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SATAKE AND MARTIN COMPACTIFICATIONS OF
SYMMETRIC SPACES ARE TOPOLOGICAL BALLS

LizHEN JI

1. Introduction

Symmetric spaces of noncompact type form a very important class of simply
connected nonpositively curved Riemannian manifolds with connection to Lie
group theory and harmonic analysis. For many applications, it is important to
compactify the symmetric spaces.

Several compactifications of symmetric spaces have been defined from different
points of view. For example, in [17], in order to understand the boundaries
which arise in the study of automorphic forms, Satake defined finitely many
compactifications of a symmetric space by embedding it into the space of positive
definite Hermitian matrices of determinant 1 and then the associated projective
space. Another important compactification is the Martin compactification from
potential theory. In [10], the Martin compactification of the symmetric space is
described in terms of geodesics and the maximal Satake compactification (see
Theorem 2.5 below for a precise statement; and see the book [10] for definitions
of other compactifications and relations between the various compactifications.)

Both the Satake compactifications and the Martin compactification of a sym-
metric space are topological compactifications. In this note, we prove that they
are topologically a closed ball (2.4 and 2.6). In the proof (§4), we use the con-
vexity result of Atiyah [3] that the image of the moment map of a Hamiltonian
torus action is a convex polytope (3.1) in order to identify the closure of a flat
in the compactifications of the symmetric space (4.1). We also formulate a con-
jecture on the Martin compactification of simply connected and nonpositively
curved Riemannian manifolds (5.1).

2. Statement of results

Let G be a connected semisimple Lie group of noncompact type with finite
center, K C G a maximal compact subgroup. Let g be the Lie algebra of G.
Then the Killing form on g defines a G-invariant metric on X = G/K. With
respect to this metric, X is a Riemannian symmetric space of noncompact type;
in particular, X is simply connected and nonpositively curved.

For any irreducible faithful projective representation 7 : X — PSL(n,C) sat-

isfying 7(6(g)) = 7(g) , where 0 is the Cartan involution of G associated with K,
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7(K) Cc PSU(n). Let P, = PSL(n,C)/PSU(n) be the space of positive definite

Hermitian matrixes of determinant one. Then the representation 7 defines a
—t

map X — P, : gK — 7(g9)7(g) , which is still denoted by 7.

Lemma 2.1. The map 7 : X — P, is an embedding.

Proof. If not, there exists g ¢ K such that 7(gK) = T(g)T(g)t = Id. Let
g = ¢+ p be the Cartan decomposition of g induced by 6. Then g = ePk

for some p € p, p # 0, k € K. By the assumption on 7, 7(e?) = 7(eP)
and hence 7(eP) is a positive definite Hermitian matrix. On the other hand,
T(g)T(g)t = T(ep)T(eP)t = 7(eP)? = Id. This implies that 7(e?) = Id. Since 7 is
faithful, this contradicts that p # 0.

Remark 2.2. In [17, §2.2], Satake proved that the image 7(X) is a totally
geodesic submanifold in P,, and any realization of X as a totally geodesic sub-
manifold of P, is of this form.

Let ‘H,, be the real vector space of Hermitian matrixes of size n x n, and
P(H,,) the real projective space. Then P,, can clearly be embedded in P(H,,),
and the map 7: X — P, defines an embedding 7: X — P(H,,).

Definition 2.3. The closure of 7(X) in P(H,,) is called the Satake compactifi-

. . . =S
cation of X associated to the representation 7 and denoted by X _.

Let o = K € X be the basepoint. The first result in this note is the following:

Theorem 2.4 (84). Every Satake compactification Yf is homeomorphic to the

. . . . S . .
closed unit ball in the tangent space Ty, X, in particular, X, is a topological
manifold with boundary.

Using the exponential map, the unit ball in 7,,, X can be identified with the
unit geodesic ball in X with center xg.
Even though there are infinitely many such representations 7 of GG, there are

S
only finitely many different Satake compactifications X of X. Among them,
s
(for details,

there is a unique maximal Satake compactification, denoted by X,

see [17] and [10, Chap 4]. See also Remark 4.3 below).

Let A be the Laplace operator of X, where A is normalized to be non-negative.
Denote the bottom of the spectrum of A by Ag(X). Then for any A < A,
Green'’s function G (z, y) of A— X exists [12, Theorem 16.6.1]. Define K (z,y) =
Ga(z,y)/GA(x0,y). Then there exists a unique metrizable compactification X U
0, X such that

(1) For any = € X, the function y — K (x,y) extends continuously to the
boundary of X U d)X.
(2) These continuous extensions separate points on the boundary 9, X.
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This compactification X U 95X is called the Martin compactification of X.
Originally, the Martin compactification was defined only for A = 0 and domains
in R™ in [16]; this definition works also for general complete manifolds (see [1,
§4] for example).

Each boundary point £ € 0)\X corresponds to a unique positive solution
Ky (z,€) of Au = Au and these functions K)(z,§) generate the cone of positive
solutions of Au = Au. So it is an important problem to describe the Martin
compactification in terms of the geometry of the manifold. For the symmetric
space X, the Martin compactification X U 9, X is studied in detail in [10].

Let X(oco) be the set of equivalence classes of unit speed geodesics
in X, where two geodesics 71(t),72(t) are defined to be equivalent if
limg— 4 oo sup d(y1(t),72(t)) < +o00. The space X(o00) can naturally be identi-
fied with the unit sphere in 7T, X and hence called the sphere at infinity. Then
X can be compactified by adding the sphere at infinity, and the compactification
X U X (00) is called the conic compactification (see [5, §3] and [10, Chap 4] for

details). The closure of the diagonal embedding X — X U X (c0) X Yrsnax is also

a compactification of X, denoted by X U X (c0) V Yiax.
One of the main results in [10] is the following:

Theorem 2.5. With the notation as above, for Ag = Ao(X), XU\, X is home-
« as a G-space; and for
A < Xo(X), X UOr\X is homeomorphic to X U X (c0) V Yiax as a G-space.

. . ‘ . =S
omorphic to the mazimal Satake compactification X,

. . . -5
The G-action on X extends to the compactifications X

maxs X UOyX and
—S
XUX(00)VX, . In Theorem 2.5, the homeomorphisms restrict to the identity
map on X and are equivariant with respect to the G-actions.
As a corollary of Theorem 2.5 and the proof of Theorem 2.4, we get the

following.

Corollary 2.6 (§4, §5). For any A < \o(X), the Martin compactification X U
O X is homeomorphic to the closed unit ball in the tangent space T, X.

This corollary is one of the motivations of this note (see §5 below for some
discussions about the Martin compactification of more general manifolds). In
Theorem 2.4 and Corollary 2.6, the symmetric space X is mapped to the interior
of the unit ball in 7, X . If the rank of X is greater than or equal to 2, these
two maps from X to the open unit ball in 7}, X are not the inverse of the map
obtained by retracting the exponential map along the radial direction into the
unit ball.

As far as we know, the only known similar result is a theorem of Kusner [15]
that the Karpelevic compactification of X defined in [12] is homeomorphic to
the closed unit ball in 7, X. The original definition of the Karpelevic com-
pactification is inductive on the rank and very complicated, and a more direct
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<K
characterization of the Karpelevic compactification X is given in [10, Chap 4].

Based on this description, it is proved there that x* always dominates X Udy X.

These results might suggest that any nontrivial (i.e., not one point)
G-compactification of X should be homeomorphic to the closed unit ball. This
turns out to be not true if the rank of X is greater than or equal to 2. In fact, we
can construct a G-compactification of X whose boundary is a simplex of dimen-
sion rank(X)—1, the so-called Weyl chamber at infinity. This compactification
is clearly not a ball since the codimension of the boundary is greater than 1.

This compactification can roughly be constructed as follows. Let a™ be a
positive Weyl chamber, and a¥t its closure. Then X has polar coordinates de-
composition X = K exp(at)zg. The subspace exp(at)zg can be compactified by
adding the Weyl chamber at infinity a*(co), which represents all the directions
in exp(a_+)x0 going to infinity. Let K act trivially on this boundary component.
Then we get the compactification K (exp(a+)zo U at(c0)).

On the other hand, it is conceivable that any G-compactification of X which
. . . . . <5
is bigger than either X U X (oc0) or any Satake compactification X, or more

generally any G-compactification such that the closure of a flat is a topological
ball, should be homeomorphic to the closed unit ball in 7, X.

3. The convexity of the moment map

The proof of Theorem 2.4 depends crucially on a convexity result of Atiyah
(see Theorem 3.1 below). To state and apply this result, we need some prepa-
ration.

An even dimensional manifold M is a symplectic manifold if there exists a
closed nondegenerate 2 form w on M. An important class of symplectic mani-
folds are Kéhler manifolds, whose Kéhler form is closed and positive definite (in
particular, nondegenerate).

Let T'= (S1)" be a compact torus, n > 1. Assume that T acts sympletically
on M, i.e., preserves the sympletic form w, and that M is simply connected. For
any v € t, the Lie algebra of T', denote also by v the vector field on M induced
by v. Then w(v,-) is a closed 1 form on M, and hence there exists a function
¥ € C°°(M) such that dp’ = w(v, ).

The functions ¢, v € t, can be chosen up to a constant so that the map
v — " becomes a Lie algebra homomorphism when C*°(M) is given the Poisson
structure. These functions define the moment map ® : M — t* of the T-action
as follows: For any v € t,¢” = ®(v). (see [13, §2] [4] for details of symplectic
manifolds and the moment map).

Assume now that M is a Kéhler manifold and T acts on M symplectically
and holomorphically. Then the T action extends to the complex torus T¢, the
complexification of 7. Let Y be an orbit of the complex torus T¢, and Y its
closure in M. The moment map ® restricts to a map ® : Y — t*. Then we have
the following theorem of Atiyah [3, Theorem 2].
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Theorem 3.1. The image ®(Y) is a bounded convex polytope in t* whose ver-
tices are the image of the fized points of T in Y ; and ® is a homeomorphism
from the quotient Y /T to the convex polytope ®(Y').

Since Tc/T = R™, Y /T is the closure of an orbit of the noncompact part of
the complex torus. This theorem shows that this closure is homeomorphic to a
convex polytope in a canonical way.

To apply this result to study the Satake compactifications, we need to compute
the related moment map.

We start with the example M = P"~1(C), T = (SYH)" [4, §4]. The com-
pact torus T acts on P"~1(C) as follows: Let (z1,-,2,) be the homogeneous
coordinates of P"~1(C). Then for any (e%1,... ) € T, (z1,",2,) —
(ew1 21,0 ,ewnzn). Clearly T acts holomorphically and preserves the Kahler
form. Identify P"~!(C) with {(z1, -+ ,2,) | D1 2l7> = 1}/ ~, where
(21,7 2n) ~ (21,-,20) if there exists § € R such that (21,-,2,) = (2], -, 2.).
Then the moment map ® : P"1(C) — t* = R" is given by ®((21,-,2,)) =
(512113, + , 5|2n[?), and the image ®(P"~*(C)) is the standard simplex of di-
mension n — 1 with vertices (1,0,---,0),---,(0,---,0,1) € R™.

Lemma 3.2. Let 7 : T — SL(N,C) be a representation with image 7(T') C
SU(n). Denote the weights of T by p1,--- ,un. Then T acts on PN~1(C)
through T, and the image of the moment map ®(PN~1(C)) is the convex hull of
the weights pi1,- -+ , iy in t*.

Proof. Decompose C¥ into irreducible subspaces Vi + - -- + Vi, where V; has
weight ;. Let (S1)Y act on CV by (v1,--+,vn) — (v, ,eNoy), where
(e1,... ) € (SY)N. Then the T action on PN~1(C) factors through the
map T — (SN)V :eX — (em(X) ... ern(X)) for any X € t. Therefore the
moment map ® of T is obtained by composing the moment map for (S*)V with
the projection RN — t*. Tt is clear that the vertices (1,0,---,0),---,(0,---,0,1)
in RN are projected to ji1,--- , s in t*. Then it follows from the above example
that the image ®(PN~1(C)) is the convex hull of ji1,- -+, pux in t*.

4. Proof of Theorem 2.4 and Corollary 2.6

In this section, we first study the closure of a flat of X in the Satake com-
pactifications. Then we use it to prove Theorem 2.4 and Corollary 2.6.

Recall that g = £+ p is the Cartan decomposition. Let a C p be a maximal
abelian subalgebra of p. Then e®xy C X is a totally geodesic flat submanifold
in X of maximal dimension, a so-called flat in X. Conversely, any flat in X
containing xq is of this form.

It follows from the Cartan decomposition that X = Ke%zqg. For any G-
compactification X of X, let e®zo be the closure of the flat e®zy. Then X =
Kedxg. So it is important to understand the closure e%xq in order to study the
compactification X.
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Let 7 : G — PSL(n,C) be an irreducible faithful projective representation as
in §2. Denote the weights of 7 in a* by p1, -+, tn.

Proposition 4.1. The closure of the flat e®xq in the Satake compactification

S . . .
X, is homeomorphic to the convexr hull of 2pu1,--- ,2u, in a*. Furthermore,
for any two flats e®xg, e* xg, where a’ is another maximal abelian subalgebra of
p, their homeomorphisms have the same restriction to their intersection e*xg N

e* xg.

Proof. Let 'H,, ®C be the complex vector space spanned by the real vector space
of Hermitian matrices, and P(H, ® C) its complex projective space. Then the
real projective space P(H,) can be identified canonically with a subspace of
P(H, ® C).

Choose a basis of C" such that for any H € a, 7(efl) is a diagonal matrix
(erm(H) ... “ern(H))  Then e® acts on H,, by multiplying from both sides: For
Heaand M € H,,

M — r(e"YM7(eM).

This action extends to a holomorphic action of the complex torus e***® on H,, ®C
and hence on P(H, ® C). The compact torus e‘®, which is contained in the
compact dual of G, acts on ‘H,, ® C as follows: For e € e!® and M = (mjy,) €
H, ®@ C, (myy,) — (e?sEH)+re(H)m o) Hence the compact torus e’ preserves
the Kéahler form of P(H, ® C). Denote the moment of this action by & :
P(H, ®C) — a*.

Let Id be the point in P(H, ® C) corresponding to the line which contains
the identity matrix. Then the closure of the orbit e®Id in P(H, ® C) is the

closure of the flat e®z( in the Satake compactification Yf and will be identified
using the moment map .

Let Y be the orbit e**Id of the complex torus e+ in P(H, ® C), and Y’
its closure. Then the closure of the orbit e®Id can be identified with quotient
of Y by the compact torus e’®. Therefore, it follows from Theorem 3.2 that the
closure of the flat e®zg in 75 is homeomorphic to the convex polytope ®(Y).

We claim that ®(Y) is the convex hull of 241, - -, 24,. To prove the claim,
let D,, be the complex subspace of diagonal matrices in H,, ® C and P(D,,) its
associated complex projective space. Then the complex torus e*T*® preserves D,
and the orbit e*T*®]d is contained in P(D,,). The weights of the representation
e on D, are 21, ,2p1,. So it follows from Lemma 3.2 that ®(P(D,,)) is
the convex hull of 241, - -, 24,; in particular, ®(Y) is contained in this convex
hull.

Let 21, be a vertex of this convex hull. For simplicity, assume j = 1. Then
2p7 is the image of (1,0, - --) € P(D,,) (see the proof of Lemma 3.2). To complete
the proof of the claim, it suffices to prove that (1,0,---,0) € Y.
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Since 27 is an extremal weight, there exists a positive Weyl chamber a™ such
that 2p4 is the highest weight of the representation on D,,. Then for any j > 2,

2y — 2p5 = Z Ca,jO Ca,j 20, Z Caj > 0,
ac€A(g,a) a€A(g,a)

where A(g, a) is the set of simple roots with respect to the choice of the positive
Weyl chamber a*. For any H € a™, as t — +o0,

T(etH) Id = (62u1(tH),62u2(tH)’ .. 762un(tH))

(17€2u1(tH)—2u2(tH)’ .. 7€2u1(tH)—2un(tH))

— (1,0,---,0) in P(Dy,).

Therefore, 2p1 € ®(Y') and the claim is proved. This proves the first statement
of Proposition 4.1.

For any two flats e®zg and e“lmo, their intersection e®zoNe® zo = et xp, where
a; = ana’ is a linear subspace of the form {H € a | «(H) = 0, € I}, where
I is a subset of A(g,a). The restrictions to the intersection e®zq N e® zq of the
two moment maps associated with the tori e’® and ¢ are equal to the moment
map for the subtorus e**, and hence are the same. The proof of Proposition 4.1
is complete.

Remark 4.2. This trick of using the complexification is due to Atiyah [3, p.13].
The closure of a in some Grassmannians is first studied in [9, Theorem 2.3.4]
without explicitly using the Hamiltonian action of a compact torus.

Remark 4.3. Let W be the Weyl group of a and p, be the highest weight of
the representation 7 : G — PSL(n, C) with respect to a positive Weyl chamber.
Then the convex hull of the weights 2u1, - - - , 2, is the same as the convex hull of
the orbit W (2, ) (see [8, p.204]). This suggests that the Satake compactification
be determined by the degeneracy of the highest weight ., i.e., the face of the
Weyl chamber which contains p, as an interior point, and hence there are only
finitely many different Satake compactifications (see [17, Theorem 2 on p. 102]
for details). If p, is generic, i.e., an interior point of the positive Weyl chamber,

=S . . . .S
then X | is the maximal Satake compactification X ..

Proof of Theorem 2.4. For any maximal abelian subalgebra a of p, identify
a* with a using the Killing form. Then it follows from Proposition 4.1 that the

closure of every flat e*xg in Yf can be mapped homeomorphically to the convex
hull of 2u1, - -+ ,2u, in a. This convex hull is a bounded convex polytope which
contains the origin as an interior point.

Any ray from the origin to a boundary point of the polytope can be scaled
to have length one. This scaling defines a homeomorphism from this bounded
convex polytope to the closed unit ball in a. By composition, we get a homeo-

morphism from the closure of e®z( in Yf to the closed unit ball in a. See Figure
1 for G = SL(2,R) x SL(2,R) and dima = 2.
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Scale

Figure 1

Since X = Ke®zy = Ugerk(e®xo), a union of flats, and these homeomor-
phisms on the flats coincide on their intersection, they glue together and define
. S . . .
a homeomorphism from X _ to the closed unit ball in p = K - a. Since p can be
identified with the tangent space T}, X, Theorem 2.4 is proved.

Proof of Corollary 2.6. Let 7 be a representation whose highest weight is an

interior point of the positive Weyl chamber a**. Then X , is the maximal Satake

S
compactification X . (See Remark 4.3 above). According to Proposition 4.1,

the moment map ® defines a homeomorphism from the closure of the flat e®zq
in Yf to the convex hull of 2uq, -+, 24, in a*.

On the other hand, the closure of the flat e*z( in X U X (c0) is homeomorphic
to the closed unit ball in a under the map

C:eflzy— H/(1+|H|),

where |H| is the norm defined by the Killing form.
According to Theorem 2.5, if A = A\¢(X), the Martin compactification X U

. . . . . S
0, X is homeomorphic to the maximal Satake compactification X and hence
homeomorphic to the closed unit ball in 7, X, by Theorem 2.4.

On the other hand, if A < A\g(X), the closure ez of the flat e®zy in X U9\ X

is homeomorphic to the closure of the flat e*zy in X U X (00) X Yf under the
diagonal embedding. Identify a* with a using the Killing form as above. Then
this closure ez is mapped homeomorphically into a bounded subset of a x a
under the map

®x C:ellzy — (B(ef ), Cefxp)).

Denote by 7 the orthogonal projection from a x a to the diagonal subspace
{(H,H) € a x a} = a. Then 7(® x C(e%xp)) is a bounded convex domain in
a around the origin. Intuitively, this domain can be obtained by blowing up
the vertices and some faces of the convex polytope ®(e%z() to accommodate for
directions approaching them. See Figure 2 for G = SL(2,R) x SL(2,R).
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Figure 2

We claim that 7 defines a homeomorphism from ® x C'(e®xg) to this bounded
convex domain in a. Note that 7(® x C(efzy)) = 1/v2(®(efxg) + C(efxy)).
Since both ® and C' are homeomorphisms on the interior e®*xy and have positive
definite Jacobian matrices, 7 is a homeomorphism on the interior ® x C(e%x)
of ® x C(e®zg). On the other hand, the boundary ® x C(dexq) is locally of
the form F' x S, where F is a face of the convex polytope ®(e®xg) and S is a
spherical simplex on the unit sphere in a of dimension dim a —dim F'—1. Since 7
is a homeomorphism on such a set, 7 is also a homeomorphism on the boundary
O x C(9e’xy).

Therefore we have a homeomorphism from the closure ez of the flat e®xq
in X U0d\X to a bounded convex domain in a around the origin. The home-
omorphisms for different flats coincide on their intersection. Then the same
arguments as in the proof of Theorem 2.4 finish the proof of Corollary 2.6.

5. Comments on Martin compactifications

Let M be a complete noncompact Riemannian manifold and A the Laplace
operator. As mentioned earlier, one of the motivations of the Martin compactifi-
cation of M is to parametrize a set of generators of the cone of positive solutions
of Au+ Au =0 on M in terms of the Martin boundary 0, M.

If M is the unit ball with the Poincare hyperbolic metric, then the Martin
boundary is the unit sphere and the Martin compactification is the closed unit
ball.

In his ICM talk [7, p.21], Dynkin raised a general question concerning the
connection between the geometry of the manifold M and structure of the Martin
boundary dy M. Based on the last few paragraphs of [7] and recent developments
on Martin compactifications, in particular, Corollary 2.6, it seems appropriate
to formulate the following:

Conjecture 5.1. If M is simply connected and monpositively curved, i.e., a
Hadamard manifold, then for any A < \o(M), the Martin compactification M U
O\M is homeomorphic to the closed unit ball in T,y M, and the Martin boundary
O\M is homeomorphic to the unit sphere and hence has codimension 1.
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In general, the Martin compactification M U 9, M is only a metrizable topo-
logical space. This conjecture says that for a Hadamard manifold M, M U 0\ M
is a topological manifold with boundary.

If the sectional curvature Kj; of M is negatively pinched, i.e., —b% < K <
a? < 0 for some constants a and b, then Ancona [1] proved that for any \ <
Ao(M), M U 9 \M is canonically homeomorphic to the conic compactification
MUM (00), which is homeomorphic to the closed unit ball in 77, M; in particular,
Conjecture 5.1 is true.

If M is the Euclidean space, then A\o(M) = 0, and for any A < 0, M U 9\M
is also canonically homeomorphic to the conic compactification M U M (c0) (see
[14, §2]), and hence Conjecture 5.1 holds.

If M is a symmetric space of noncompact type of rank greater than 1, Corol-
lary 2.6 shows that the above conjecture holds even though M U0\ M is strictly
bigger than M U M (c0).

For other nonpositively curved and simply connected manifolds, in particular,
the rank one manifolds !, the problem of identifying the Martin compactification
is open (see [18, Problem 47] and the introduction of [10]).

Remark 5.2. If M = R" and A = \¢(M) = 0, then MU, M is a one point com-
pactification. Ancona [2, §3] constructed a Hadamard manifold with negatively
pinched sectional curvature such that M U 0y, M is one point compactification.
This is the reason why A = A\g(M) is excluded from Conjecture 5.1.

Remark 5.3. The assumption that M is nonnegatively curved is necessary for
the Martin boundary 9 M to have high dimension. For example, take M =
S™ x R, where S™ is the a sphere of dimension n > 2 and R is the line. Then
for any A < A\g(M) = 0, the cone of positive solutions of Au — Au = 0 has two
only generators and hence dim 0\ M < 1.

Remark 5.4. The assumption that M is simply connected is also important.
For example, let M be a finite volume quotient of the 3 dimensional hyperbolic
space H3. Then A\g(M) = 0 and for any A\ < 0, M U 9, M is obtained by adding
a point to every end of M. In this example, the injectivity radius goes to zero
near infinity.

Another example is R"/Z"~1 = (§1)"~1 x R, where n > 2 and Z"~! acts by
translation on the first n — 1 coordinates. In this example, the injectivity radius
is bounded away from zero, but the Martin boundary is of dimension less than
1.
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