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REALIZATION OF SOME GALOIS REPRESENTATIONS

OF LOW DEGREE IN MORDELL-WEIL GROUPS

David E. Rohrlich

Let M ⊂ L ⊂ K be number fields, with K Galois over M , and put G =
Gal(K/M) and H = Gal(K/L). We consider the representation ρ of G deter-
mined up to isomorphism by the formula

indG
H1H

∼= 1G ⊕ ρ,

where 1H and 1G denote the trivial representation of H and G respectively, indG
H

is the induction functor from representations of H to representations of G, and
the field of scalars of all representations at issue is taken to be Q. We shall
prove:

Theorem. If [L : M ] � 9 then there exists an elliptic curve E over M such
that the natural representation of G on Q⊗Z E(K) contains a subrepresentation
isomorphic to ρ.

For example, suppose that G ∼= S9 and H ∼= S8, where Sn denotes the
symmetric group on n letters. Then ρ is one of the two irreducible representations
of G of dimension 8, and according to our theorem there exists an elliptic curve
E over M such that ρ occurs in Q⊗E(K). The other irreducible representation
of G of dimension 8 is ρ⊗ ε, where ε is the “sign” character of G, and it too can
be realized in a Mordell-Weil group: in fact a straightforward argument shows
that if ρ occurs in Q⊗E(K) then ρ⊗ ε occurs in Q⊗Eε(K), where Eε denotes
the quadratic twist of E by ε.

The case G ∼= S9, H ∼= S8 just mentioned is actually the maximal instance
of the theorem, in two respects: first, for any choice of G and H the dimension
of ρ will be � 8, and second, if we assume without loss of generality that K is
the normal closure of L over M then G is always isomorphic to a subgroup of
S9. It follows in particular that G is not isomorphic to one of the Weyl groups
W (E6), W (E7), or W (E8), because these groups do not have embeddings in S9.
Thus we do not recover the “biggest” examples of Shioda ([8], [9], [10]), whose
work on Mordell-Weil lattices of elliptic surfaces yields examples of type E6, E7,
and E8 by specialization. Here for a root system X the phrase “example of type
X” means a Galois extension of number fields K/M together with an elliptic
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curve E over M and an identification of G = Gal(K/M) with W (X) such that
the representation of G on Q⊗E(K) has a subrepresentation isomorphic to the
representation of W (X) on the rational span of X. In addition to examples of
type E6, E7, and E8, Shioda’s theory also produces examples of type A2 and
D4, and the latter cases fall within the framework of our theorem. One point
to note in this connection is that in Shioda’s examples the Galois extension of
number fields K/M is obtained by specializing a Galois extension K/M, where
M is a rational function field over Q in several variables. A natural question is
whether every extension K/M with Gal(K/M) ∼= W (X) can be obtained in this
way. While there have been some positive results on this general type of question
(cf. Beckmann [1], Black [2], Saltman [6]), I do not know of any theorem which
would permit an affirmative answer in all of the cases at issue here.

We turn now to the proof of the theorem. Put

d = [G : H] = [L : M ].

If d = 1 then the space of ρ is {0} and there is nothing to prove. Henceforth we
assume that d � 2. Fix representatives σ1, σ2, . . . , σd ∈ G for the distinct left
cosets of H in G, with σ1 ∈ H. Given an elliptic curve E over M , a prime ideal
p of K, and points P, P ′ ∈ E(K), we write P ≡ P ′ (mod p) to indicate that P
and P ′ have the same image under reduction modulo p, the image being a point
on the reduced curve if E/K has good reduction at p and a point on the special
fiber of the Néron minimal model in general.

Lemma. Suppose that E is an elliptic curve over M and P ∈ E(L) is an L-
rational point on E satisfying the following conditions:

(i) There exists a prime ideal p of K such that for 1 � i � d,

σi(P ) �≡ P (mod p) ⇐⇒ i = d.

(ii) There exists an unramified prime ideal q of K of odd residue character-
istic such that for 1 � i � d,

σi(P ) ≡ P (mod q).

Then the representation of G on the subspace of Q⊗E(K) spanned by the vectors

vi = 1 ⊗ (P − σi(P )) (2 � i � d)

is isomorphic to ρ.

Proof. The span of the vectors vi is in fact stable under G because it coincides
with the subspace{

d∑
i=1

ri ⊗ σi(P ) ∈ Q ⊗ E(K) :
d∑

i=1

ri = 0

}
.
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To prove the lemma we must show that the vectors vi are linearly independent.
Suppose on the contrary that there is a nontrivial linear relation

(1)
d∑

i=2

rivi = 0.

After multiplying by an element of Q× we may assume that the ri are integers
with no common prime factor. Let n be the order of the reduction of P −σd(P )
modulo p. Then n > 1 by (i). We shall prove that each ri is divisible by n, and
this contradiction will prove the lemma.

According to (1), the point
∑d

i=2 ri(P −σi(P )) has finite order on E. On the
other hand, by (ii) this point reduces to 0 modulo q. Now the kernel of reduction
modulo q on E(K) can be viewed as a subgroup of Ê(m), where Ê is the formal
group of E over the completion of K at q and m is the maximal ideal of the
completion. Since q is unramified and of odd residue characteristic, Ê(m) has
no nonzero elements of finite order, and we conclude that

(2)
d∑

i=2

ri(P − σi(P )) = 0.

Fix an integer j such that 2 � j � d; we will show that n divides rj . Putting
σ = σdσ

−1
j , we have σH �= σdH since j �= 1, and consequently σ(P ) ≡ P

(mod p) by (i). Now apply σ to both sides of (2) and reduce modulo p. Since

d∑
i=2

ri(σ(P ) − σσi(P )) =
d∑

i=2

ri(P − σσi(P )) −
d∑

i=2

ri(P − σ(P )),

we obtain
d∑

i=2

ri(P − σσi(P )) ≡ 0 (mod p).

But σσiH = σdH if and only if i = j. Thus rj(P − σd(P )) ≡ 0 (mod p) and n
divides rj .

It remains to construct an elliptic curve over M with a point satisfying the
hypotheses of the lemma. The construction depends on the choice of an element
ξ of L together with a polynomial

f(u) =
9∑

i=0

aiu
i

such that a9 = 1, a8 = 0, a0 �= 0, ai ∈ M for 0 � i � 9, and f(ξ) = 0. Given
such ξ and f , we consider the projective plane curve E with affine equation

(3) a9 +a7x+a6y +a5x
2 +a4xy +(a3− b)y2 + bx3 +a2x

2y +a1xy2 +a0y
3 = 0,
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where

(4) b = −a5 − a7 − a9.

On multiplying the equation for E by ξ9 and substituting the values x = ξ−2,
y = ξ−3, we see that E(L) contains the point

P = (ξ−2, ξ−3).

The choice of b ensures that E also has an M -rational point, namely the point

O = (1, 0).

Now a0 �= 0 by assumption, so that E is a plane cubic. We shall choose ξ in
such a way that E is a smooth plane cubic – hence an elliptic curve over M with
origin O – and P satisfies the hypotheses of the lemma.

We begin with a small detail. Consider the equation

(5) 1−36x+168y−378x2 +504xy−833y2 +413x3 +216x2y−63xy2 +8y3 = 0.

Its relevance to our problem will become apparent only later, but if we reduce
this equation modulo 7 we obtain

(6) 1 − x − x2y + y3 = 0.

A straightforward calculation shows that the projective plane curve over F7 with
affine equation (6) is smooth, whence the projective plane curve over Q with
affine equation (5) is also smooth. It follows that all but finitely many primes
p have the property that the reduction of (5) modulo p is the affine equation of
a smooth projective cubic curve over Fp. We fix a positive integer e such that
this property holds for all p not dividing e.

Next choose a prime number p not dividing 3de which splits completely in
K, and let p be a prime ideal of K lying over p. Pick a prime number q not
dividing 6pd which is unramified in K, and let q be a prime ideal of K lying over
q. Finally, select r ∈ Z so that

(7)
{

r ≡ 1 (mod p)
r ≡ 0 (mod q).

Let us agree that if l is a prime ideal of a number field F and α and β are
elements of F integral at l then α ≡ β (mod l) means α ≡ β (mod∗ l), in other
words, α and β are congruent modulo the maximal ideal of the localization at l

of the ring of integers of F . We claim that there is an element ξ of L, integral
at p and q, satisfying the system of congruences

(8)




ξ ≡ 1 (mod σ−1
i (p) ∩ L) (1 � i � d − 1)

ξ ≡ −8 (mod σ−1
d (p) ∩ L)

ξ ≡ 0 (mod σ−1
i (q) ∩ L) (1 � i � d)
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as well as the trace condition

(9) tr L/M (ξ) + (9 − d)r = 0.

To see this, observe that since p splits completely in K the prime ideals σ−1
1 (p)∩

L, . . . , σ−1
d (p)∩L of L are distinct. Of course all of these ideals are distinct from

the ideals σ−1
i (q) ∩ L, because p �= q. Consequently there exists an integer

ξ′ of L such that (8) holds with ξ replaced by ξ′. On writing tr L/M (ξ′) =
σ1(ξ′) + σ2(ξ′) + · · · + σd(ξ′) we deduce that

(10)
{

tr L/M (ξ′) ≡ d − 9 (mod p ∩ M)
tr L/M (ξ′) ≡ 0 (mod q ∩ M).

Now put

ξ = ξ′ − tr L/M (ξ′) − (d − 9)r
d

.

Then (9) holds, while (7) and (10) together imply that ξ is congruent to ξ′

modulo any prime ideal of L lying over p ∩ M or q ∩ M . Therefore (8) holds
also. Define

f(u) = (u − r)9−d
d∏

i=1

(u − σi(ξ)),

and write f(u) =
∑9

i=0 aiu
i as before. It is immediate that a9 = 1, that ai ∈ M

for all i, and that f(ξ) = 0. Also (9) implies that a8 = 0, and the congruences
(7) and (8) imply that rξ �= 0, so that a0 �= 0. It remains to check that E is
smooth and that P satisfies conditions (i) and (ii) of the lemma.

The remaining verifications depend on further deductions from the congru-
ences (7) and (8). Observe first of all that since the coefficients of (3) are integral
at p and q we can speak of the reduction of (3) modulo p ∩ M or q ∩ M . Tak-
ing account of (4), and noting that a9 = 1 while all other coefficients of f are
congruent to 0 modulo q∩M , we see that the reduction of (3) modulo q∩M is

(11) 1 + y2 − x3 = 0.

Since q � 6 this is the affine equation of a smooth projective curve over Fq. It
follows in particular that E itself is smooth and that (3) is an equation of good
reduction for E/K at q. Hence we can compute the reduction of points on E(K)
modulo q by naively reducing homogeneous coordinates relative to (3), where
the coordinates are chosen to be q-integral and not all 0 modulo q. In the case
of the points σi(P ) we have

(12) σi(P ) = [σi(ξ)−2 : σi(ξ)−3 : 1] = [σi(ξ) : 1 : σi(ξ)3],
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and all of these points reduce to the same point [0 : 1 : 0] on (11). Therefore
condition (ii) of the lemma is satisfied. To verify (i), observe that (7) and (8)
give a0 ≡ 8 (mod p ∩ M) and

(−1)i+1ai ≡
(

8
i − 1

)
− 8

(
8
i

)
(mod p ∩ M)

for 1 � i � 7. Therefore equation (3) reduces modulo p ∩ M to equation
(5). Since p � e it follows that (3) is an equation of good reduction for E
at p and that we may compute the reduction of σi(P ) modulo p by reducing
homogeneous coordinates relative to (3), as before. Referring to (12), we see
that for 1 � i � d − 1 the point σi(P ) reduces modulo p to [1 : 1 : 1] while
σd(P ) reduces modulo p to [−8 : 1 : −512]. As p �= 3 the points [1 : 1 : 1] and
[−8 : 1 : −512] are distinct modulo p and condition (i) of the lemma follows.

Example. Take M = Q, L = Q(ξ1), and K = Q(ξ1, ξ2, . . . , ξ7), where ξ1, ξ2, . . .
are the roots of the equation x7 − 7x + 3 = 0. Then d = 7 and G ∼= PSL(2, F7),
a result of Trinks (see LaMacchia [3], p. 990, or Matzat [4], p. 212). Up
to isomorphism, ρ is the unique absolutely irreducible representation of G of
dimension 6, and according to our theorem there exists an elliptic curve E over
Q such that ρ occurs in Q ⊗ E(K). On the other hand, if one grants the
“generalized Birch-Swinnerton-Dyer conjecture” then for any elliptic curve E
over Q the multiplicity of ρ in Q ⊗ E(K) is even ([5], p. 345), hence � 2 if ρ
occurs in Q ⊗ E(K). Taking E to be the curve

(13) 1 + 2x3 − y2 + x2y = 0

(say with origin O = [0 : 1 : 0]) and putting ξ = ξ1 and

P = (ξ−2, 3ξ−3) ∈ E(L),

we shall see that the representation of G on the span of the vectors

vi = 1 ⊗ (P − σi(P )) ∈ Q ⊗ E(K) (2 � i � 7)

is isomorphic to ρ. It is an open problem to exhibit a second G-stable subspace
of Q ⊗ E(K), linearly independent of the one considered here, on which the
representation of G is also isomorphic to ρ.

We shall give two proofs that the space spanned by the vectors vi is isomorphic
as a representation to ρ. For the first proof, choose prime ideals p and q of K
lying over 3 and 7 respectively. A calculation shows that that E has good
reduction at 3 and 7 and in fact that (13) is an equation of good reduction at
these primes. In view of the congruence

x7 − 7x + 3 ≡ (x − 1)3(x + 1)3x (mod 3),
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we may assume that the ξi are numbered so that ξ1, ξ2, ξ3 ≡ 1 (mod p),
ξ4, ξ5, ξ6 ≡ −1 (mod p), and ξ7 ≡ 0 (mod p). We may also choose the coset
representatives σ1, σ2, . . . , σ7 so that σi(ξ) = ξi. Writing P = [1 : 3/ξ : ξ2],
we find that σi(P ) reduces to [1 : 0 : 1] modulo p for 1 � i � 6 while σ7(P )
reduces to [1 : 1 : 0] since 3/ξ7 = −ξ1ξ2 · · · ξ6. Hence condition (i) of the lemma
is satisfied. As for (ii), the congruence

x7 − 7x + 3 ≡ (x + 3)7 (mod 7)

shows that σi(P ) reduces to (4,−4) modulo q for all i, but (ii) is not satisfied
because q is a ramified prime ideal (L ramifies precisely at 3 and 7). However, the
proof of the lemma still goes through provided we know that reduction modulo
q is injective on the torsion subgroup of E(K). In fact it suffices to show that
E(K) has no points of order 7, because locally at q the kernel of reduction is
Ê(m) (notation as in the proof of the lemma) and Ê(m) is a pro-7-group.

Let us prove, then, that the group E(K)[7] of points on E(K) of order dividing
7 is zero. If this group is nonzero then its dimension as a vector space over F7

is either one or two, and consequently its automorphism group is isomorphic
either to F×

7 or to GL(2, F7). The natural action of G on E(K)[7] gives a map
ϕ : G −→ Aut(E(K)[7]), and since PSL(2, F7) is simple ϕ is either trivial or
an embedding. But neither F×

7 nor GL(2, F7) has a subgroup isomorphic to
PSL(2, F7), so ϕ is trivial and E(K)[7] = E(Q)[7]. Thus we are reduced to
showing that E(Q)[7] is zero. Now E has good reduction at 5, and the group of
points on the reduced curve over F5 has order 8. Hence the reduced curve has
no points of order 7 over F5, and consequently E has no points of order 7 over
Q.

This completes the first proof. For the second we return to the general setting
(M ⊂ L ⊂ K are arbitrary number fields, with K Galois over M) but we place
restrictions on G and ρ.

Proposition. Assume that G is a nonabelian simple group and that ρ is irre-
ducible as a representation over Q. If E is an elliptic curve over M such that
E(L) �= E(M) then the natural representation of G on Q ⊗ E(K) contains a
subrepresentation isomorphic to ρ.

Proof. Choose a point P ∈ E(L) not belonging to E(M) and put vi = 1 ⊗
(P − σi(P )) (2 � i � d) as before. Since ρ is irreducible over Q it suffices to
show that the span of the vi is not {0}. Suppose on the contrary that vi = 0
for all i. Then σ(P ) − P is a torsion point for every σ ∈ G, whence the map
σ �→ σ(P ) − P represents a class in H1(G, E(K)[n]) for some n. We claim that
E(K)[n] = E(M)[n]. Granting this, we deduce that σ �→ σ(P )−P is actually a
homomorphism from G to E(M)[n] and is therefore identically zero since G is a
nonabelian simple group and E(M)[n] is abelian. It follows that σ(P ) = P for
all σ ∈ G, whence P ∈ E(M), a contradiction.

It remains to prove that E(K)[n] = E(M)[n]. It will suffice to see that
E(K)[pν ] = E(M)[pν ], where p is a prime and ν a positive integer. We use
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induction on ν. As in the first proof, the canonical map ϕ : G −→ Aut(E(K)[p])
is either injective or trivial; but Aut(E(K)[p]) is isomorphic to {1}, F×

p , or
GL(2, Fp), and none of these groups has a nonabelian simple subgroup (use the
classification of subgroups of GL(2, Fp) as in [7], pp. 280 – 281, together with
two facts about the alternating group on five letters: (i) A5 has no faithful
2-dimensional representations in characteristic 0, hence none in characteristics
� 7, and (ii) A5 is not isomorphic to a subgroup of GL(2, Fp) for p = 2, 3, or 5).
We conclude that ϕ is trivial and that E(K)[p] = E(M)[p]. Suppose now that
E(K)[pν ] = E(M)[pν ] for some ν � 1. Then pR ∈ E(M) for all R ∈ E(K)[pν+1].
Hence the image of the canonical map ϕ : G −→ Aut(E(K)[pν+1]) is contained
in the subgroup

B = {γ ∈ Aut(E(K)[pν+1]) : γ(R) − R ∈ E(K)[p] for all R ∈ E(K)[pν+1]}.

A straightforward calculation using the fact that E(K)[p] = E(M)[p] shows that
B is abelian, whence ϕ is trivial and E(K)[pν+1] = E(M)[pν+1]. This completes
the proof.
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