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A GAP THEOREM FOR ABELIAN VARIETIES
OVER DIFFERENTIAL FIELDS

ALEXANDRU BUIUM AND ANAND PILLAY

In [B1] the first author proved a theorem about differential algebraic groups
(in the sense of Cassidy-Kolchin [C], [K2]) that implied the geometric Lang-
Mordell conjecture [L]; cf. Theorem 1 below. The proof in [B1] used an analytic
argument, based on “Big Picard”. Hrushovski [H] was able to replace this ana-
lytic argument by a remarkable model theoretic argument, based in its turn on
the difficult theory developed in [HZ]. Now Hrushovski’s model theoretic meth-
ods further lead to striking new results on differential algebraic groups [HS]; cf.
Theorem 3 below. So a natural challenge presents itself: to find a proof for
these new results that is free from model theory. In this note we shall give in
particular a quick analytic proof of Theorem 3, based, again, on “Big Picard”.
The main result of this note is the “Gap” Theorem 2 below, which should be
viewed as a significant complement to Theorem 1; Theorems 1 and 2 will then
easily imply Theorem 3.

Some comments are in order concerning the role of the authors in this paper.
The second author asked whether analytic methods as in [B1] could yield strong
minimality and local modularity of the “Manin kernel” of a simple abelian variety
which does not descend to the constants (Theorem 3 below). The first author
then proved strong minimality (assertion 1 of Theorem 3) by proving a weaker
version of Theorem 2 (namely for simple abelian varieties). The second author
suggested some general ideas, analogous to those in [P1], for obtaining local
modularity. In trying to carry out details, the first author came up with the
proof of the present Theorem 2, from which everything follows.

Recall some basic terminology of differential algebra [K1], [C], [B2]. (The
definitions below will suffice to understand the statements of the Theorems be-
low, without assuming any previous knowledge of differential algebra; for the
proofs, however, familiarity with [B1], [B2] is required.) Let F be a d—field
(i.e. a field of characteristic zero equipped with a derivation §.) One defines
the ring of —polynomials F{yi,...,yn} as the ring of usual polynomials with
F—coefficients in the variables §’y;, 1 < j < N,i > 0. There is an obvious notion
of order for d—polynomials. F is said to be d—closed if for any A, B € F{y},
B # 0, such that the order of A is strictly bigger than the order of B there
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exists a € F with A(a) =0, B(a) # 0. In particular F and its field of constants
C are algebraically closed. By a 6—closed set of FV one understands the set
of common zeros of a family of j—polynomials in F{y1,...,yn}; d—closed sets
are the closed sets of a Noetherian topology on FV called the 6—topology (or
the Kolchin topology.) We have an induced d—topology on any affine closed
subvariety X C FV. More generally if X is any algebraic variety over F (in the
usual sense of algebraic geometry) identify X with its set of F—points and call
a subset of X d—closed if its intersection with the affine Zariski open subsets of
X are d—closed; d—closed sets of X are, again, the closed sets of a Noetherian
topology, the d—topology. A d—closed subgroup of an algebraic group is called a
differential algebraic group; this definition is equivalent to Kolchin’s [K2] due to
[P2]. (As a remarkable example, if A is an abelian variety over F, the d—closure
At of its torsion group is an extremely interesting differential algebraic group
that was investigated in detail in [B2]; it is the “incarnation”, in this geometry,
of the kernel of the Manin map [Man]|. Note however that Manin [Man] does
not leave the realm of function fields with derivations, which are too small for
allowing to even speak about A? as a geometric object; to do so one needs the
d—closed field F. Cf. [B2].) Now for any d—closed subset ¥ of an F—variety
X one defines the absolute dimension a(X) € N U {oco} as follows. If X = AN,
a(X) is the maximum of the transcendence degrees over F of the quotient fields
of the rings F{uy1,...,yn}/I1(%;), where ¥; are the irreducible components of X
and I(3;) is the ideal of all d—polynomials vanishing on ¥;; if X is arbitrary
one lets a(X) be the maximum of a(X N U) where U is affine Zariski open in X.
(Here are a few examples. We have a(X) = 0 iff ¥ is finite. On the other hand
a(X) = o0 if dim X > 0. Also, if A is an abelian variety of dimension g over F
then g < a(A%) < 2g; cf. [B2], Theorem 6.1.)

With these definitions at hand, let us start by reformulating the main result
in [B1]:

Theorem 1 [B1]. Let A be an abelian variety over F, that has F /C—trace zero,
and let T' C A be a d—closed subgroup of finite absolute dimension. Then the
Zariski closure in A of any §—closed subset of I' is a finite union of translates
of abelian subvarieties.

Recall that an abelian variety over F is said to have F/C—trace zero if it
contains no non zero abelian subvariety that descends to C.

Consideration of §—closed subsets of I' that are not Zariski dense in A imme-
diately leads to a proof of the geometric Lang-Mordell conjecture, cf. [B1]. On
the other hand Theorem 1 above says nothing about §—closed subsets of T" that
are Zariski dense in A. These are the concern of the main result of the present
paper, which is the “Gap Theorem” below:

Theorem 2. Let A be an abelian variety over F of dimension g, that has
F/C—trace zero, and let I' C A be a §—closed subgroup of finite absolute dimen-
sion. Then any é—closed subset of I', that is Zariski dense in A, has absolute
dimension > g+ 1.
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Here is the remarkable consequence of Hrushovski’s theory refered to in the
beginning of this note and for which we shall provide a proof based on Theorems
1 and 2 above.

Theorem 3 [HS]. Let A be a simple abelian variety over F which does not
descend to C. Then the following properties hold:

1) Any proper 6—closed subset of A% is finite.

2) Any d—closed subset of A* x A* is a finite union of translates of 6— closed
subgroups.

3) If B is another simple abelian variety over F that is not isogenous to A
and does not descend to C then any proper 6—closed subset of A* x BY is a finite
union of points or points times one of the factors.

Remarks. In the language of model theory, assertion 1 above says that A is
“strongly minimal”, assertion 2 implies, as pointed out in [P1], that At is “locally
modular”, and assertion 3 says that A* and B* are “orthogonal”; cf [MMP] and
[P1]. Theorem 3 implies that any strongly minimal group definable in a differen-
tially closed field (of characteristic 0) is either locally modular or nonorthogonal
to the field of constants, as well as showing that the nonorthogonality classes
of locally modular strongly minimal groups are in 1-1 correspondence with the
isogeny classes of simple abelian varieties which do not descend to the constants,
these results being originally due to Hrushovski and Sokolovic [HS]. However [HS]
contains a deeper trichotomy theorem: that every strongly minimal set in a dif-
ferentially closed field is “trivial”, “locally modular” or nonorthogonal to the
field of constants. This depends on showing that such strongly minimal sets are
Zariski geometries and then referring to [HZ]. [HZ] has two steps, producing a
definable group from a nontrivial (Zariski) strongly minimal set, and then pro-
ducing a definable field from a non locally modular (Zariski) strongly minimal
set. The trichotomy theorem can be deduced from the first step of [HZ] together
with the results of the present paper. It would be interesting to find a “direct”
proof of the first step of [HZ] in the context of differential fields.

In order to prove Theorems 2 and 3 we start by recalling (a few facts about)
the dictionary developed in [Bl1], [B2]. By a D-—scheme we understand an
F—scheme V together with a lifting of § : F — F to a derivation of Oy.
D—schemes form a category in the obvious way (morphisms are assumed to
commute with derivations.) Group objects in this category are called D—group
schemes. = D—schemes whose underlying scheme are varieties are called
D—varieties; D—group schemes whose underlying group schemes are algebraic
groups are called algebraic D—groups. Here varieties and algebraic groups are
assumed, by definition, irreducible. Recall that given an F—variety X there is a
D—scheme X = jetoo(X/F,0) satisfying the following universality property:

HOHI]:_ schemes (V!7 X) = HomD—schemes (V7 Xoo)

for any D—scheme V, where V' is the underlying scheme of V. There is a
bijection ¥ — X[>®l H s H®! between d—closed subsets ¥ of X and reduced
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closed D—subschemes H of X*°. In case H is a D—subvariety of X*° we have
a(H**') = dim H. If X is an algebraic group then X is a D—group scheme
and, under the above correspondence, irreducible d—closed subgroups of finite
absolute dimension correspond to algebraic D—subgroups.

With the above facts at hand we are already able to check that Theorem 3
follows from Theorems 1 and 2.

To check assertion 1 assume there is a proper infinite §—closed subset ¥ C A*
and seek a contradiction. We may assume X is minimal with this property; in
particular that it is irreducible. By Theorem 2 we have a(X) > g + 1. We
may assume 0 € Y. By [B2], Theorem 5.1, A* is contained in any Zariski
dense d—closed subgroup of A. Since A is simple this implies that X is not a
subgroup. Hence either ¥ # —X or there exists x € X such that X + x # 3. Set
S =3¢l 8= (2 4 z)ll, G = (AF)[*]. So either S # —S or S # S’. Now
G is a variety of dimension < 2¢g and S,S’,—S are closed subvarieties of G of
dimension > g+ 1. Since both intersections SN (—S) and SN S’ are non empty,
they both have dimension at least 2, in particular none of the intersections is
finite. Since one of the intersections is strictly contained in S this contradicts
the minimality of 3, which closes the proof of assertion 1.

To check assertions 2 and 3 assume that either B = A or B is simple, not
descending to C, and non isogenous to A respectively. Let ¥ C A* x Bf is a
proper infinite irreducible d—closed subset containing 0 and we have to prove
that ¥ is a translate of a —closed subgroup (in case 2) or X is zero times one
of the factors (in case 3.) Let S = X[l G = (AH)l>=l H = (B*)[*]. Since,
by assertion 1, G and H contain no proper closed D—subvariety of positive
dimension it follows that either S is zero times one of the factors of G x H or S
is generically finite over both factors. In the first case both assertions 2 and 3
follow. In the second case we may assume of course dim A < dim B and we get

a(¥) = dim S = dim G = a(A*) <2-dim A <dim A x B.

By Theorem 2, 3 is not Zariski dense in A x B. Hence, by Theorem 1, the
Zariski closure of ¥ in A X B is a proper non zero abelian subvariety C C A x B.
So C'is isogenous to either A or B. In the case of assertion 3, C' must project to
zero either in A or B, which closes the proof of this case. In the case of assertion
2 we have

Y CCON(Ax AP =CF

(The equality above follows from the fact that, by Theorem 6.1 in [B2], C¥ is
the intersection of all §—characters y of C' and, on the other hand, any such y
lifts to a d—character of A x A, due to Poincaré reducibility.) Since C is simple,
by assertion 1 applied to C, we get that ¥ = C¥ and assertion 2 is proved.

The rest of the paper is devoted to the proof of Theorem 2. Assume I’
contains a d—closed subset ¥ that is Zariski dense in A, with 1 < a(X) < g and
seek a contradiction. We may assume ¥ and T' are irreducible. Set G := T'l*],
V := 2l Then G will be an algebraic D—group and V will be a closed
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D—subvariety of G. Since ¥ is Zariski dense in A we must have that the canonical
projection V. — A is dominant and, hence, generically finite. Let W be the
normalisation of A in the field of fractions of V and let V be a smooth projective
compactification of Ve =(smooth locus of V) such that D = V\V, is a
divisor with simple normal crossings, and the morphlsm Vieg — A extends to a
morphism V' — A. There is an induced morphism p : V' — W. Denote by & the
Kodaira dimension of a projective variety (by which we understand, as usual,
the Kodaira dimension in the sense of [I], [U] of a smooth projective model of
the variety.) By Theorem 13 in [Kaw], k(W) > 0 and there exist an abelian
subvariety B C A, etale covers W, B of W and B respectively, and a projective
normal variety Y such that Y is finite (and dominant) over A/B, W ~ B x Y,
and k(Y) = dim Y = x(W). Moreover, by Theorem 4 in [Kaw], if k(W) =10
then W is an abelian variety, in which case we may take, of course, W =W and
B = B = A. Due to the above discussion we are in one of the following cases:

Case 1. x(W) > 1.
Case 2. W is an abelian variety and p(D) has codimension > 2 in W.

Case 3. W is an abelian variety and p(D) has codimension 1 in W .

As in [B1] we may assume there exist:

- morphisms of complex algebraic varieties V. — A — 5, V - W — A,
YxsB~W - W, Y — A/B (where V is a smooth relative projective
compactification of V;e; having a divisor D with relative simple normal crossings
at infinity, and A — S is an abelian scheme, B is an abelian subscheme, W is
etale over W, and Y is finite and dominant over A/B.)

- a closed immersion V' C G (where G — S is a group scheme of finite type),

- nowhere vanishing vector fields § on S and 6 on G, with 4 lifting &,
having the following properties. All varieties above are flat over S and S is
smooth. Moreover, multiplication, unit and inverse on G are horizontal for 5,
the ideal sheaf of V in G is preserved by 6, and there exist an extension of
d—fields (C(S5),0) — (F,d) such that (G, ), V, W, ... and the natural morphisms
that we considered among them are deduced via base change from (G, é ), V,W, ...
and from the corresponding morphisms.

For any closed point s € S denote by G, Vs, W, ... the corresponding fi-
bres at s respectively. Let B be any analytic disc in S tangent to § and let
Gp,Vp,Wh, ... be the corresponding analytic spaces obtained by pull back via
B — S. Tt is enough, in case 1, to prove that, upon replacing S by a Zariski open
set of it, Ay /By, b € B fall into at most countably many isomorphism classes (for
then, by Lemma 1.3 in [B1], we would get that A/B descends to C, contradicting
the trace zero hypothesis.) Similarly, in cases 2 and 3, it is enough to prove that
Ap, b € B fall into at most countably many isomorphism classes. As in [B1],
it follows, by an elementary result of Hamm about families of Lie groups, that
all the fibres V3, b € B are analytically isomorphic (but apriori not algebraically
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isomorphic.) In particular the smooth loci (V})eg,b € B are analytically iso-
morphic. Shrinking S in the Zariski topology we may also assume that W is
the normalization of A, in the function field of Vy and (Vieg)s = (Vs)reg for all
s.

Assume we are in Case 1 above. Shrinking S in the Zariski topology we may
assume that Y is of general type (i.e. s(Y;) = dim Y,), and that W, is an
etale cover of Ws. Let f/reg = Vieg Xw W. The fibres (f/reg)S are etale covers of
(Vieg)s = (Vi)reg hence, by the “rigidity of the fundamental group”, (Vieg)s are
analytically isomorphic for b € B. Fix a point by € B. Then we may consider
for all b € B the non degenerate analytic maps

(*) (f/}eg)bo x>~ (‘Z"eg)b — }N/E)

By Theorem 2 in [KO] any non degenerate analytic map from an algebraic variety
into a projective variety of general type is actually algebraic. So the maps (*)
are algebraic, hence we get algebraic dominant maps

Alb (Vieg)s, — Alb Y}, — Ay/By,

and we are done, since Alb (Vieg)s, has only countably many quotients.

Assume we are in Case 2 above. Shrinking S in the Zariski topology we may
assume that A, is an abelian variety, and that, upon denoting by p, : Vi — W,
the natural projection, we have that ps is surjective and p,(D;) has codimension
> 2 in W, for all s. There is a closed subscheme Z, of W, of codimension > 2
such that p, induces an isomorphism Vi\p;1(Z,) ~ W,\Z,. Consider for each
b € B the analytic map

Wbo\(Zbo Upbo(Dbo)) = %o\plj()l(zbo U P, (Dbo)) - (wo)reg = (Vb)reg — Ay

It is well known that any analytic map f : X\Y — P, where X, P are smooth
projective varieties, and Y is Zariski closed of codimension > 2 in X, is algebraic.
(Recall the argument. We may assume P is a projective space. Let H be a
generic hyperplane in P. By [GR] p. 181, f*H extends to a Cartier divisor M
on X. Hence the line bundle f*O(1) extends to a line bundle L on X. The pull
backs of the sections of O(1) extend to sections of L by the Second Riemann
Theorem [GR] p.132. This closes the argument.) In particular we get rational
maps of abelian varieties (and hence regular maps)

Wiy — Ap
for all b. So A, is one of the countably many quotients of W3, and our proof in

Case 2 is done.

Assume we are in Case 3. By further blowing up V, we may, and will, assume
in this case that the morphism p : V' — W is a succession of blowing ups with
smooth centers.



ABELIAN VARIETIES OVER DIFFERENTIAL FIELDS 217

Claim 1. V., is logarithmically of general type.

Here a smooth quasi projective variety X is called “logarithmically of general
type” if £(X) = dim X, where & denotes the logarithmic Kodaira dimension in
the sense of [I]. (Recall that if X = X\ D where X is a smooth projective variety
and D is a divisor with simple normal crossings then %(X) equals the “K g +
D—dimension” of X.) Assume for a moment that Claim 1 is true. Shrinking S
in the Zariski topology we may assume that (V) eg is logarithmically of general
type for all s. Propositions 2.2 and 4.2 of [Sak], together with the argument at
the beginning of Section 7 in [KO], imply that any holomorphic non degenerate
map from a smooth algebraic variety into a smooth quasi-projective variety
which is logarithmically of general type is actually algebraic. So, in our case, we
get morphisms of algebraic varieties

(‘/bo)reg = (%)reg — Ay

for all b € B. Hence, again, A, runs through the countable set of quotients of the
Albanese variety of (a smooth projective model of) (Vp)reg, and we are done.

Let us check Claim 1. Let E C V be the (reduced) exceptional divisor of
p:V — W. Let H C W be the union of all divisorial components of p(D).
Claim 1 will be implied by the following

Claim 2. H is ample.

Let us show that Claim 2 implies Claim 1. The canonical divisor on V has
the form Ky = p*Kw + E' = E' where E' > 0, Supp E' = Supp E. On the
other hand p*H = D + E” where E” > 0, Supp E"” C Supp E. There exists a
positive integer ng such that £’ < ngE’. Then for any positive n we have

nno(Ky + D) = nngE’ +nngD > nE" +nD = p*(nH).

Hence, if Claim 2 is true, for n > 0 the linear system |nno (K5 + D)| separates
points outside £ U D and Claim 1 follows.

So we are left to check Claim 2. Assume H is not ample. Then the identity
component W’ of the group of all x € W for which the translate H +x is linearly
equivalent to H has positive dimension. Since the abelian variety W’ acts on
the linear system |H|, it acts trivially so H + W/ = H. Let Z C W be a closed
subset of codimension > 2 such that

V\p™H(2) 2 W\Z,

and let Z' C W be the union of all components of p(D) of codimension > 2.
The generic fibre of Z U Z" — W := W/W’ has dimension at most (dim W —
2) —dim W” = dim W’ — 2. In other words, for z € W sufficiently general,
(x + W) N (ZUZ) has codimension > 2 in x + W’. On the other hand,
since H + W/ = H, for x € W\ H the intersection (z + W') N H is empty. Since
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p(D) = Z'"UH we have, for z € W sufficiently general, that (x+W’')N(p(D)UZ)
has codimension > 2 in « + W’. Consider the composition

(z+W\(p(D)UZ) cW\(p(D)UZ) = V\p~'(p(D)U Z) CV CG.

Since any rational map from a smooth algebraic variety into an algebraic group,
that is defined outside a closed set of codimension > 2, must be defined every-
where, the above composition induces a regular map

We~e+W -G

that is generically injective. Replacing A by an abelian variety isogenous to it
we may assume A = A; X ... X A,,,, where A; are simple abelian varieties. Also,
by enlarging I', we may assume I' =I'; x ... x I';;,, where I'; C A; are §—closed
subgroups of finite absolute dimension. So G = G X ... X G,,, with G; algebraic
D—subgroups of A°. So there is an index 7 such that the composition with the
i—th projection

W — G — G,

is not constant. Since any regular map of an abelian variety into a commutative
algebraic group is a homomorphism composed with a translation it follows that
G; contains a non trivial abelian subvariety B;. Since Ker(G; — A;) is a vector
group the projection B; — A; is injective; since A; is simple this projection is
also surjective. So G; — A; has a section. Composing this section with the
inclusion G; C A° we get that the projection A7 — A; has a section. By
Corollary 2.5 in [B2] this implies that A; descends to C, a contradiction. This
proves Claim 2, hence Claim 1, hence Theorem 2.

Remarks. There is an interesting formal analogy between the model theoretic
properties of differential algebraic groups and model theoretic properties of com-
plex Lie groups. In both cases the Hrushovski-Zilber theory [HZ] leads to pow-
erful results. Also, in both cases one may expect direct proofs of these results,
free of model theory. The present paper dealt with differential algebraic groups;
for the case of Lie groups we refer to [P1].
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