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DISKBUSTING ELEMENTS OF THE FREE GROUP

Richard Stong

Abstract. In 1936 Whitehead presented an algorithm for determining whether
an element (or a set of elements) in a free group F is part of a free generating
set for F . We will give a more detailed discussion of Whitehead’s algorithm and
a new proof that the algorithm works. We will see that in fact Whitehead’s
algorithm actually determines whether or not an element (or a set of elements)
is diskbusting. If an element ω is not diskbusting, then Whitehead’s algorithm
produces the smallest free factor of F in which ω lies, and in that free factor ω is
diskbusting.

1. Introduction

Let Fn be the free group on n generators a1, a2, . . . , an and their inverses
a′
1, a

′
2, . . . , a

′
n. We will call a1, a2, . . . , an, a′

1, a
′
2, . . . , a

′
n the letters of Fn. If x

is a letter of Fn, then we will denote its inverse by x′ and hence x′′ = x. An
element of Fn is a word in the letters of Fn and a conjugacy class in Fn may
be regarded as being a cyclically ordered word in the letters of Fn. We will
abuse terminology slightly and refer to a cyclic word in the letters of Fn as a
cyclic word in Fn. We will say a word or cyclic word is reduced if it contains
no occurrence of xx′ for x a letter. Recall that any word or cyclic word can be
cancelled down to a unique reduced word.

Suppose ω = z1z2 . . . zr is a reduced cyclic word in the letters of Fn. Since ω is
cyclically ordered, we can define zi for any integer i by the rule zi+r = zi. We will
say ω is diskbusting if there is no free product decomposition Fn = A∗B with B
nontrivial and ω conjugate into A. This has a geometric interpretation as well.
Represent Fn as the fundamental group of a 3-dimensional handlebody H. Then
ω determines a free homotopy class of closed loops in H. Then ω is diskbusting
if for any essential 2-disk D in H and any closed loop γ in H representing ω,γ
meets D. Diskbusting curves play an important role in the study of 3-manifolds,
e.g., [1]. More generally, if Ω = {ω1, ω2, . . . } is a finite set of cyclic words, we say
Ω is diskbusting if there is no non-trivial free product decomposition Fn = A∗B
with each ωi conjugate into either A or B. (Here a decomposition is trivial if
one of A and B is trivial and every ωi is conjugate into the other.) Again this
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has a similar geometric interpretation. For any representatives γi of ωi and any
essential 2-disk D at least one of the γi must meet D.

An obvious question one can ask is whether a given finite set Ω of cyclic words
is diskbusting. We will show that the answer to this question is decidable by
an easy algorithm. In fact, except for the very end, our algorithm is identical
to the algorithm given by Whitehead in 1936 to decide whether Ω is part of
a free basis. This paper can be regarded as giving a more detailed study of
Whitehead’s algorithm and as a bonus we will give a new proof of Whitehead’s
algorithm.

The questions of whether a finite set Ω = {ω1, ω2, . . . } is diskbusting or part of
a free basis can also be asked if the ωi are ordinary, i.e., not cyclic, words. There
are two distinct notions of diskbusting one can use in this case. Algebraically, we
can say Ω is (algebraically) diskbusting if there is no non-trivial decomposition
Fn = A ∗ B with each ωi in either A or B. (Here a decomposition is trivial if
one of A and B is trivial and every ωi is in the other.) Geometrically, we can
fix a base point � in H and represent each ωi by a based loop γi. We can say
Ω is (geometrically) diskbusting if for any choice of γi and any essential 2-disk
D ⊂ H, D meets at least one of the γi. These two notions of diskbusting do not
agree. The algebraic interpretation of “geometrically diskbusting” is that there
is no decomposition Fn = A ∗B with each ωi in A and B �= {1}. We sketch the
extension to this case in the last section.

2. Cyclic words

If ω = z1z2 . . . zr is a cyclic word we can associate to ω a family of biinfinite
paths in Fn, {. . . z−1

2 z−1
1 g, z−1

1 g, g, zrg, zr−1zrg, . . . }. We will call these paths ω-
geodesics. The geometric interpretation of these ω-geodesics is as follows. Fix a
hyperbolic structure on H and choose n totally geodesic 2-disks D2

1, D
2
2, . . . , D

2
n

dual to a1, a2, . . . , an, so that the element of Fn represented by a loop in H can
be read off by recording ai (resp. a−1

i ) if the loop crosses the 2-disk D2
i positively,

(resp. negatively). Cutting along the D2
i produces a unit cell X and the universal

cover H̃ is built by gluing up countably many copies of X indexed by Fn. Take
any lift γ̃ of a geodesic representing ω. Then the record of the copies of X which
γ̃ passes through is exactly an ω-geodesic in Fn. If ω has extra cyclic symmetry,
then these geodesics are repeated. In this case we will count them with the
appropriate multiplicity. Thus for any element h of Fn there are r ω-geodesics
which go through h, namely {. . . z−1

i+2z
−1
i+1h, z−1

i+1h, h, zih, zi−1zih, . . . }, 1 ≤ i ≤ r.
We can use the ω-geodesics to associate a family of graphs to the element

ω. There is a natural metric on Fn, the word metric determined by the letters
a1, a2, . . . , an, a′

1, a
′
2, . . . , a

′
n. Let SR be the sphere of radius R about the identity

element in this metric and BR the ball of radius R. Let ΓR(ω) be the graph
whose vertex set is SR and where g1, g2 ∈ SR are joined by one edge for each
ω-geodesic on which they both lie. Geometrically this corresponds to taking the
compact piece K of the universal cover H̃ which consists of the union of the
copies of X corresponding to BR−1. For the vertices we collapse the boundary
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2-disks of K, which correspond to SR, to points. For the edges we take all the
lifts of a geodesic representing ω in K. If Ω = {ω1, ω2, . . . } is a finite set of
cyclic words, then we let ΓR(Ω) have the same vertex set and its edge set is the
disjoint union of the edge sets of the ΓR(ωi).

The graph Γ1(Ω) is the Whitehead graph of Ω introduced by Whitehead in
[2]. There is actually a slight difference, Whitehead introduced extra vertices to
subdivide each edge of Γ1(Ω). This change is used by Whitehead to get a more
homogeneous statement. With our new interpretation we will not need it. The
Whitehead graph can be described as having for its vertices the letters of Fn

and for each pair xy of consecutive letters in some ωi we have an edge from x to
y′. Note that the r edges from ω given by this rule exactly correspond to the r
ω-geodesics through 1 described above.

There are several useful properties of the graphs ΓR(Ω). Note that we have a
projection map p : ΓR(Ω)→ΓR−1(Ω) given by sending x1x2 . . . xR to x2x3 . . . xR.
An edge in ΓR−1(Ω) joining x2x3 . . . xR to y2y3 . . . yR corresponds to a segment
in an ωi-geodesic. The next two vertices out on that ωi-geodesic are of the
form x1x2 . . . xR and y1y2 . . . yR. Thus they are vertices of ΓR(Ω) joined by an
edge. Thus the projection p is surjective on the edges as well as on the vertices.
Also note that for every x2x3 . . . xR the subgraph p−1(x2x3 . . . xR) has vertices
{tx2x3 . . . xR : t �= x−1

2 } and ΓR(Ω) restricted to these vertices is a copy of
Γ1(Ω) − {x−1

2 }. Thus we can describe ΓR−1(Ω) as being obtained from ΓR(Ω)
by collapsing a large number of copies of Γ1(Ω)−{x}, for different x, to vertices.

More generally let Tn be the infinite 2n-regular tree which is the Cayley
graph of Fn with respect to the generating set {a1, a2, . . . , an, a′

1, a
′
2, . . . , a

′
n}.

For any compact subset K ⊂ Tn we can form a graph ΓK(Ω) as follows. The
vertices of ΓK(Ω) are the unbounded components of Tn − K and for each ωi-
geodesic γ we have an edge joining the unbounded component of Tn −K where
γ begins to the one where γ ends. Note that this definition is in some sense
more natural since we do not need to assume ωi is reduced. This definition
generalizes immediately to compact subsets K ⊂ H̃. Also this extends the
previous definition since ΓR(Ω) = ΓBr−1(Ω). Furthermore if K ′ ⊂ K then we
have a projection ΓK(Ω) → ΓK′(Ω) which is surjective on vertices and edges.

In some weak sense this definition shows the family of ΓR(Ω) are independent
of the particular generating set for Fn. Let b1, b2, . . . , bn be another free basis for
Fn, ŜR and B̂R the spheres and balls, T̂n the tree, and let Γ̂R(Ω) be the graphs
associated to that basis. There is a constant C > 0 such that any generator aj

has length at most C when written in terms of {bi}n
i=1 and conversely. Then any

element of Fn −BC(R+C) is in Fn − B̂R+C . Thus any unbounded component of
Tn −BC(R+C) lies in a single unbounded component of T̂n − B̂R. Hence we have
projections ΓC(R+C)(Ω) → Γ̂R(Ω) and Γ̂C(R+C)(Ω) → ΓR(Ω). In particular if
ΓR(Ω) is connected for arbitrarily large R, then so is Γ̂R(Ω). (Alternately there
is a basis independent inverse limit of the graphs ΓR(Ω). Although all results
can be phrased in terms of this infinite object we will work with the infinite
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families of finite objects instead.)
For a graph Γ and a vertex x of Γ we will denote by deg(x) the number of

edges of Γ incident on x. We will say a graph Γ is 1-connected if Γ is connected
and remains connected even if any one vertex is removed. If Γ is connected
and not 1-connected, then we call any vertex whose removal disconnects Γ a cut
vertex. Isolated vertices in Γ1(Ω) correspond to letters not used by any ωi and
occur in letter/inverse pairs. Whitehead [2] assumes that such isolated vertices
of Γ1(Ω) are removed. We do not make this assumption. With this slight change
in terminology we have the following version of Whitehead’s Reduction Lemma
[2].

Lemma 1 (Whitehead). If Γ1(Ω) has a vertex x and set of fewer than deg(x)
edges whose removal disconnects Γ1(Ω) and separates x from x′, then we may
change bases of Fn and shorten Ω, i.e., decrease the sum of the lengths of the
ωi.

Proof. Suppose deg(x) > k and there are k edges {e1, e2, . . . , ek} which separate
x from x′. Let {x, y1, y2, . . . , yr} be the component of Γ1(ω) − {e1, e2, . . . , ek}
containing x, but not x′. We may suppose that no ei joins two vertices in
{x, y1, y2, . . . , yr}, that {e1, e2, . . . , el} do not have x as a vertex and that
{el+1, el+2, . . . , ek} have x as a vertex. Suppose x = aε

i . Make the following
change of basis ãi = ai and if j �= i,

ãj =




xajx
′, if aj and a′

j ∈ {y1, y2, . . . , yr},
ajx

′, if only aj ∈ {y1, y2, . . . , yr},
xaj , if only a′

j ∈ {y1, y2, . . . , yr},
aj , if aj and a′

j /∈ {y1, y2, . . . , yr}.

When we rewrite Ω in this new basis, we add an x after every occurrence
of yi, add an x′ before every occurrence of y′

i, put tildes over all the letters,
and reduce. Except for l places in Ω (corresponding to {e1, e2, . . . , el}), any
occurrence of yi is followed by an element of {x′, y′

1, . . . , y
′
k} and any occurrence

of y′
i is preceded by an element of {x, y1, . . . , yk}. Therefore all but at most l of

the new x or x′ added are immediately cancelled in the reduction step. Further
each occurrence of xy′

i or yix
′ in Ω leads to a shortening of Ω when we reduce.

There are deg(x)− (k− l) such occurrences. Therefore the length of Ω decreases
by at least deg(x) − k (though there may be more cancellation). At any rate,
we have succeeded in shortening Ω. �

As a consequence of this Lemma we may shorten Ω if Γ1(Ω) has a non-1-
connected component. (Take x to be a cut vertex and {e1, . . . , ek} to be the
edges joining x to the component of Γ1(Ω) − {x} containing x′.) Alternately if
Γ1(Ω) has two components which both contain edges coming from the word ωi,
then we may shorten Ω. (Since both components contain edges coming from the
same cyclic word ωi there must be a generator x in one component with x′ in
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the other. Use this x and k = 0.) Applying this lemma and these two remarks
repeatedly we get the following corollary.

Corollary 2. For any finite set Ω = {ω1, ω2, . . . } of reduced cyclic words in Fn

of total length L, Ω can be shortened in at most L − 1 iterations of the above
reduction algorithm until Γ1(Ω) consists of 1-connected components. Further,
we may assume the edges coming from any ωi lie in a single component.

Thus Whitehead’s reduction lemma gives an algorithm for reducing Ω until it
has a special form. We need to understand what we can learn from this special
form. For example, Whitehead shows that if Ω is part of a basis for Fn, then
the 1-connected components of Γ1(Ω) must all be just a single edge. However
there is more data available in this special form. Towards this end we have the
following Theorem.

Theorem 3. Let Ω = {ω1, ω2, . . . } be a finite set of reduced cyclic words in Fn.
Then the following are equivalent.

(1) Γ1(Ω) is 1-connected with respect to some basis for Fn.
(2) ΓR(Ω) is connected for all R.
(3) Ω is diskbusting.

Condition (3) is clearly independent of the basis for Fn. Condition (2) is
independent of the basis for Fn by the discussion above. Condition (1) is inde-
pendent of the basis only because that fact is explicitly inserted. It is possible
for Γ1(Ω) to be non-1-connected in one basis, but 1-connected in another. A
specific example (with Ω a single word) is

ω = a2b−1ab−1a−1ba−1cb−1ac−1ab−1a−1ca−1bc−1bc−1

which has Γ1(ω) non-1-connected, but in the basis ã = a, b̃ = ba−1, c̃ = ca−1

becomes
ω = ãb̃−2ã−1b̃c̃b̃−1c̃−1b̃−1ã−1c̃b̃c̃−1b̃c̃−1

which has Γ1(Ω) 1-connected.

Proof. (1) ⇒ (2). Fix a basis for Fn in which Γ1(Ω) is 1-connected. We will show
(2) by induction on R. Suppose that contrary to the inductive step, ΓR−1(Ω) is
connected, but ΓR(Ω) is not connected. In projecting from ΓR(Ω) to ΓR−1(Ω)
we collapse a number of subgraphs Γ1(Ω)−{x} for various choice of x to points.
Since all the Γ1(Ω)−{x} are connected, these collapses cannot reconnect ΓR(Ω).
This is a contradiction.

(2) ⇒ (3). Suppose Ω is not diskbusting. Then either there is a nontrivial
free product decomposition Fn = A ∗ B with each ωi conjugate into A or B. In
this basis ΓR(Ω) is clearly disconnected for all R.

(3) ⇒ (1). Suppose Γ1(Ω) is never 1-connected. Then by Lemma 3 we can
find a basis in which Γ1(Ω) consists of 1-connected components (more then one)
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and each ωi has edges in only a single component. This gives a nontrivial free
product decomposition Fn = A ∗ B with each ωi conjugate into A or B. �

This theorem gives a simple algorithm for determining whether an element
or set of elements of Fn is diskbusting and an easy method for generating disk-
busting elements. For example any reduced cyclic word containing a2

1a
2
2 · · · a2

na1

as a subword is diskbusting. Notice that this is much simpler than the argu-
ments in [1] for the existence of a diskbusting element. We get the following
easy corollary.

Corollary 4. Any diskbusting cyclic word in Fn has length at least 2n and there
are diskbusting cyclic words of length 2n.

In general Theorem 3 combined with Whitehead’s Reduction Lemma shows
that we can change bases and shorten any finite set Ω of cyclic words until we
have found a free decomposition Fn = Fi1 ∗ Fi2 ∗ · · · ∗ Fis ∗ Fg and a partition
Ω =

⋃s
j=1 Ωj with Ωj contained (up to conjugacy) in Fij and Ωj diskbusting in

Fij . This unfortunately does not directly give Whitehead’s conclusion, namely
that Ω is part of a free basis if and only if the Reduction Lemma reduces Γ1(Ω)
to a set of vertex-disjoint edges. If Ωj is part of a free basis for Fij , then the
diskbusting Ωj must be a single element and that component of Γ1(Ω) must be a
single edge. However a priori it might be the case that Ωj is part of a free basis for
Fn, but not for Fij . There are presumably many ways to show that this cannot
occur. However given the fundamental nature of Whitehead’s 1936 papers it
seems dangerous to use more recent results to establish it. The following easy
argument is an adaptation of Whitehead’s argument and gives a more powerful
conclusion. The free decomposition found by Whitehead’s algorithm is unique,
though this is not immediately obvious.

To show this uniqueness we need the following lemma. Suppose a1, a2, . . . , an

is a free basis for Fn = π1(M), for some 3-manifold M . We will say a collection
of disjointly embedded π1-null surfaces Σ1, Σ2, . . . ,Σn in M represents a1, . . . , an

if the word in Fn represented by a closed loop γ ∈ π1(M) transverse to the Σi

can be read off by writing down ai when we cross Σi in the forward direction
and a−1

i when we cross in the reverse direction. Whitehead gives an inductive
proof of this fact; our proof will be more direct.

Lemma 5 (Whitehead). Let a1, a2, . . . , an and b1, b2, . . . , bn be free bases of
Fn = π1(M), where M = )n(S1 × S2). Then we can find a collection of dis-
jointly embedded 2-spheres {S2

i } representing {ai} and a collection of disjointly
embedded π1-null surfaces Σi, transverse to {S2

i }, representing {bi} and with the
following property.

()) The closure of any component of Σi cut along the {S2
i } meets each S2

j

either not at all or in a single circle which bounds in Σi.

Proof. Choose disjointly embedded 2-spheres {S2
i } representing {ai} and dis-

jointly embedded spheres {Σi}, transverse to {S2
i }, representing {bi}. We wish
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to alter the surfaces {Σi} to reduce the number of intersection components with
{S2

i }. If property ()) does not hold, then there must be some component of some
Σj cut along {S2

i } and some 2-sphere S2
k which meets it in two circles. Choose

a point on each intersection circle and join these points by an arc ν in Σj and
an arc γ in S2

k. If int(γ) is disjoint from the other surfaces {Σi} then we can
surger Σj along γ and reduce the number of intersection components.

Choose γ to be transverse to the {Σi} and have minimal number of inter-
sections with these surfaces. Suppose γ crosses another component of some Σl

cut along the {S2
i }. Since this component is disjoint from ν, it must cross γ

twice. By the minimality of the number of intersections of γ with {Σi} these
two intersections must be on different boundary components of Σl ∩ S2

k. Thus
passing to this surface Σl instead of Σj we can choose a new curve γ with fewer
intersections with the {Σi}. Therefore the minimal example must have int(γ)
disjoint from the {Σi}. Thus eventually we must achieve ()). �
Proposition 6. Let Fn = A ∗B = C ∗D be free product decompositions. Then
A ∩ C is a free factor of A, i.e., A = (A ∩ C) ∗ E for some E.

Proof. Choose a free basis a1, a2, . . . , an for Fn where a1, a2, . . . , ak generate
A and ak+1, ak+2, . . . , an generate B. Choose a free basis b1, b2, . . . , bn for Fn

where b1, b2, . . . , bl generate C and bl+1, bl+2, . . . , bn generate D. By Lemma
5 there exist 2-spheres {S2

i }n
i=1 representing the ai and disjointly embedded

π1-null surfaces {Σi}n
i=1 representing the bi and satisfying ()). Suppose γ is

a loop in M representing an element of A ∩ C. We may assume γ is disjoint
from S2

k+1, . . . , S
2
n. We wish to show that we may simultaneously choose γ

to miss Σl+1, . . . ,Σn. Suppose not, then since γ intersected with the {Σi}n
i=1

reads off the expression for γ in the basis of bi’s there must be two consecutive
intersections with some Σj , l + 1 ≤ j ≤ n, with cancelling signs. Let ν be the
arc of γ joining them. Since int(ν) is disjoint from {Σi}n

i=1 we can homotop
ν (rel endpoints) to an arc α in Σj . By property ()), we may choose α so
that when read off in the basis {ai} by recording intersections with {S2

i }n
i=1

we get a reduced word. Therefore there cannot be any intersections of α with
S2

k+1, . . . , S
2
n. Thus we may homotop γ to remove the cancelling intersections

with Σj without introducing any intersections with S2
k+1, . . . , S

2
n. Thus iterating

this argument we may arrange that γ misses Σl+1, . . . ,Σn. Hence A ∩ C is the
image of loops in M missing S2

k+1 ∪ · · · ∪ S2
n ∪ Σl+1 ∪ · · · ∪ Σn. Surger M and

Σl+1, . . . ,Σn along S2
k+1, . . . , S

2
n. The result M ′ has π1(M ′) = A and we see

that A ∩ C is the image of loops in M ′ missing the surgered Σl+1 ∪ · · · ∪ Σn.
These are a collection of disjointly embedded π1-null surfaces in M ′, thus A∩C
is a free factor of A. �

Since the intersection of free factors is again a free factor, it makes sense to
talk about the smallest free factor containing (up to conjugacy) a set of cyclic
words. Returning to Whitehead’s Theorem suppose that Whitehead’s Reduction
Lemma gave a free decomposition Fn = Fi1 ∗ Fi2 ∗ · · · ∗ Fis ∗ Fg and a partition
Ω =

⋃s
j=1 Ωj with Ωj contained (up to conjugacy) in Fij and Ωj diskbusting
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in Fij . Since Ωj is diskbusting in Fij , in fact Fij must the unique smallest free
factor containing Ωj . Hence the Ωj cannot be part of a free basis unless Ωj is
one element and is a generator for Fij . Thus we have established Whitehead’s
result and for Ω a single element the result below.

Corollary 7 (Whitehead). A finite set of reduced cyclic words Ω in Fn is
a subset of a basis if and only if repeated application of Whitehead’s Reduction
Lemma reduces Γ1(Ω) to a union of (vertex-disjoint) edges and isolated vertices.

Corollary 8. For any element ω ∈ Fn there is a unique smallest free factor of
Fn containing ω, ω is diskbusting in this free factor and there is an algorithm
for finding this free factor.

3. Ordinary words

To extend the results above to ordinary words one can proceed as follows.
Given a finite set Ω = {ω1, ω2, . . . } of ordinary words in Fn = 〈a1, a2, . . . , an〉
we can construct analogous graphs. In the handlebody H with cutting 2-disks
D1, D2, . . . , Dn fix a base point � and based curves γi representing ωi. Lift these
to the universal cover H̃. For any radius R we may form the graph Γord

R (Ω) as
follows. Cut along the 2-disks corresponding to the sphere of radius R. Collapse
these 2-disks to vertices and make each copy of � a vertex. Denote by � the lift
of � corresponding to the identity element and by g� the lift corresponding to
the group element g. Make each segment of each γi an edge. As for the cyclic
case the graph Γord

1 (Ω) was introduced by Whitehead. Whitehead’s Reduction
Lemma goes through much as before, with one slight change. If the vertex � is
in the component of Γord

1 (Ω) − {e1, e2, . . . , ek} containing x then in addition to
the change of basis for Fn we also replace each ωi by x′ωix. Then we as above
we may always reduce Γord

1 (Ω) until it is connected and the only possible cut
vertex is the base point �. Finally mimicking the proof of Theorem 3 gives the
following result.

Theorem 9. Let Ω = {ω1, ω2, . . . } be a finite set of reduced, ordinary words in
Fn. Then the following are equivalent.

(1) Γord
1 (Ω) with respect to some basis for Fn, is connected and has no cut

vertex except possibly the vertex �.
(2) Γord

R (Ω) is connected for all R.
(3) Ω is geometrically diskbusting.

The case of algebraically diskbusting sets does not fit as well into this graphical
presentation but it can still be made to fit.

Definition. Say that one of the graphs Γord
R (Ω) is �-split if there is a splitting

of the vertices of Γord
R (Ω) − {�} into disjoint sets X and Y such that

(1) X and Y are unions of components of Γord
R (Ω) − {�}, and

(2) If a lift of γi yields one edge in Γord
R (Ω) that joins two vertices in X (resp.

Y ) then all edges coming from that lift join vertices in X (resp. Y ).
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For Γord
1 (Ω), (2) may be replaced by the condition that X and Y are closed

under taking inverses. Also in this case, we can phrase the definition more geo-
metrically, though less precisely. We say Γord

1 (Ω) is �-split if there is a partition
Ω = Ω1 ∪ Ω2 such that splitting Γord

1 (Ω) at � produces a vertex-disjoint union
Γord

1 (Ω1) ∪ Γord
1 (Ω2). For general R a �-splitting is a splitting of Γord

R (Ω) at �
with each lift of each element of Ω entirely on one side of the splitting. With
this terminology we have the following theorem.

Theorem 10. Let Ω = {ω1, ω2, . . . } be a finite set of reduced, ordinary words
in Fn. Then the following are equivalent.

(1) Γord
1 (Ω) with respect to some basis for Fn, is connected and has no cut

vertex except possibly the vertex � and is not �-split.
(2) Γord

R (Ω) is connected and not �-split for all R.
(3) Ω is algebraically diskbusting.

Proof. (1) ⇒ (2). As for Theorems 3 and 9, Γord
R (Ω) is built inductively from

Γord
1 (Ω) (which is connected and not �-split) by replacing vertices by Γord

1 (Ω)−
{x} which is connected. This cannot disconnect or introduce a �-splitting.

(2) ⇒ (1). Since Γord
R (Ω) is connected for all R by Theorem 9 there is some

basis in which Γord
1 (Ω) is connected and has no cut vertex except possibly the

vertex �. By hypothesis it is not �-split in that basis.
(2) ⇒ (3). Suppose Ω is not algebraically diskbusting. Then there is a choice

of representative based curves γi for ωi and an essential 2-disk D ⊂ H such that
D meets ∪γi only (possibly) at �. Any homotopic set of curves {γ′

i} may be
obtained from {γi} by isotopy and crossing two arcs of curves transversely. We
can modify D to keep it disjoint from the γi throughout this homotopy. When
two arcs of these curves cross we must add thin π1-null tubes to any sheet of D
that lies between them. Thus we see that any other set of representatives misses
a π1-null surface F homologous to D. Thus in any basis there is such an F and
F lifts to a compact surface in H̃ which realizes a �-splitting.

(3) ⇒ (2). If Γord
R (Ω) is disconnected in some basis, then by Theorem 9, Ω

is not geometrically diskbusting, hence not algebraically. If Γord
R (Ω) is �-split,

then there is a 2-disk D ⊂ H̃ which meets the lifts of the γi only at �. Thus D
projects down to an immersed 2-disk D′ ⊂ H which meets ∪γi only at �. Thus
Ω is not algebraically diskbusting. �

Note that from the proof of Theorem 10, algebraically diskbusting is also
algorithmically decidable. Reduce Γord

1 (Ω) until it is 1-connected except for
possibly the vertex �. If Γord

1 (Ω) is not �-split in this basis then Ω is algebraically
diskbusting. If there are �-splittings, then we get associated to them a free
decomposition of Fn as in the cyclic case. We have a decomposition Fn =
Fi1 ∗ Fi2 ∗ · · · ∗ Fis ∗ Fg and a partition Ω =

⋃s
j=1 Ωj with Ωj contained in Fij

and Ωj algebraically diskbusting in Fij .This decomposition is unique. As for the
cyclic words this gives us the following corollary.
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Corollary 11 (Whitehead). A finite set of reduced ordinary words Ω in Fn is
a subset of a basis if and only if repeated application of Whitehead’s Reduction
Lemma reduces Γord

1 (Ω) to a union of a star graph at � and isolated vertices.
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