity simplifies to give

[xn, xc−1] = [x, xc−1]n = (xc)n

But by assumption xn is central which implies (xc)n = 1. Since N is torsionfree
this indeed shows that xc = 1. Continuing in exactly the same manner leads to
1 = xc−1 = · · · = x1 = [x, g]. Since g was arbitrary, we can conclude that x is
central.
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The main result of this section follows. We use the notation hdZ(G) for the
Z-homological dimension of a group G, i.e. the smallest n ∈ N ∪ ∞ such that
Hi(G; Z) vanishes for all i > n. We also introduce some notation which will be
used in the proof and throughout the rest of the paper:

Let H be a group and P an H-module. Then the 0-th homology with twisted
coefficients H0(H;P ) ∼= P/I(H) · P is isomorphic to the cofixed point set PH of
P under the H-action, i.e. the largest quotient module of P on which H acts
trivially, [1]. Here I(H) is the augmentation ideal of the group ring Z[H].

Similarly, H0(H;P ) is isomorphic to the fixed point set PH of P under the
H-action, i.e. the largest submodule of P on which H acts trivially.

Lemma 4. For a finitely generated nilpotent group N the following statements
are equivalent:

(i) hdZ(N) <∞.
(ii) N is torsionfree.
(iii) K(N, 1) is homotopy equivalent to a closed orientable manifold of dimen-

sion rank(N) = hdZ(N). More precisely, K(N, 1) is homotopy equiva-
lent to an iterated circle bundle with structure groups U(1).

Proof. The conclusions (iii)⇒ (i) and (iii)⇒ (ii) are obvious. (ii)⇒ (iii) follows
by induction from Lemma 3. One just has to observe that H2(N ; Z) classifies
central extensions of N by Z as well as principal circle bundles over K(N, 1)
with structure group U(1). The induction starts with the fact that the r-torus
is a K(Zr, 1).

To show (i) ⇒ (ii) we will induct on the rank of N . If rank(N) = 0 then
H1(N) is finite and by Lemma 1 N is also finite. But the integral homology
groups of a finite group are nontrivial in infinitely many dimensions [9]. So our
assumption hdZ(N) <∞ implies N = 1.

Now assume that rank(N) > 0. Then N and thus H1(N) are infinite and we
get an extension

1 −→ U −→ N −→ Z −→ 1

of nilpotent groups with rank(U) < rank(N). Below we show that hdZ(U) <∞
which implies by induction that U and hence N are torsionfree.

Let t ∈ N be an element which maps to a generator of Z in the above exten-
sion. Then the infinite cyclic group 〈t〉 acts by conjugation on U and thus on
Hi(U). The Wang sequence for the above extension gives exact sequences for
any i > 0:

0 −→ Hi(U)〈t〉 −→ Hi(N) −→ Hi−1(U)〈t〉 −→ 0

Our claim that hdZ(U) <∞ now follows from the following

Lemma 5. The 〈t〉-modules Hi(U) are nilpotent, i.e. there exists integers Ni

such that (t−1)Ni is the zero-map on Hi(U). In particular, if Hi(U) is nontrivial
then so are the fixed and cofixed point sets under the 〈t〉-action.
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To prove the lemma, define Uk by U1 := U and Uk+1 := [N, Uk]. Since N is
nilpotent we have Uc = 1 for some c which is smaller or equal to the class of
N . Moreover, t acts as the identity on the quotients Uk/Uk+1. By induction,
we assume that 〈t〉 acts nilpotently on the modules Hi(U/Uk). The Leray-Serre
spectral sequence for the extension

1 −→ Uk/Uk+1 −→ U/Uk+1 −→ U/Uk −→ 1

has E2
p,q-terms Hp(U/Uk;Hq(Uk/Uk+1)) which are then also nilpotent

〈t〉-modules. Consequently, the E∞
p,q-terms are all nilpotent 〈t〉-modules and

so is Hp+q(U/Uk+1) as a (finitely) iterated extension of these modules.

The following result of B. Dwyer [3] will be essential for our proof.

Theorem 3. Let N be a finitely generated nilpotent group and P a finitely gen-
erated Z[N ]-module. If H0(N ;P ) = 0 then Hi(N ;P ) = 0 for all i ≥ 0.

One can extend Dwyer’s theorem to cohomology groups.

Corollary 6. Let N be a finitely generated nilpotent group and P a finitely
generated Z[N ]-module. If H0(N ;P ) = 0 then Hi(N ; P ) = 0 for all i ≥ 0.

Proof. Let Z be a nontrivial central cyclic subgroup of N . It is enough to show
that the E2-term of the Serre spectral sequence

Ep,q
2 = Hp(N/Z;Hq(Z;P )) =⇒ Hp+q(N ;P )

vanishes identically. By induction it suffices to show that the assumption of
Dwyer’s theorem is satisfied for the N/Z-modules Hq(Z;P ). Since Z is a cyclic
group, these twisted cohomology groups are fully understood, see [1, p.58]. In
particular, one can show that H0(N/Z; Hq(Z;P )) = 0 by using Lemma 7 below
which is an easy consequence of Dwyer’s theorem and the long exact coefficient
sequence [1, p.71].

Lemma 7. Let N be a finitely generated nilpotent group and

0 −→ P ′ −→ P −→ P ′′ −→ 0

an extension of Z[N ]-modules with P (and thus P ′, P ′′) finitely generated. Then
PN = 0 implies that (P ′)N = (P ′′)N = 0.
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3. Outline of the proof of Theorem 1

As a warm up, we first give a proof of Thomas’ theorem [10] that (2) implies
(1) in Theorem 1. So let N be the nilpotent fundamental group of a closed
orientable 3-manifold M . Then M is the connected sum of prime 3-manifolds
Mi. Therefore, N is the free product of the fundamental groups π1Mi. Since N
is nilpotent, only one of these groups can be nontrivial and thus we may assume
that N is the fundamental group of a prime 3-manifold M . The argument splits
now into several cases.

Case I: N is a finite group.

Then N acts freely on the homotopy 3-sphere M̃ and thus has 4-periodic co-
homology. Since N is a finite nilpotent group, it is the direct product of it’s
p-Sylow subgroups [6] which are also 4-periodic [1, p.156]. The same reference
shows that the p-Sylow subgroups are cyclic for p odd, and cyclic or generalized
quaternion for p = 2. Therefore, N is the direct product of such groups which
we wanted to show.

Case II: N has infinite order.

This case splits naturally into two subcases depending on whether or not π2M
is trivial. If not, then the prime 3-manifold M is homeomorphic to S1 × S2 and
hence N is infinite cyclic.

If π2M = 0 then M is a K(N, 1) and hence N is torsionfree of rank 3. The
center C of N is nontrivial and torsionfree. Moreover, N/C is also torsionfree
by Lemma 3. Note that C = Z2 is impossible: It would imply that N/C ∼= Z is
generated by one element which commutes with itself and C. Therefore, either
C = N or C ∼= Z. In both cases N is a central extension of Z2 by Z and thus
one of the Heisenberg groups.

This finishes the proof that (2) implies (1) in Theorem 1. We now outline
the proof that (5) also implies (1) which is the only part of Theorem 1 we
need to prove. So let M be a closed orientable 3-dimensional Poincaré complex
whose fundamental group allows a maximal nilpotent quotient N . Consider the
fibration

M ′ −→M −→ K(N, 1)

induced from the quotient map π1M → N . Then M ′ has the homotopy type of
the covering space of M for which N is the group of deck transformations. We
will do calculations with the Serre spectral sequence

E2
p,q = Hp(N ;Hq(M ′)) =⇒ Hp+q(M)

for the above fibration. Since N is the maximal nilpotent quotient of π1M we
get H1(M ′)N = π1M

′/[π1M
′, π1M ] = 0. Applying Dwyer’s Theorem 3 for

P := H1(M ′) we get E2
i,1 = 0 for all i ≥ 0 in our spectral sequence. As above,

our argument splits now into several cases.

Case I: N is a finite group.
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Then M ′ is up to homotopy a closed 3-dimensional Poincaré complex and thus
H3(M ′) = Z. Moreover, we will prove the following proposition in Section 4.

Proposition 1. In the above situation, H2(M ′)N = 0.

This result, Dwyer’s Theorem 3 and the fact that the covering map M ′ →M
has degree |N | imply that we get an element of order |N | in H3(N) ∼= H4(N). By
[1, p.154] N then has 4-periodic cohomology. The proof in Case I now concludes
exactly as in the warm up.

Case II: N has infinite order.

Then Hi(M ′) = 0 for all i ≥ 3 and we will prove the following result in Section 4.

Proposition 2. In this situation

H2(M ′) ∼=
{

Z if rank(N) = 1,

0 else.

Therefore, as in the warm up, we naturally have to consider two cases.

Case IIa: rank(N) = 1, i.e. N/ Tor(N) is infinite cyclic.

Surprisingly, it takes quite a bit of work to show that in fact Tor(N) must be
trivial in this case. This will be shown in Proposition 3, Section 4.

Case IIb: rank(N) > 1.

Then our calculations above show that the map M → K(N, 1) is an integral
homology isomorphism. Therefore, N is torsionfree of rank 3 by Lemma 4. This
implies exactly as in the warm up that N is one of the Heisenberg groups.

4. Proofs of the propositions

We have to fill the gaps in the proof of Theorem 1. Recall that M is a closed
orientable 3-dimensional Poincaré complex whose fundamental group allows a
maximal nilpotent quotient N . We consider the fibration

M ′ −→M −→ K(N, 1)

induced from the quotient map π1M → N .

Case I: N is a finite group.

Then we need to prove that H2(M ′)N = 0 which is the conclusion of Proposi-
tion 1.

Proof. Set P := H1(M ′) which is a finitely generated abelian group. To show
H2(M ′)N = 0 note that by Poincaré duality H2(M ′) ∼= H1(M ′) ∼= P ∗. From
PN = 0 we conclude that (P ∗)N = 0 and thus

(P ∗)N = H0(N ;P ∗) ∼= Ĥ−1(N ;P ∗) ∼= H1(N ;P ∗∗),
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see [1, p.134 and p.148, exercise 3]. Now P ∗∗ ∼= P/ Torsion is a quotient of P
and by Lemma 7 it still satisfies (P ∗∗)N = 0. By Corollary 6 we get H2(M ′)N

∼=
(P ∗)N

∼= H1(N ;P ∗∗) = 0.

Case II: N has infinite order.

Now Hi(M ′) = 0 for all i ≥ 3 and Poincaré duality gives

H2(M ′) = H2(M ; Z[N ]) ∼= H1(M ; Z[N ]).

Our fibration gives rise to a short exact sequence

0 −→ H1(N ; Z[N ]) −→ H1(M ; Z[N ]) −→ H0(N ;H1(M ′; Z[N ])) −→ . . .

The right hand term is the fixed point set of the (diagonal) action of N on the
module H1(M ′; Z[N ]) ∼= H1(M ′)⊗Z Z[N ]. By [1, p.69] this is a free N -module
and since N is an infinite group there are no nontrivial fixed points. Therefore,
H2(M ′) ∼= H1(N ; Z[N ]).

Lemma 8. Let T be a finite normal subgroup of a group N . Then for all i ≥ 0
there is an isomorphism Hi(N ; Z[N ]) ∼= Hi(N/T ; Z[N/T ]).

Proof. Consider the group extension 1 → T → N → N/T → 1 which gives rise
to a Serre spectral sequence

Ep,q
2 = Hp(N/T ;Hq(T ; Z[N ])) =⇒ Hp+q(N ; Z[N ]).

The Ep,q
2 -terms vanish for q > 0 because T is a finite group and Z[N ] is a free

T -module. To prove the lemma it is enough to show that the fixed point set of T
on the module Z[N ] is isomorphic (as N/T -module) to the group ring Z[N/T ].
This isomorphism is the multiplication map

·(
∑
t∈T

t) : Z[N/T ] −→ Z[N ]

which is a N/T -map since the element we are multiplying with lies in the center of
Z[N ]. An easy calculation shows that this map has image equal to the fixed point
set Z[N ]T . It is injective because the composition with the canonical projection
Z[N ]→ Z[N/T ] gives multiplication by the order of T which is clearly injective
on Z[N/T ].

Applying this lemma for i = 1 to the torsion subgroup T := Tor(N) of
our nilpotent group N , we can finish our calculation of H2(M ′) because N/T
is a Poincaré duality group by Lemma 4. Moreover, the homology groups
Hi(G; Z[G]) vanish for any group except for i = 0 where one always gets Z.
Thus we obtain

H2(M ′) ∼= Hrank(N)−1(N/T ; Z[N/T ]) ∼=
{

Z if rank(N) = 1,

0 else.

which finishes the proof of Proposition 2.
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Case IIa: rank(N) = 1, i.e. N/T is infinite cyclic.

We have to prove the following

Proposition 3. In this situation one must have T = 1.

Proof. We know that both groups H2(M ′) and H2(M) ∼= H1(M) ∼= H1(N) are
infinite cyclic.

Lemma 9. The covering map M ′ →M induces multiplication by |T | on H2.

Proof. Consider the commutative diagram

H2(M ; Z[N ])
∩[M ]←−−−−∼=

H1(M ; Z[N ])←−−−−∼=
H1(N/T ; Z[N/T ])

∩[S1]−−−−→∼=
H0(Z; Z[Z])�εN

�εN

�εN/T ∼=
�εZ

H2(M ; Z)
∩[M ]←−−−−∼=

H1(M ; Z)
·|T |←−−−− H1(N/T ; Z)

∩[S1]−−−−→∼=
H0(Z; Z)

The multiplication by |T | at the bottom line occurs because εN (
∑

t∈T t) = |T |
which has to be taken into account when applying the isomorphism of Lemma 8.
The above diagram finishes the proof since the covering map M ′ → M induces
the same map on H2 as the augmentation map εN : Z[N ]→ Z on the left hand
side.

Looking back to the spectral sequence for the fibration M ′ −→M
f−→ K(N, 1) we

may now conclude that H2(N) is cyclic of order |T |, generated by the image of
f∗. Moreover, the commutative diagram

H1(M)
∩[M ]−−−−→∼=

H2(M)

∼=
	f∗

�f∗

H1(N)
∩f∗[M ]−−−−→ H2(N)

shows that, with z ∈ H1(N) ∼= Z a generator, the map

. ∩ z : H3(N) −→ H2(N) ∼= Z/|T |
is an epimorphism. Now consider the extension

1→ T
i−→ N −→ N/T ∼= Z→ 1.

The Wang sequence gives a short exact sequence

0 −→ H3(T )N/T −→ H3(N) c−→ H2(T )N/T −→ 0.

Moreover, the composition H3(N) c−→ H2(T ) i∗−→ H2(N) is given by the cap-
product with the class ±z ∈ H1(N). But we know that this composition is an
epimorphism. In particular, the inclusion map i induces also an epimorphism
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i∗ : H2(T )→ H2(N) and thus H2(T ) ∼= H3(T ) contains an element of order |T |.
Then the finite group T has 3-periodic cohomology and is therefore trivial ([1,
p.159, exercise 1]).

Proof of Theorem 2. Again we only have to prove that (5) implies (1). Let M
be a closed orientable 3-dimensional Poincaré complex whose fundamental group
allows a maximal torsionfree nilpotent quotient N . Consider again the fibration

M ′ −→M −→ K(N, 1)

induced from the quotient map π1M → N . Observe that by assumption
H1(M ′)N is a finite group. If one now considers rational homology through-
out (e.g. Dwyer’s result holds true in this case) then the arguments from the
proof of Theorem 1 show that N is trivial, infinite cyclic or a 3-dimensional
rational Poincaré duality group. In the last case one sees easily that N is a
Heisenberg group. Note that all the details about certain degrees etc. are not
necessary here since N is torsionfree to start with.
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