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SUBPRINCIPAL TERMS IN SZEGÖ ESTIMATES

V. Guillemin and K. Okikiolu

Let X be a compact d-dimensional manifold and Q a first order positive self-
adjoint elliptic pseudodifferential operator (operating on half-densities) whose
principal symbol, q, satisfies q(x, ξ) = q(x,−ξ), and whose subprincipal symbol
is zero. Let λi, i = 1, 2, . . . be the eigenvalues of Q and fi, i = 1, 2, . . . , the
corresponding eigenfunctions, and let Pλ be the orthogonal projection from the
space of half densities onto the space spanned by fi, λi < λ. The classical “Weyl
Theorem”, asserts that

trace Pλ =
(

1
2π

)d ∫
q<1

dxdξ λd + o(λd)(1)

(the left hand side being the “Weyl counting function” N(λ): the number of
λi’s less than λ.) In [H1] Hörmander showed that the o(λd) on the right could
be improved to an O(λd−1) and that this error term is optimal (being “best
possible”, for instance, for Q = (∆Sn)

1
2 .). It turns out, however, that one can

frequently replace this O(λd−1) by an o(λd−1): Let

vq =
∑ ∂q

∂ξi

∂

∂xi
− ∂q

∂xi

∂

∂ξi

be the bicharacteristic vector field on T ∗X − 0 associated with q. A point
(x, ξ) ∈ T ∗X −0 is periodic if the trajectory of vq through (x, ξ) returns to (x, ξ)
after a finite time.

Theorem 1. [DG] If the set of periodic points is of measure zero in T ∗X − 0

trace Pλ =
(

1
2π

)d ∫
q<1

dxdξ λd + o(λd−1).(2)

A simple and elegant proof of this result (due to Ivrii) can be found in [H2] §
29.1. From Ivrii’s proof one can also deduce:
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Theorem 2. Let A be a zeroth order pseudodifferential operator acting on half
densities. If the set of periodic points is of measure zero in T ∗X − 0, then

trace PλAPλ =
(

1
2π

)d

 ∫

q<1

a(x, ξ)λd + a1(x, ξ)λd−1dxdξ


 + o(λd−1),(3)

a being the principal symbol of A and a1 its subprincipal symbol.

The “Szego estimates” referred to in the title have to do with the asymptotic
behavior of trace(PλAPλ)k as λ tends to infinity. By a simple commutation
argument of Widom ([H2], § 29.2) one can show that

trace (PλAPλ)k = trace PλAkPλ + o(λd−1+ε),(4)

for all ε > 0, which in conjunction with (3) implies

trace (PλAPλ)k =
(

1
2π

)d

 ∫

q<1

a(x, ξ)kdxdξ


 λd + o(λd−1+ε);

and recently Laptev and Safarov proved that the o(λd−1+ε) in (4) can be replaced
by an O(λd−1) (which gives the same optimal error term for the Szego estimate
(3)–(4) as Hörmander obtained for the Weyl estimate.) The purpose at this note
is to announce the following result (which can be viewed as the Szego analogue
of Theorem 1.)

Theorem 3. Under the hypothesis of Theorem 1

trace(PλAPλ)k = trace PλAkPλ + ck,d−1(A)λd−1 + o(λd−1)(5)

ck,d−1(A) being equal to

− d

4

(
1
2π

)d+1∑
r+s=k
r,s≥1

k

rs

∫
q<1

∫ ∞

−∞

(a(x, ξ, t)r − a(x, ξ)r) (a(x, ξ, t)s − a(x, ξ)s)
t2

dtdxdξ

(6)

with a(x, ξ, t) equal to the translate of a(x, ξ) by the bicharacteristic flow, expt vq.

Dividing (6) by k, summing over k, and estimating each summand with re-
spect to an appropriate symbol norm (c.f. “Strong Szegö Theorem” for PλBPλ

(with B = I − A).

Theorem 4. Suppose the closed convex hull of the spectrum of B doesn’t contain
the origin. Then

log detPλBPλ = trace Pλ log BPλ + cd−1(B)λd−1 + o(λd−1)(7)
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cd−1(B) being equal to

d

4

(
1
2π

)d+1 ∫
q<1

∫ ∞

−∞

(log b(x, ξ, t) − log b(x, ξ))2

t2
dtdxdξ(8)

with b(x, ξ, t) = (expt vq)∗b(x, ξ), (b(x, ξ) being the principal symbol of B.)

(Notice that, under the hypothesis of Theorem 4, log B itself will be a zeroth
order pseudodifferential operator; so the first term on the right hand side of (7)
can be estimated, modulo o(λd−1), by (3).)

In the very special case when Q is a “constant coefficient” operator on the d-
dimensional torus and A is multiplication by a smooth function, the asymptotic
formulas (5), (7) were known, see [Do], [Li], [Ok]. The expressions for ck,d−1(A)
and cd−1(B) were given in a different form. The results on the torus guided the
discovery of Theorems 3 and 4.
Remark. From Theorem 3 we can show that if F is a harmonic function on the
closed convex hull of the spectrum of A then

trace F (PλAPλ) = trace PλF (A)Pλ +
d

2

(
1
2π

)d

λd−1 ×

∫
F ((1−θ)a(x, ξ, t) + θa(x, ξ)) − [(1−θ)F (a(x, ξ, t)) + θF (a(x, ξ))]

θ(1 − θ)t2
dθdtdxdξ,

+ o(λd−1)

where the integral is over the set where q < 1, −∞ < t < ∞ and 0 < θ < 1.
Compare this formula with Widom [Wi].

What can one say about the asymptotic behavior of trace (PλAPλ)k and
det PλAPλ when A doesn’t satisfy the hypotheses of Theorem 1, i.e. when the
set of periodic points is not of measure zero? Suppose, for instance, that all
points are simply periodic of period T ; i.e. every bicharacteristic returns for the
first time to its initial position at time T . Replacing Q by the operator

Q log e−iTQ(9)

one can, without loss of generality, assume that exp iTQ = I and hence that

spec Q =
{

2πn

T
, n = 1, 2, . . .

}
.(10)

An operator with this property is called a Zoll operator, and for such operators
the following very strong Szegö theorem is true:
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Theorem 5. Let πk be the orthogonal projection from the space of half densities
onto the space spanned by the eigenfunctions of Q with eigenvalue, 2πk/T , and
let Pn = π1 + · · ·+πn. Then for every zeroth order pseudodifferential operator A

trace(PnAPn)k ∼ trace PnAkPn +
−∞∑
r=d

ck,r(A)nr ∼ c′(A) log n +
−∞∑
r=d

c′k,r(A)nr

(11)

as n → ∞

Remark. If the symbolic norm of A is sufficiently small, one can divide (11) by
k and sum over k to get expression of the form (11) for log det PnBPn where
B = I − A. In particular

log det PnBPn ∼ trace Pn log BPn + cd−1n
d−1 + cd−2n

d−2 + · · ·(12)

where

cd−1 =
d

4

(
1
2π

)d+1 ∫
q<1

∫ ∞

−∞

(log b(x, ξ, t) − log b(x, ξ))2

t2
dtdxdξ(13)

b(x, ξ) being the principal symbol of b and b(x, ξ, t) = (expt vq)∗b(x, ξ); i.e. the
coefficient of nd−1 in (13) is identical with the coefficient of λd−1 in (8). This is
also true for the coefficient ck,d−1 in (11). For details see [GO2].

We will give a brief sketch of the proof of Theorem 3.
Let ρ(λ) be a Schwartz function which is everywhere positive and whose

Fourier transform is supported in the interval, (−1, 1). Normalize ρ so that∫
ρ(λ)dλ = 1, and let ρε(λ) = ρ(λ

ε ). Let P ε
λ =

∫
ρε(λ − s)Psds. We first prove

Lemma 6. ‖ Pλ − P ε
λ ‖1 ≤ C (ε + α(λ))λd−1 where α(λ) → 0 as λ → +∞.

This estimate enables us to replace trace(PλA)k by the mollified expression

trace (P ε
λA)k(14)

at the expense of introducing an error of order ελd−1+o(λd−1). We next estimate
(14). P ε

λ can be expressed in terms of the wave operator eitQ as
(

i

2π

) ∫ ∞

−∞
e−itλρ̂ε(t)

eitQ

t + i0
dt.

From this, we show that (14) is the Fourier transform of trace eitQG(t), i.e.

trace (P ε
λA)k =

∫ ∞

−∞
e−itλ trace eitQG(t) dt,(15)
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where G(t) equals
(

i

2π

)k

e−itQ
∫

t1+···+tk=t

ρ̂ε(t1) . . . ρ̂ε(tk)
eit1QA . . . eitkQA

(t1 + i0) . . . (tk + i0)
dt2 . . . dtk.(16)

When care is taken to ensure that this expression is well defined, it can be seen
that G(t) is a zeroth order pseudodifferential operator which varies smoothly in
t for t �= 0 and vanishes for |t| large. The asymptotic behavior of (15) can be
determined from the behavior of G(t) close to t = 0. We carry out this analysis
in the case k = 2.

When k = 2, G(t) = G0(t) + G1(t), where

G0(t) =
(

i

2π

)2 ∫
t1+t2=t

ρ̂ε(t1)ρ̂ε(t2)
A2

(t1 + i0) (t2 + i0)
dt2.(17)

G1(t) =
(

i

2π

)2 ∫
t1+t2=t

ρ̂ε(t1)ρ̂ε(t2)
e−it2Q[A, eit2Q]A
(t1 + i0) (t2 + i0)

dt2.(18)

We see that ∫ ∞

−∞
e−itλ trace eitQG0(t) dt = trace(P ε

λ)2A2.

This gives the leading order term in (5) modulo an error of order ελd−1+o(λd−1).
Now G1(t) is smooth at t = 0. The asymptotic behavior of∫ ∞

−∞
e−itλ trace eitQG1(t) dt(19)

can be determined from the following Lemma.

Lemma 7. If F (t) is a zeroth order pseudodifferential operator which varies
smoothly in t and vanishes for |t| large, then under the condition of Theorem 1,∫ ∞

−∞
e−itλ trace eitQF (t) dt = c(F (0))λd−1 + o(λd−1),(20)

where for a zeroth order operator V with principal symbol v,

c(V ) = d

(
1
2π

)d−1 ∫
q<1

v(x, ξ)dxdξ.(21)

Hence, to compute the asymptotic behavior of (19), we just need to evaluate
the principal symbol of G1(0) and compute c(G1(0)). By (18), G1(0) equals

(
i

2π

)2
∞∫

−∞
ρ̂ε(−t)ρ̂ε(t)

e−itQ[A, eitQ]A
(−t + i0) (t + i0)

dt.(22)
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The principal symbol of this expression can be computed by using the Egorov
Theorem which we now state.

Theorem 8. For a zeroth order pseudodifferential operator A with principal
symbol a(x, ξ), the operator

e−itQAeitQ(23)

is a zeroth order pseudodifferential operator with principal symbol

a(x, ξ, t) = (expt vq)∗a(x, ξ).(24)

From this, we find that c(G1(0)) is equal to

− d

(
1
2π

)d+1 ∫
q<1

∫ ∞

−∞

ρ̂ε(−t)ρ̂ε(t) (a(x, ξ, t) − a(x, ξ)) a(x, ξ)
(−t + i0) (t + i0)

dtdxdξ(25)

Using the fact that the measure dxdξ is invariant under the bicharacteristic flow,
this is equal to

− d

(
1
2π

)d+1 ∫
q<1

∫ ∞

−∞

ρ̂ε(−t)ρ̂ε(t) (a(x, ξ) − a(x, ξ,−t)) a(x, ξ,−t)
(−t + i0) (t + i0)

dtdxdξ.

(26)

Replacing t by −t in (26), averaging (25) and (26) and letting ε → 0 gives

− d

2

(
1
2π

)d+1 ∫
q<1

∫ ∞

−∞

(a(x, ξ, t) − a(x, ξ))2

t2
dtdxdξ.(27)

For the case k > 2, obtaining the concise formula (6) is more complicated, and
involves the Dyson-Hunt-Kac combinatorial formula, (c.f. [GO1]).

We mention that we have obtained an upper bound for (27) as follows.

Lemma 9. Let A be a zeroth order pseudodifferential operator with principal
symbol, a, then

∫
q<1

∫ ∞

−∞

(a(x, ξ, t) − a(x, ξ))2

t2
dtdxdξ ≤ 4π

∫
q<1

|a|2 +
π2

6
|{q, a}|2 dxdξ.

The proof of Lemma 7 uses the “Ivrii argument” which we referred to above.

Lemma 10. Suppose that F (t) vanishes for |t| ≥ M . Let U be a conic open sub-
set of T ∗X−0 with the property that for every point (x, ξ) ∈ U the integral curve
of Uq with initial point at (x, ξ) doesn’t return to U at any time t ≤ M . Then
if W is a pseudodifferential operator with microsupport in U , trace eitQF (t)W
is a classical conormal distribution of order d in t with microsupport on the set
t = 0, τ > 0, τ being the dual cotangent variable to t, and (20) holds with F (t)
replaced by F (t)W .
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We construct a microlocal partition of unity, Wi, i = 0, 1, . . . , N Wi being a
zeroth order pseudodifferential operator with microsupport in an open conic set
Ui, such that for “most” i’s, Ui satisfies the hypothesis of Lemma 10, and the
sum ∑′

i

∫
q<1

σ(Wi)(x, ξ)dxdξ

over the remaining i’s is of order ε. To show that these terms make a contribution
of order ελd−1, we show that if W is a zeroth order pseudodifferential operator
with positive principal symbol, w, then the left hand side of (20) with F (t)
replaced by F (t)W is bounded by

Cλd−1

∫
q(x,ξ)<1

w(x, ξ) dξdx + ◦(λd−1).

This completes the proof of Theorem 3.
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