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NEGATIVE RESULTS FOR NIKODYM MAXIMAL
FUNCTIONS AND RELATED OSCILLATORY

INTEGRALS IN CURVED SPACE

William P. Minicozzi II and Christopher D. Sogge

1. Introduction

In 1972 Carleson and Sjölin [3] proved an optimal theorem for spherical sum-
mation operators in the plane. Specifically, they showed that the Fourier multi-
plier operators corresponding to mδ(ξ) = (1−|ξ|)δ

+ are bounded on Lp(R2), p ≥ 4
if δ > δ(p) = 2(1/2 − 1/p) − 1/2. Since the kernel of this summation operator
(the inverse Fourier transform of mδ) behaves at infinity like

∑
e±i|x|/|x|3/2+δ,

they obtained this result by proving the essentially equivalent theorem that

Sλf(x) =
∫

eiλ|x−y|a(x, y)f(y) dy(1)

satisfies

‖Sλf‖L4(R2) ≤ Cελ
−1/2+ε‖f‖L4(R2), λ ≥ 1, ε > 0,(2)

if a ∈ C∞
0 (R2 × R

2) vanishes near the diagonal where x = y. Using a scal-
ing argument, one finds that this yields the preceding multiplier theorem when
p = 4, and the other cases follow from interpolating with the easy estimate
corresponding to p = ∞.

Carleson and Sjölin actually proved a stronger result. They considered oscil-
latory integral operators of the form

Tλf(x) =
∫

eiλφ(x,t)a(x, t)f(t) dt,(3)

where now a, φ ∈ C∞(R2 ×R) and moreover the real phase function is assumed
to satisfy the Carleson-Sjölin condition that

det
(

φ′′
x1t φ′′′

x1tt

φ′′
x2t φ′′′

x2tt

)
	= 0, on supp a.(4)

Under these hypotheses they proved the following stronger more general version
of (2):

‖Tλf‖L4(R2) ≤ Cελ
−1/2+ε‖f‖L4(R), ε > 0.(5)
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In the other direction Fefferman [9] had earlier showed that the multiplier
operators corresponding to δ = 0, that is, the ball multiplier operators with
m0(ξ) = χ|ξ|≤1 are never bounded on Lp(Rn) if n ≥ 2 and p 	= 2. The proof in
this seminal paper involved using Besicovitch’s construction that there are sets
in the plane of measure zero containing a unit line segment in every direction.
Using related ideas, in [10], Fefferman was able to give an independent proof
of the Carleson-Sjölin multiplier theorem which had a more geometric flavor.
Many of the recent results in the subject use ideas from Fefferman’s work.

Following [10] in part, Córdoba [6] gave another proof of the Carleson-Sjölin
theorem. Using a straightforward orthogonality argument which exploited the
fact that the critical estimate involves L4 and 4 = 2 · 2, Córdoba showed that
the multiplier theorem follows from optimal bounds for the “Nikodym maximal
operators” in the plane. Specifically, if T δ denotes a δ-neighborhood of a unit
line segment in R

2 and if

(Mδf)(x) = sup
x∈T δ

|T δ|−1

∫
T δ

|f(y)| dy,(6)

Córdoba showed that when ε > 0 and 0 < δ ≤ 1,

‖Mδf‖L2(R2) ≤ Cεδ
−ε‖f‖L2(R2).(7)

Córdoba also conjectured that for higher dimensions one should have the optimal
bounds

‖Mδf‖Lq(Rn) ≤ Cp,εδ
1−n/p−ε‖f‖Lp(Rn), q = (n − 1)p′, 1 ≤ p ≤ n,(8)

assuming as before that 0 < δ ≤ 1 and ε > 0. Here, and in what follows,
p′ = p/(p − 1) denotes the exponent which is conjugate to p.

While this estimate is not known there are many partial results. First of all
Christ, Duoandikoetxea and Rubio de Francia [5] showed that (8) holds when
p ≤ (n + 1)/2. (See also Drury [7] for related estimates.) This estimate then
was improved in an important paper of Bourgain [1], in which it was shown that
when n ≥ 3 (8) a slightly weaker version of (8) (with other norms in the left)
holds for certain (n + 1)/2 < p ≤ pn, where pn is given by a certain recursive
relation arising from an induction argument on the dimension n. Wolff [21] then
improved Bourgain’s result, showing that when n ≥ 3 (8) holds for p ≤ (n+2)/2.

In this paper we shall show how an argument of Bourgain [1] and Wolff [21]
can be used to show that on a Riemannian manifold of dimension n an analog
of (8) holds for p ≤ (n + 1)/2, if in (6) T δ are δ-neighborhoods of geodesics
of an appropriate length and the norms are defined using the volume element.
In odd dimensions we shall show that this result is optimal. Specifically, we
shall provide an example of a Riemannian manifold for which the analog of (8)
does not hold for any p > [(n + 2)/2], if [(n + 2)/2] denotes the greatest integer
≤ (n + 2)/2. We do this by showing that in curved space Nikodym-type sets
of dimension [(n + 2)/2] may exist. The aforementioned positive results for Mδ
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imply that such sets must always have dimension ≥ (n + 1)/2. The Nikodym-
type sets we construct turn out to be smooth submanifolds and since (n+1)/2 is
a half integer for even n, this explains the gap between the negative and positive
results for the general case here. Similar numerology also arose in some negative
results of Bourgain [2] for oscillatory integrals.

The main idea behind our constructions comes from the proof of positive
results for the Euclidean setting of Bourgain [1] and Wolff [21]. In each of
these papers a key step involves reducing to estimates for Mδ involving lower
dimensions 2 ≤ m < n. To extend these proofs in a trivial way to a curved
space setting one would need that there are many totally geodesic submanifolds
of dimension m. Unfortunately, for non-Euclidean manifolds, it is of course rare
to have this if m 	= 1 or n, and all of our counterexamples are built around this
fact. On the other hand, we should point out that our results suggest that the
worst cases for (8) and the related oscillatory integral estimates described below
might involve metrics whose sectional curvatures degenerate to high order along
lower dimensional sets.

Let us now turn to the related negative results for oscillatory integrals. To
put them in context, we first need to recall a work of Hörmander [12]. In this
paper, the proof of Carleson-Sjölin [3] was simplified and Hörmander improved
their oscillatory integral estimate (5) by showing that

‖Tλf‖Lq(R2) ≤ Cqλ
−2/q‖f‖Lp(R), 4 < q ≤ ∞, p = 3p′.(9)

This result can be seen to be best possible. Hörmander also formulated a natu-
ral extension of the Carleson-Sjölin condition for real phase functions φ(x, t) ∈
C∞(Rn × R

n−1) and raised the problem of trying to generalize (9) to higher
dimensions. This higher dimensional version of the Carleson-Sjölin condition
(4) can be formulated as follows. First one requires that the mixed Hessian of
the phase function have maximal rank on supp a, that is,

rank (∂2φ/∂xj∂tk) ≡ n − 1.(10)

If this condition is met and if we fix x = x0 ∈ suppx a, then

Σx0 = {∇xφ(x0, t) : t ∈ N}(11)

is a smooth (immersed) hypersurface in R
n if N is a small neighborhood of

{t : a(x0, t) 	= 0}. The other part of the Carleson-Sjölin condition is that

hjk is nondegenerate on Σx0 ,(12)

if hjk denotes the second fundamental form of Σx0 induced by the Euclidean
metric on R

n. These conditions are easily seen to be invariant and it is clear
that they are equivalent to (4) when n = 2. Assuming them, Hörmander asked
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whether bounds of the form

(13) ‖Tλf‖Lq(Rn) ≤ Cqλ
−n/q‖f‖Lp(Rn−1),

2n/(n − 1) < q ≤ ∞, q = (n + 1)p′/(n − 1)

hold when n ≥ 3.
The first general result of this type is due to Stein [18] who showed that when

n ≥ 3, (13) holds for q ≥ 2(n + 1)/(n− 1), generalizing the earlier L2 restriction
theorem of Stein and Tomas [20]. In the other direction, Bourgain [1] provided
a striking example showing how, at least for odd n, Stein’s result is optimal.
When n = 3, following Stein [19], it is particularly easy to describe Bourgain’s
example. One simply takes

φ(x, t) = x1t1 + x2t2+ < A(x3)t, t >,(14)

where, say,

A(x3) =
(

1 x3

x3 x2
3

)
,

so that

rank A ≡ 1, but rank A′ = 2.

Clearly, (10) holds and since A′ has full rank the other part, (12), of the Carleson-
Sjölin condition must hold. Since rank φ′′

tt ≡ 1 one can use stationary phase to
see that if the amplitude a of Tλ is nonnegative and if a fixed f ∈ C∞

0 equals
one on suppta 	= ∅, then |Tλf(x)| ≈ λ−1/2 for large λ > 1, if x is a distance
O(λ−1) from suppxa ∩ {(x′, x3) : x′ ∈ range A(x3)}. Hence, ‖Tλf‖q/‖f‖∞ ≥
Cλ−1/2−1/q, showing that (13) cannot hold here when q < 4, as claimed.

The mechanism behind this example that rank φ′′
tt < n − 1 everywhere does

not seem possible if, unlike the preceding case, the second fundamental forms
in the second part of the Carleson-Sjölin condition are always positive definite.
The latter happens in the model case where φ(x, t) is the Riemannian distance
between x and t with t belonging to an appropriate hypersurface and x belonging
to the compliment. In this case, the second fundamental forms cannot have
positive signature since, by Gauss’ lemma, the surfaces (11) are just the cospheres
{ξ :

∑n
j,k=1 gjk(x0)ξjξk = 1}, with gjk = (gjk)−1 denoting the cometric coming

from the Riemannian metric
∑

gjkdxjdxk on the manifold Mn.
Because of this one might hope for better results for Tλ if, as above, one

considers the model case where the phase functions come from a Riemannian
metric. Here too, though, things may break down. Indeed, using the same coun-
terexamples for (8), we shall show that, even if one considers weaker estimates
involving now

Sλf(x) =
∫

Mn

eiλdist(x,y)a(x, y)f(y) dy,(15)
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then

(16) ‖Sλf‖Lp(Mn) ≤ Cq,ελ
−n/q+ε‖f‖Lq(Mn),

2n/(n − 1) < q ≤ ∞, q = (n + 1)p′/(n − 1), ε > 0,

need not hold for n = 3 if 3 < q < 10/3. Here, dist(·, ·) is the distance coming
from the metric gjk on Mn, and, as before, the amplitude is assumed to be C∞

0

and to vanish near the diagonal to insure that the phase function is smooth. In
this context, we sharpen a negative result of Bourgain [2] who showed that (13)
generically breaks down if q < 118/39. As with the Nikodym maximal functions
the metrics can be taken to be real analytic and arbitrarily close to the Euclidean
one. The constructions also give negative results for n > 3.

2. Negative results for the Nikodym maximal function when n = 3

Before focusing on the three-dimensional case, let us describe the general
setup. Let Mn be a complete n-dimensional Riemannian manifold. We shall
consider all geodesics γx containing a given point x ∈ Mn of length |γx| = r.
We then for 0 < δ ≤ 1 let T δ

γx
denote a tubular neighborhood of width δ around

γx and define

Mδf(x) = sup
x∈γx, |γx|=r

|T δ
γx
|−1

∫
T δ

γx

|f(y)| dy.(17)

If we then fix a compact subset K ⊂ Mn, we shall be concerned with the problem
of deciding when bounds of the form

‖Mδf‖Lq(K) ≤ Cp,εδ
1−n/p−ε‖f‖Lp , q = (n − 1)p′, ε > 0, suppf ⊂ K(18)

can hold, assuming of course that 1 ≤ p ≤ n. Later we shall give a simple
argument based on [1] and [21] showing that if r as above is small enough then
the analog of the Euclidean results in [5] always hold. Specifically, we shall see
that (18) holds on an arbitrary manifold if 1 ≤ p ≤ (n+1)/2. Before doing this,
we shall show that for odd dimensions this result is sharp in the sense that there
are odd-dimensional manifolds for which (18) cannot hold for any p > (n + 1)/2
regardless of how small we choose the fixed number r to be. For even n we
shall show that (18) breaks down for p > (n + 2)/2. We shall also give a simple
explanation of the difference between even and odd dimensions for our type of
constructions.

Let us start out with the negative results for Nikodym maximal functions
when n = 3 since this is the simplest case. Here we wish to show that (18) need
not hold on a given curved three-dimensional Riemannian manifold if p > 2.
The main step involves the following simple lemma.
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Lemma 1. Let α ∈ C∞(R) satisfy −1 < α < 1 and α(0) = 0 and set α(−1)(t) =∫ t

0
α(s) ds. Let

p(x, ξ) =
√
|ξ|2 + 2α(x2)ξ1ξ3(19)

be the symbol of the cometric
∑

gjk(x)dξjdξk = dξ2 + 2α(x2)dξ1dξ3 on T ∗
R

3.
Then for fixed x1 ∈ R, and −π/2 < θ < π/2

t → x(x1, θ; t) = (x1 + t sin θ, t cos θ, sin θα(−1)(t cos θ)/ cos θ )(20)

is a geodesic for the corresponding metric
∑

gjk(x)dxjdxk on TR
3, where gjk =

(gjk)−1. Furthermore, the Jacobian of the map

(x1, θ, t) → x(x1, θ; t)(21)

equals |α(−1)(t)| when θ = 0.

Proof. The last assertion involves a straightforward calculation. To verify that
the curves (20) are geodesics for our metric, we need to recall that if (x(t), ξ(t))
satisfies Hamilton’s equation

dx/dt = ∂p/∂ξ, dξ/dt = −∂p/∂x,(22)

then t → x(t) is geodesic. (See, e.g., Appendix C in [13].) Furthermore, since p
must be constant on its integral curves, if we take

x(0) = (x1, 0, 0), ξ(0) = (sin θ, cos θ, 0)

as initial conditions, then, since p(x(0), ξ(0)) = 1, (22) becomes in our case

dx/dt = (ξ1 + α(x2)ξ3, ξ2, ξ3 + α(x2)ξ1), dξ/dt = −(0, α′(x2)ξ1ξ3, 0).

Our initial condition then yields ξ(t) = ξ(0) = (sin θ, cos θ, 0). If we plug this
into the formula for dx/dt we conclude that (x1(t), x2(t)) = (x1 + t sin θ, t cos θ),
as desired. We then integrate the last variable to obtain

x3(t) =
∫ t

0

sin θ α(s cos θ) ds,

yielding the remaining part of (20).

To apply the lemma take

α(s) = e1/s, s < 0, and α(s) = 0, s ≥ 0,(23)

and let
∑

gjkdxjdxk be the metric corresponding to the cometric
dξ2 + 2α(x2)dξ1dξ3. The metric then agrees with the Euclidean one for x2 ≥ 0.
Moreover, since α(−1)(s) = 0 for s ≥ 0, the lemma implies that there is an open
neighborhood N ⊂ {x ∈ R

3 : x2 < 0} of the half-axis where x2 < 0, x1 = x3 = 0
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so that if x ∈ N there is a unique geodesic γx containing x and having the prop-
erty that when x2 ≥ 0 γx is contained in the two-plane x3 = 0. If we then, for
a given c > 0, let

fδ(x) = 1 if x2 > 0, |(x1, x2)| < c and |x3| < δ, and fδ(x) = 0 otherwise,

it follows that for small fixed x2 < 0, Mδfδ(x) must be bounded from below by
a positive constant on some nonempty Euclidean ball B centered at (0, x2, 0).
Hence,

‖Mδfδ‖L1(B) / ‖fδ‖Lp ≥ c0δ
−1/p

for some c0 > 0 depending on B and c > 0 above. Since

3/p − 1 < 1/p when p > 2,

we conclude that (18) breaks down when p > 2.

The preceding example involved a metric which, though C∞, is not analytic.
It is also possible to show that (18) may break down for a given p > 2 when
n = 3 even if one considers analytic metrics.

To see this we now let

α(s) = αk(s) = sk, k = 1, 2, . . . .(24)

We then, for small x, let
∑

gjkdxjdxk be the metric whose cometric is dξ2 +
2αk(x2)dξ1dξ3. It then follows that for x1 ∈ R and −π < θ < π

t → x(x1, θ; t) = (x1 + t sin θ, t cos θ,
1

k + 1
sin θ cosk θ tk+1)(25)

are geodesics. Moreover, if we fix a small x2 < 0, the last part of the lemma
ensures that we can find a small ball B centered at (0, x2, 0) so that if x ∈ B
there is a unique geodesic as in (25) which passes through x. Since |tk+1| < δ if
|t| < δ1/(k+1), if we fix c > 0 and now let

fδ(x) = 1 if 0 ≤ x2 ≤ δ1/(k+1), |x1| ≤ c, |x3| ≤ δ, and fδ(x) = 0 otherwise,

then, if the center of B is close to the origin,

Mδfδ(x) ≥ c0δ
1/(k+1), x ∈ B,

for some c0 > 0 depending on c and B. Consequently,

‖Mδfδ‖L1(B) / ‖fδ‖Lp ≥ c′0δ
1/(k+1)−(k+2)/(k+1)p.

Since

1 − 3/p > (k + 2)/(k + 1)p − 1/(k + 1) when p > (2k + 1)/k,

it follows that (18) breaks down for a given fixed p if k is large.
Remark. Notice that when k = 1 we only recover the trivial requirement for
(18) that p ≥ 3. To explain the difference between this case and the others we
note that in all cases, the key point involved the behavior of the geodesics in



228 WILLIAM P. MINICOZZI II AND CHRISTOPHER D. SOGGE

the (x2, x3) direction. This is dictated by the R3
232 component of the curvature

tensor. A calculation shows that, when k = 1, R3
232 = −(3 − 5x2

2)/4(1 − x2
2),

and so in particular R3
232 ≈ −1/4 when |x2| is small. In the other cases, where

k = 2, 3, . . . , though, R3
232 ≈ −x2k−2

2 near x2 = 0 and so this sectional curvature
vanishes to higher and higher order at x2 = 0 as k → +∞. In the first example
of course it vanishes of infinite order. Based on this and related results to follow
one might conjecture that for curved spaces one would want to assume that
the sectional curvatures are pinched away from zero to obtain favorable bounds
for Nikodym maximal operators or related oscillatory integral operators. This
condition by itself is probably not sufficient since even though the results of
[21] seem to easily extend to the hyperbolic space setting, it seems that the
arguments in this paper can be used to show that (8) cannot hold for certain
local perturbations of H

n when n is odd and p > (n + 1)/2.
We hope to explore these points in a later work.

3. Negative results for maximal operators in higher odd dimensions

It is not hard to adapt the argument for the three-dimensional case and show
that (18) does not hold in general for an odd-dimensional Riemannian manifold
when (n+1)/2 < p ≤ n. Later we shall see that the inequality does hold though
in the complimentary range where 1 ≤ p ≤ (n+1)/2. We shall then use this fact
to show how, at least for odd dimensions, our constructions give the maximum
possible amount of “focusing” of geodesics.

To prove the negative results for (18) when n is odd we shall consider cometrics
on T ∗

R
n of the form

n∑
j,k=1

gjk(x)dξjdξk = dξ2 + 2α(x(n+1)/2)
(n−1)/2∑

j=1

dξ(n+1)/2−jdξ(n+1)/2+j ,(26)

where α ∈ C∞ satisfies |α| < 1 and α(0) = 0. We then, as before, let∑
gjk(x)dxjdxk be the associated Riemannian metric where gjk = (gjk)−1. We

then can use the proof of Lemma 1 to see that if θ = (θ1, . . . , θ(n−1)/2) is fixed
and satisfies |θ|2 =

∑
θ2

j < 1/2, say, and if (x1, . . . , x(n−1)/2) is fixed, then

t → x(x1, . . . , x(n−1)/2, θ; t)
= (x1 + tθ1, . . . , x(n−1)/2 + tθ(n−1)/2,

t
√

1 − |θ|2, θα(−1)(t
√

1 − |θ|2)/
√

1 − |θ|2)
(27)

parameterizes a geodesic. As before α(−1) denotes the primitive of α vanishing
at the origin.

In what follows we shall assume that α is given by (23). Then our metric of
course agrees with the Euclidean one when x(n+1)/2 ≥ 0.

Note that the Jacobian of the map sending

(x1, . . . , x(n−1)/2, θ, t) → x(x1, . . . , x(n−1)/2, θ; t)



NEGATIVE RESULTS FOR NIKODYM MAXIMAL FUNCTIONS 229

equals |α(−1)(t)|(n−1)/2 when θ = 0. Consequently, if we fix x(n+1)/2 < 0 we
can find a ball B centered at (0, . . . , 0, x(n+1)/2, 0, . . . , 0) so that if x ∈ B then
there is a unique geodesic γx which contains x and lies in the (n + 1)/2-plane
Π = {x : xj = 0, (n + 1)/2 < j ≤ n} when x(n+1)/2 > 0. Consequently, if we
assume, depending on our definition of Mδ, that the center of B is sufficiently
close to the origin, we obtain

Mδfδ(x) ≥ c0 > 0, x ∈ B,

if for a given fixed c > 0

fδ(x) =

{
1 if |(x1, . . . , x(n+1)/2)| < c, and |xj | < δ, (n + 1)/2 < j ≤ n

0 otherwise.

From this we conclude that, for some c′0 > 0,

‖Mδfδ‖L1(B) / ‖fδ‖Lp ≥ c′0δ
−(n−1)/2p.

Since

n/p − 1 < (n − 1)/2p when p > (n + 1)/2,

we conclude that (18) cannot hold here for p > (n + 1)/2.
This example of course involved a smooth metric which was not real analytic.

As in the three-dimensional case, though, it is straightforward to modify the
construction using (24) to see that given p0 > (n + 1)/2 there is a real analytic
metric for which (18) cannot hold when p0 < p ≤ n.

4. Negative results for maximal operators in higher even dimensions

The negative results for even dimensions are somewhat different since we
cannot have sharp focusing of space filling geodesics into an (n+1)/2-dimensional
submanifold since (n+1)/2 is not an integer when n is even. In the next section
we shall say a bit more about the difference between even and odd dimensions.
In particular we shall show that for n even there can only be sharp focusing of
space filling geodesics into submanifolds of dimension (n + 2)/2 when n is even.
Because of this fact our methods only show that (18) cannot hold in general for
p > (n + 2)/2 on even dimensional curved manifolds.

To prove this we shall consider cometrics of the form

n∑
j,k=1

gjk(x)dξjdξk = dξ2 + 2α(x(n+2)/2)
(n−2)/2∑

j=1

dξn/2−jdξ(n+2)/2+j ,(28)

assuming as usual that α is smooth and that |α| < 1. If then
∑

gjk(x)dxjdxk

is the corresponding metric, one checks using the earlier arguments that, when
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(x1, . . . , xn/2) and θ = (θ1, . . . , θ(n−2)/2) with |θ| < 1/2 are fixed, the curves

t → x(x1, . . . , xn/2, θ; t)

= (x1 + tθ1, . . . , x(n−2)/2 + tθ(n−2)/2, xn/2, t
√

1 − |θ|2,
θα(−1)(t

√
1 − |θ|2)/

√
1 − |θ|2)

are geodesic.
If we assume that α is as in (23) then the Jacobian of

(x1, . . . , xn/2, θ, t) → x(x1, . . . , xn/2, θ; t)

is nonsingular when θ = 0 and t < 0. Consequently, if we fix x(n+2)/2 < 0 and
xn/2 ∈ R there is a ball B centered at (0, . . . , xn/2, x(n+2)/2, 0, . . . , 0) so that if
x ∈ B there is a unique geodesic γx containing x and lying in the (n+2)/2-plane
Π = {x : xj = 0, (n + 2)/2 < j ≤ n} when x(n+2)/2 ≥ 0.

To use this, for a given c > 0, we put

fδ(x) =

{
1 if |(x1, . . . , x(n+2)/2)| < c, and |xj | < δ, (n + 2)/2 < j ≤ n

0 otherwise.

Then if the center of B is close to the origin, we must as before have that
Mδfδ(x) is bounded below by a positive constant (depending on B) for each
x ∈ B. We then conclude that, for some c0 > 0,

‖Mδfδ‖L1(B) / ‖f‖Lp ≥ c0δ
−(n−2)/2p,

which implies that (18) cannot hold for p > (n+2)/2 since n/p−1 < (n−2)/2p
for such p.

5. Bounds for maximal functions and lower bounds on the
dimension of Nikodym-type sets

The main result of this section is the following

Theorem 2. Let (Mn, g) be a complete Riemannian manifold of dimension n ≥
2, and let Mδ be as in (17) where r = min{1, (inj Mn)/2}, with inj Mn denoting
the injectivity radius of Mn. If then K ⊂ Mn is a fixed compact set

(29) ‖Mδf‖Lq(K) ≤ Cp,εδ
1−n/p−ε‖f‖Lp ,

if supp f ⊂ K, 1 ≤ p ≤ (n + 1)/2 and q = (n − 1)p′.

In view of our earlier negative results (29) is best possible in the general
curved space setting when n is odd.
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Before turning to the proof, let us see how (29) and our earlier constructions
yield sharp lower bounds for the dimension of Nikodym-type subsets of general
odd-dimensional manifolds.1

Definition. If Π ⊂⊂ Mn let Π∗ denote all points x ∈ Mn for which there is a
geodesic γx � x of length ≤ r = min{1, (inj Mn)/2} which intersects Π in a set
of positive length, that is, |Π ∩ γx| > 0. We then call Π a Nikodym-type set if
Π∗ has positive measure.

Corollary 3. If Π is a Nikodym-type subset of Mn then the Minkowski dimen-
sion of Π is at least (n + 1)/2.

For odd n the lower bounds are sharp since we have shown that if the cometric
is as in (26) with α given by (23), then the intersection of the (n + 1)/2-plane
{x : xj = 0, (n + 1)/2 < j ≤ n} with any ball centered at the origin is a
Nikodym-type set. Also, the corollary implies that if Π is a submanifold and a
Nikodym-type set then its dimension must be (n+2)/2 for even n. This accounts
for the difference between our negative results in even and odd dimensions since
our strongest counterexamples all involve such sets.

The proof of the corollary is very simple. We must show that if Π is a
Nikodym-type set then for every ε > 0 there is a constant cε > 0 so that

|Πδ| ≥ cεδ
(n−1)/2+ε, 0 < δ ≤ 1(30)

if Πδ denotes a δ-neighborhood of Πδ. To show this we simply note that

Π∗ ⊂ ∪λ>0 {x : inf
0<δ≤1

(MδχΠδ)(x) > λ }

if χΠδ denotes the characteristic function of Πδ. Hence, if λ > 0 is small and
fixed

|{x : inf
0<δ≤1

(MδχΠδ)(x) > λ }| ≥ c0 > 0

if |Π∗| > 0. Since λ is fixed, we conclude from (29) with p = (n + 1)/2 (see also
(31) below) that if ε > 0

0 < c′0 ≤ Cλ,εδ
1−n−ε|Πδ|2, 0 < δ ≤ 1,

which of course yields (30) and completes the proof.

Turning to the proof of Theorem 2, let us first point out that undoubtedly
one does not have to assume, in the definition of Mδ, that |γx| is smaller than a
multiple of the injectivity radius (cf. [16]), but one needs this hypothesis to be
able to use the simple arguments of Bourgain [1] and Wolff [21]. To see where

1The sets actually correspond to sets which in the Euclidean setting would contain com-
pliments of the usual Nikodym sets (see [8]); however, we are following the terminology in
[1].
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this restriction is used we need to introduce some notation. If γj(s), s ∈ [αj , βj ]
are two geodesics parameterized by arclength we set

θ(γ1, γ2) = min
sj∈[αj ,βj ]

dist((x1(s1), x′
1(s1)), (x2(s2), x′(s2))).

Here dist comes from the natural metric on the unit cosphere bundle induced
by our given Riemannian metric on Mn. Also, if a ∈ Mn and λ > 0 let B(a, λ)
denote the geodesic ball radius λ centered at a.

With this notation we shall require the following simple result which is essen-
tially contained in [14].

Lemma 4. Suppose that γj, j = 1, 2 are geodesics whose length does not exceed
r = min{1, (inj Mn)/2} and which belong to a fixed compact subset K ⊂ Mn.
Suppose also that a ∈ T δ

γ1
∩ T δ

γ2
. Then there is a constant c > 0, depending on

(Mn, g) and K, but not on δ > 0 and 0 < λ ≤ 1, so that

(T δ
γ1

∩ T δ
γ2

)\B(a, λ) = ∅ if θ(γ1, γ2) ≥ δ/cλ.

To proceed, we need to make a couple of easy reductions. We first notice that
since we are assuming that supp f ⊂ K, where K is a fixed compact subset of
Mn, it suffices to show that the variant of (29) holds where in the left side the
norm is taken over a fixed compact subset of a coordinate patch. We can even
assume further, for the sake of convenience, that local coordinates have been
chosen so that the vertical lines where x′ = (x1, . . . , xn−1) is constant are all
geodesic. It then suffices to show that, if in our definition of Mδ we add the
restriction that γx satisfies θ(γx, 0) ≤ c0 for some such line 0 and a given small
constant c0 > 0, then (29) holds. This in turn would be a consequence of the
stronger bounds

( ∫
|Mδf(x′)|q dx′ )1/q ≤ Cεδ

1−n/p−ε‖f‖p,

q = (n − 1)p/(p − 1), 1 ≤ p ≤ (n + 1)/2,

assuming as before that f has small support, and that now

Mδf(x′) = Mδf(x′, 0).

Here and in what follows we are assuming that x′ ∈ K ′ = {x ∈ K : xn = 0}.
Since the bound for p = 1 is trivial, the preceding inequality would follow

from showing that, under the above assumptions, the maximal operator is of
restricted weak-type ((n + 1)/2, n + 1) with norm O(δ(1−n)/(n+1)). To be more
specific, we need to show that if E is contained in a fixed compact subset of a
coordinate patch as above then

|{x′ : MδχE(x′) > λ}| ≤ Cλ−(n+1)δ1−n|E|2.(31)

Since the set in question is empty for λ > 1 we need only consider 0 < λ ≤ 1.
To simplify the notation and arguments to follow, we shall also let A denote a
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fixed large constant which is to be specified later that depends on (Mn, g) and
our support assumptions. It then suffices to verify that

|{x′ : MδχE(x′) > Aλ}| ≤ Cλ−(n+1)δ1−n|E|2, δ, λ ∈ (0, 1],(32)

with C here being equal to A−(n+1) times the constant in the preceding inequal-
ity.

Assuming that A is as above we choose a maximally Aδ/λ-separated subset

{x′
j}M

j=1 = I
in {x′ : MδχE(x′) > Aλ}. If we then note that

|{x′ : MδχE(x′) > Aλ}| ≤ CM · (Aδ/λ)n−1,(33)

we conclude that our task is equivalent to obtaining an appropriate upperbound
on the cardinality M of I.

The first step in doing this is to notice that given x′
j ∈ I we can choose a

geodesic γj containing (x′, 0) of length ≤ r so that

|E ∩ T δ
γj
| ≥ Aλ|T δ

γj
|.(34)

Since |T δ
γj
| ≈ δn−1, if we sum over j, we conclude that

M∑
j=1

|E ∩ T δ
γj
| ≥ c0Mλδn−1

for a fixed constant c0 > 0.
From this we conclude that there must be a point a ∈ E belonging to at least

N = c0Mλδn−1/|E|
of the tubes T δ

γj
. Label these as {T δ

γjk
}1≤k≤N .

If we invoke the preceding lemma, we conclude that (T δ
γj1

∩T δ
γj2

)\B(a, λ) = ∅ if
θ(γj1 , γj2) ≥ δ/cλ, with c > 0 being a fixed constant. Since I is Aδ/λ-separated,
this condition is automatically satisfied for j1 	= j2 if A is large enough, assuming,
as above, that the geodesics are close to vertical lines. This in turn implies that
the tips of the tubes τ δ

jk
= T δ

γjk
\B(a, λ), 1 ≤ k ≤ N , are disjoint. Since

|T δ
γj

∩ B(a, λ)| ≤ C0λ|T δ
γj
|

for a fixed constant C0, we conclude from (34) that if we also assume that
A ≥ 2C0, then

|τ δ
γjk

∩ E| ≥ Aλ|T δ
γjk

|/2, 1 ≤ j ≤ N.

Hence, if we sum and use the aforementioned disjointness, we conclude that

|E| ≥
N∑

j=1

|τ δ
jk

∩ E| ≥ ANλδn−1/2 ≥ CMλ2δ2(n−1)/|E|.
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Since this yields
M ≤ C ′λ−2δ−2(n−1)|E|2,

we obtain (32) from (33), which completes our proof.

6. Negative results for oscillatory integrals in odd dimensions

In the remainder of the paper we shall show that bounds of the form (16)
need not hold for certain 2n/(n − 1) < q < 2(n + 1)/(n − 1) if n > 2 and

(Sλf)(x) =
∫

eiλdist(x,y)a(x, y)f(y) dy,(35)

with dist(x, y) denoting the Riemannian distance between x and y in R
n mea-

sured by a non-Euclidean metric. To avoid the singularity of the phase we shall
assume that a vanishes near the diagonal and for convenience we shall also as-
sume that 0 ≤ a ∈ C∞

0 (Rn × R
n) and that

a(x, y) 	= 0 if x = 0 and yj = 0, j 	= (n + 1)/2, y(n+1)/2 = −1.(36)

Here we are assuming that n ≥ 3 is odd. We then take our metric to be dual
to the one in (26) where α is given (23).

To proceed, we need to use an argument from Bourgain [1]. (See also Feffer-
man [9].) To be more specific, we first need to recall that if, for every ε > 0,
Sλ : Lp → Lq with norm Cp,q ≤ Cελ

−n/q+ε, then the adjoint operator

(S∗
λg)(y) =

∫
e−iλdist(x,y)a(x, y)g(x) dx(37)

must send Lq′ → Lp′
with the same norm. Finally, we need to recall (see p. 484,

Theorem 2.7 in [11] or [17]) that the dual bounds in turn imply a vector valued
version

‖ (
∑
α

|S∗
λgα|2)1/2 ‖p′ ≤ C ′

ελ
−n/q+ε‖ (

∑
α

|gα|2)1/2 ‖q′ , ε > 0,(38)

with C ′
ε being a fixed multiple of Cε for a given p and q.

To show that this inequality need not hold for certain q > 2n/(n − 1), let
y be as in (36). We then can find a ball B centered at y so that if z ∈ B
there is a unique geodesic γz � z which is contained in the (n + 1)/2-plane
{x : xj = 0, (n + 1)/2 < j ≤ n } when x(n+1)/2 ≥ 0. We then choose a
maximally λ−1/2-separated set of points zα ∈ B ∩ {y : y(n+1)/2 = −1}. We also
define the Euclidean cylinders

Tα = {x : x(n+1)/2 ≥ 0, |x| ≤ 1, dist(x, γzα) ≤ cλ−1/2},(39)

and set
gα(x) = eiλdist(x,zα)χTα(x).
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Keeping (36) in mind, if c > 0 in (39) and the diameter of B are small enough,
one checks that

|S∗
λgα(y)| ≈ |Tα| ≈ λ−(n−1)/2, if dist(y, γzα) < cλ−1/2 and y ∈ B,

using the fact that ∇x( dist(x, zα) − dist(x, y) ) = 0 if x, y ∈ γzα . Thus,

λ−(n−1)/2 ≈
∫

B

max
α

|S∗
λgα(y)| dy ≤

∫
B

(
∑
α

|S∗
λgα|2)1/2 dy.(40)

If we use Hölder’s inequality and (38) we can dominate the right hand side by

Cελ
−n/q+ε‖ (

∑
|gα|2)1/2 ‖q′ = Cελ

−n/q+ε‖ (
∑

χTα)1/2 ‖q′ .(41)

Recall that χTα
(x) = 0 outside of the intersection of the unit ball with the

slab where |xj | ≤ cλ−1/2, (n + 1)/2 < j ≤ n and x(n+1)/2 ≥ 0. In this region
the metric is Euclidean and it is not hard to see by a simple volume packing
argument that a given point x in the region can lie in at most O(λ(n−1)/4) of the
cylinders Tα. This just follows from the fact that there are O(λ(n−1)/2) cylinders
of volume ≈ λ−(n−1)/2 uniformly distributed in the above set which has volume
≈ λ−(n−1)/4.

If we use this overlapping bound, we conclude that

‖(
∑
α

χTα)1/2‖q′ ≤ Cλ(n−1)/8λ−(n−1)/4q′
.(42)

If we combine this with the preceding two inequalities we conclude that if the
equivalent version (38) of (16) held, then as λ → +∞ we would have

λ−(n−1)/2 ≤ Cελ
−n/q+ελ(n−1)/8λ−(n−1)/4q′

, ∀ε > 0.

This in turn leads to the condition that

q ≥ qn = 2(3n + 1)/3(n − 1) > 2n/(n − 1)

even if the weaker version,

‖Sλf‖q ≤ Cελ
−n/q+ε‖f‖∞, ε > 0,

of (16) held. In particular, we conclude that when n = 3 (16) breaks down in
the curved space setting for 3 ≤ q < 10/3. Also, as before, one could modify
this construction and show that for a given 2n/(n − 1) < q < qn (16) need not
hold even on a manifold with an analytic metric.
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7. Negative results for oscillatory integrals in even higher dimensions

It is easy to adapt the above argument and show that (16) need not hold for
certain 2n/(n − 1) < q < 2(n + 1)/(n − 1) when n ≥ 4 is even. One lets the
Riemannian metric on R

n correspond to the cometric (28) where, as before, α
is as in (23).

One then replaces (36) with the condition that a(x, y) 	= 0 when x = 0 and
yj = 0, j 	= (n + 2)/2, and y(n+2)/2 = −1. One makes similar modifications
of the other parts of the proof for odd n, replacing (n + 1)/2 by (n + 2)/2.
Then (40) and (41) go through. Inequality (42), though, must be modified since
the cylinders Tα now lie in the slab where |xj | ≤ cλ−1/2, (n + 2)/2 < j ≤ n,
x(n+2)/2 ≥ 0 and |x| ≤ 1. The arguments for the odd-dimensional case imply
that a point in this region belongs to O(λ(n−2)/4) of the Tα. Consequently, (42)
must be replaced in even dimensions by

‖(
∑
α

χTα
)1/2‖q′ ≤ Cλ(n−2)/8λ−(n−2)/4q′

.

If we combine this with (40) and (41) we conclude that if (16) holds for this
example then we must have

λ−(n−1)/2 ≤ Cελ
−n/q+ελ(n−2)/8λ−(n−2)/4q′

, ∀ε > 0,

as λ → +∞. This in turn leads to the condition that for even n ≥ 4 we must
have q ≥ 2(3n + 2)/(3n − 2) > 2n/(n − 1).
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