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REMARKS ON A WIENER TYPE PSEUDODIFFERENTIAL

ALGEBRA AND FOURIER INTEGRAL OPERATORS

A. Boulkhemair

0. Introduction

In [1], Sjöstrand introduced a general class of symbols containing
Hörmander’s class S0

0,0, without any reference to derivatives and allowing com-
position and L2 boundedness for the associated pseudodifferential operators. In
[2], he denoted it by Sw and, among other things, proved that Op(Sw) is a
Wiener algebra : If A ∈Op(Sw) is invertible in L(L2), then A−1 ∈Op(Sw). Let
us recall that a function u : R

n → C is in Sw(Rn) if, for some χ ∈ S(Rn) with
non zero integral,

(0.1) ξ �→ sup
k∈Rn

|F(u τkχ)(ξ)|

is an integrable function in R
n. Here, F denotes the Fourier transformation and

τkχ(x) = χ(x − k). Provided with the norm equal to the Lebesgue integral of
(0.1), Sw is a Banach space. Notice that changing χ gives rise to an equivalent
norm.

In [3], we studied L2 estimates for various classes of symbols of limited regular-
ity. Among these classes, we defined a class which we denoted by A and proved
that A is an algebra which allows L2 boundedness for the standard quantization.
Recall that a function u : R

n → C is in A(Rn) if, for some χ ∈ S(Rn) with non
zero integral,

(0.2) k �→ sup
x∈Rn

|F−1[F(u) τkχ](x)|

is an integrable function in R
n. Here again, the Lebesgue integral of (0.2) defines

a norm on A that makes it complete and another choice for χ gives rise to an
equivalent norm.

In this paper, we first remark that the classes Sw and A coincide. The main
consequence of this is a theorem of structure, Theorem 1.2 below or its corollary,
which improves our understanding of Sw and gives a new point of view for it,
a spectral one. In particular, it shows that each element of Sw can be written,
in a natural manner, as a uniformly convergent series (or integral) of symbols
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in S0
0,0. This is the subject of §1. We show afterwards that the spectral point

of view can be useful in the pseudodifferential analysis of the symbol class Sw.
(See §2 and §4).

The second remark in this work is that one can define well-behaving Fourier
integral operators using the Sw regularity. For example, if we take amplitudes
and phases with that regularity, we obtain Fourier integral operators which are
L2 continuous and which allow composition at least formally. We also consider
here the case of Fourier integrals with a large parameter in the phase, a case of
interest in the applications. (See §3).

We end this paper with a last and short remark on Sw which may be con-
sidered as a “negative” one. This is done in §5 and we explain there why such
a remarkable class is, however, not invariant in general under the action of a
change of variables.

Some notations.
- If α, β, . . . , are multi-indices, we sometimes write ∂α

1 a, ∂α
1 ∂β

2 a, . . . , in-
stead of ∂α

x a(x, y, . . . ), ∂α
x ∂β

y a(x, y, . . . ), . . .
- “cst ” denotes a positive constant that may change from one inequality

to the other.
- |.|s, s ∈ R, denotes the norm in the Sobolev space Hs.
- L(L2) is the space of bounded operators in L2.
- If x ∈ R

n, 〈x〉 =
√

1 + x2.

1. A spectral point of view

Our first remark is the following :

Theorem 1.1. The classes Sw and A coincide.

Proof. Let χ be in S(Rn). For u ∈ S ′(Rn), we can write, in a distributional
sense,

χ(D − k)u(x) = (2π)−n

∫
eixξχ(ξ − k)û(ξ)dξ.

The Fourier transform of ξ �→ eixξχ(ξ − k) is equal to y �→ ei(x−y)kχ̂(y − x), so
that

χ(D − k)u(x) = (2π)−n

∫
ei(x−y)kχ̂(y − x)u(y)dy = eixk(2π)−nF(u τxχ̂)(k).

Hence, if we choose χ(ξ) = e−
ξ2
2 so that χ̂ = (2π)

n
2 χ, we obtain

sup
x∈Rn

|χ(D − k)u(x)| = (2π)−
n
2 sup

x∈Rn

|F(u τxχ)(k)|,

and the theorem follows since the spaces A and Sw do not depend on the choice
of the test function χ.

This result allows us to give a spectral characterization of Sw that is similar
to the well known characterizations of functional spaces by means of dyadic
techniques, the annuli being replaced here by “cubes”.
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Theorem 1.2. If u ∈ S ′(Rn), then, u ∈ Sw(Rn) if and only if there exists a
compact set Q ⊂ R

n and a sequence (uk)k∈Zn in L∞(Rn) such that supp(ûk) ⊂
k + Q,

∑
k ||uk||L∞ < ∞ and u =

∑
k uk.

Proof. Necessity : If u ∈ Sw(Rn), take uk = χ(D − k)u with χ ∈ D(Rn) and∑
k τkχ = 1. In fact, if χ1 ∈ D(Rn) and

∫
χ1(ξ)dξ = 1, one can write, with some

appropriate ψ ∈ D(Rn),

χ(D − k)u(x) =
∫

ψ(k − l)χ(D − k)χ1(D − l)u(x)dl, x ∈ R
n.

Hence,∑
k

||χ(D − k)u||L∞ ≤ sup
l

∑
k

|ψ(k − l)| ||F−1(χ)||L1

∫
||χ1(D − l)u||L∞dl

≤ cst ||u||Sw .

Sufficiency : Take χ ∈ D(Rn). It follows from the hypothesis on supp(uk)
that there exists ψ ∈ D(Rn) such that

χ(D − l)u =
∑

k

ψ(k − l) χ(D − l)uk,

so that,∫
||χ(D − l)u||L∞dl ≤

∑
k

∫
|ψ(k − l)| ||F−1(χ)||L1 ||uk||L∞dl=cst

∑
k

||uk||L∞ .

Thus, the theorem is proved.

Corollary 1.3. A tempered distribution u is in Sw(Rn) if and only if there
exists a compact set Q ⊂ R

n and a sequence (uk)k∈Zn in L∞(Rn) such that
supp(ûk) ⊂ Q,

∑
k ||uk||L∞ < ∞ and u(x) =

∑
k eixkuk(x).

Notice here the analogy with absolutely convergent Fourier series. In fact,
one can show that each element of Sw can be written locally as the sum of a
true absolutely convergent Fourier series. What is interesting in this corollary
is that, the sequence (uk)k∈Zn is bounded in S0

0,0 and this will be exploited in
the sequel. One can replace the series in Theorem 1.2 and Corollary 1.3 by
(Lebesgue) integrals and the sequences (uk)k∈Zn by families (uk)k∈Rn . We do
not give details since they are not needed.

2. On L2 boundedness

As a first example of application of the above spectral characterization, we
give a simple and direct proof of the L2 continuity of the operator Opt(a) defined
by

[Opt(a)v](x)=(2π)−n

∫
R2n

ei(x−y)ηa(tx + (1 − t)y, η)v(y)dydη, v ∈ S(Rn),
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where 0 ≤ t ≤ 1 and a ∈ Sw(R2n).
The idea of proof is that of [3] where the case t = 1 is discussed. The integral

above has a meaning in S ′ and, for example, one can define it by introducing a
factor ψ(εη), ψ ∈ S(Rn), ψ(0) = 1, and by taking the limit when ε → 0.

Set I = 〈Opt(a)v, u〉S′,S , u ∈ S(Rn). It follows from Corollary 1.3 that one
can write

a(x, η) =
∑

k,l∈Zn

ei(kx+lη)akl(x, η)

where akl is bounded in S0
0,0 and

∑
k,l ||akl||L∞ < ∞. A simple computation

gives I =
∑

k,l Ikl with Ikl = 〈Opt(akl)vkl, ukl〉, ukl(x) = u(x − (1 − t)l)eitxk

and vkl(y) = v(y + tl)ei(1−t)yk. Now, apply the well known L2 estimates for S0
0,0

type symbols :

|Ikl| ≤ cst
∑

|α|,|β|≤N

||∂α
x ∂β

η akl||L∞ ||ukl||L2 ||vkl||L2 ,

with N a sufficiently large integer. Finally, since the spectrum of akl is contained
in a fixed compact set, we have ||∂α

x ∂β
η akl||L∞ ≤ cst ||akl||L∞ , so that,

|I| ≤
∑
k,l

|Ikl| ≤ cst
∑
k,l

||akl||L∞ ||u||L2 ||v||L2 ≤ cst ||a||Sw ||u||L2 ||v||L2 .

The same argument works for the more general operator

(2.1) Av(x) = (2π)−n

∫
R2n

ei(x−y)ηa(x, y, η)v(y)dydη, v ∈ S(Rn),

when a ∈ Sw(R3n). In fact, the above method of proof can be used to handle
even more general oscillating integrals. Indeed, consider an integral of the form

(2.2) Av(x) =
∫

Rn+ν

eiϕ(x,y,θ) a(x, y, θ) v(y)dydθ,

where v ∈ S(Rn), a ∈ Sw(Rn × R
n × R

ν) and ϕ : R
n × R

n × R
ν → R satisfies :

∂αϕ ∈ S0
0,0 for all multi-indices α such that |α| = 2, and

(2.3)
∣∣∣∣det

(
∂x∂yϕ ∂θ∂yϕ
∂x∂θϕ ∂2

θϕ

)∣∣∣∣ ≥ δ,

with some constant δ > 0. Notice that this last condition implies that the maps

(x, θ) �→ (∂yϕ(x, y, θ), ∂θϕ(x, y, θ)) and (y, θ) �→ (∂xϕ(x, y, θ), ∂θϕ(x, y, θ))

are global diffeomorphisms from R
n × R

ν onto itself.
This type of integrals was studied by Asada and Fujiwara in [4] when a ∈ S0

0,0.
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If the decomposition

a(x, y, θ) =
∑

(k,l,m)∈Z2n+ν

ei(kx+ly+mθ)aklm(x, y, θ)

is that given by Corollary 1.3, we can define the operator A by

(2.4) Av(x) =
∑

(k,l,m)∈Z2n+ν

eikx

∫
Rn+ν

ei(ϕ(x,y,θ)+mθ) aklm(x, y, θ) eilyv(y)dydθ,

the integrals being classical oscillating integrals (since aklm ∈ S0
0,0) and the

convergence of the series being checked in S ′. One can show afterwards that
this definition agrees with the more classical one which consists in introducing
a factor ψ(εθ), ψ ∈ S(Rν), ψ(0) = 1, in the integral and then taking the limit
(in S ′) when ε → 0.

Now, since the phase ϕ(x, y, θ) + mθ satisfies the same conditions as ϕ, ap-
plying the result of [4] on L2 boundedness, we obtain

| <Av, u> | ≤ cst
∑

(k,l,m)∈Z2n+ν

sup
|α|≤N

||∂αaklm||L∞ ||u||L2 ||v||L2 ,

with a sufficiently large integer N , and since the spectrum of aklm is contained
in a fixed compact set, we conclude as in the preceding proof and obtain an L2

estimate for the global Fourier integral operator (2.2).
Moreover, applying the same argument and the result of [5] instead of that

of [4], one may relax the regularity condition on the phase ϕ and require, for
example, only that ∂αϕ is in the (global) Hölder space Cn+ν+�(R2n+ν), * > 0,
for all multi-indices α such that |α| = 2.

We state now the most general result we can prove on L2 boundedness of
Fourier integral operators by means of the spectral characterization.

Theorem 2.1. Assume that
(i) a ∈ Sw(R2n+ν)
(ii) ∂αϕ ∈ Hs,s′,σ

ul (Rn × R
n × R

ν) , s, s′ > n
2 , σ > ν, |α| = 2.

(iii) ϕ satisfies the non-degeneracy condition (2.3).
Let A be given by (2.2) with the meaning (2.4). Then, A defines a bounded

operator in L2(Rn) and

||A||L(L2) ≤
cst
δ

exp(cst |ϕ′′|s,σ,s′;ul) ||a||Sw ,

the constant being independent of (a, ϕ, δ).

Recall that Hs,s′,σ(Rn × R
n × R

ν) is the space of tempered distributions
a(x, y, θ) for which the integral

|a|2s,s′,σ =
∫

|(1 − ∆x)
s
2 (1 − ∆y)

s′
2 (1 − ∆θ)

σ
2 [a(x, y, θ)]|2dxdydθ
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is finite, and that Hs,s′,σ
ul (Rn × R

n × R
ν) is the space of tempered distributions

a(x, y, θ) that are locally in Hs,s′,σ(Rn × R
n × R

ν) and such that the quantity

|a|s,s′,σ;ul = sup
z∈R2n+ν

|a τzχ|s,s′,σ

is finite for some fixed χ ∈ D(R2n+ν) with non zero integral. See [5] for
more details. Condition (ii) in the statement above is satisfied if, for instance,
ϕ′′ ∈ Hn+ν+�

ul (R2n+ν), * > 0, (uniformly local Sobolev space), or if ϕ′′ ∈
Cn+ν+�(R2n+ν), * > 0, (global Hölder space).

Proof of Theorem 2.1. We have just to take again the argument developed
above and to apply to the integrals in (2.4) Theorem 2 of [5] instead of the L2

boundedness result of [4].

3. More on Fourier integral operators

In this section, we continue to give precise L2 estimates for global non degen-
erate Fourier integral operators related to the class Sw. The results presented
here are not applications of the spectral characterization of Sw as is Theorem
2.1, and need proofs that are more evolved than that of Theorem 2.1. This is
the reason for stating them in an independent section.

Theorem 3.1. Let a be in Sw(R2n+ν) and let ϕ : R
2n+ν → R be such that

∂αϕ ∈ Sw(R2n+ν) for |α| = 2. Assume also that ϕ satisfies the non-degeneracy
condition (2.3) and define the operator A by

Av(x) = lim
ε→0

∫
Rn+ν

eiϕ(x,y,θ) a(x, y, θ) ψ(εθ)v(y)dydθ, (limit in S ′(Rn)),

v ∈ S(Rn), ψ ∈ S(Rν), ψ(0) = 1, 0 < ε ≤ 1.
Then, A is an operator from S(Rn) to S ′(Rn) which does not depend on ψ

and which extends uniquely to a bounded operator in L2(Rn). Moreover, one can
estimate the operator norm as follows,

||A||L(L2) ≤
cst
δ

exp(cst ||ϕ′′||Sw
) ||a||Sw

,

the constant being independent of (a, ϕ, δ).

Proof. Unfortunately, we have not been able to produce a proof as simple as
that of Theorem 2.1. We follow here the method of proof of Theorem 2 of [5]
but not its scheme. Set aε(x, y, θ) = a(x, y, θ)ψ(εθ) and

Iε =
∫

R2n+ν

eiϕ(x,y,θ) aε(x, y, θ)u(x)v(y) dxdydθ where u, v ∈ S(Rn).
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We can write

(3.1) Iε =
∫

eiϕ(x+k,y+l,θ+m) aεklm(x, y, θ) uk(x) vl(y) dxdydθdkdldm ,

with f, g ∈ D(Rn), h ∈ D(Rν),
∫

f =
∫

g =
∫

h = 1, uk(x) = f̃(x)u(x + k),
f̃ ∈ D(Rn), f̃ = 1 on supp(f), vl(y) = g̃(y)v(y + l), g̃ ∈ D(Rn), g̃ = 1 on
supp(g), and aεklm(x, θ, y) = f(x)g(y)h(θ)aε(x + k, y + l, θ + m).

Set z = (x, y, θ), q = (k, l, m) and write the following Taylor formula :

(3.2) ϕ(z + q) = ϕ(q) + ∂1ϕ(q)x + ∂2ϕ(q)y + ∂3ϕ(q)θ + ϕq(z),

with ϕq(z) =
∫ 1

0
(1 − t)ϕ′′(q + tz)z2dt. To study this remainder, we need the

following property of Sw. This will also be needed later on.

Proposition 3.2. Set ut(x) = u(tx). If u ∈ Sw(Rn), then, ut ∈ Sw(Rn), and
there exists a constant C > 0 such that, for all u ∈ Sw(Rn) and t ∈ [0, 1],
||ut||Sw

≤ C ||u||Sw
.

Proof. If χ ∈ D(Rn) and
∫

χ(ξ)dξ = 1, we can write

χ(D − k)ut(x) =(2π)−n

∫
eitxξχ(tξ − k) χ(ξ − l) û(ξ) dξdl

=
∫

χ̃(k − tl) [χ(tD − k)χ(D − l)u](tx) dl,

with some appropriate χ̃ ∈ D(Rn) since k − tl = t(ξ − l) − (tξ − k) lies in some
fixed compact set. Hence,∫

||χ(D − k)ut||L∞dk ≤
∫

|χ̃(k − tl)| ||F−1(χ)||L1 ||χ(D − l)u||L∞dldk

≤ ||χ̃||L1 ||F−1(χ)||L1

∫
||χ(D − l)u||L∞dl,

and this establishes the proposition.
Since we can write ϕq(z) =

∫ 1

0
(1− t) (ϕ′′)t( q

t + z)z2dt, it follows from Propo-
sition 3.2 that, for all χ ∈ D(R2n+ν),

(3.3)
∫

sup
q

|χ̂ϕq(ζ)| dζ ≤ cst ||ϕ′′||Sw .

Moreover, if we set bε,q = aε,q eiϕq , one can check easily that

(3.4)
∫

sup
q

|b̂ε,q(ζ)| dζ ≤ cst ||aε||Sw exp(cst ||ϕ′′||Sw) , 0 ≤ ε ≤ 1.
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Now, introducing (3.2) into (3.1) and taking Fourier transforms give us

Iε =
∫

eiϕ(q)b̂ε,q(ξ, η,−∂3ϕ(q)) ûk(−ξ − ∂1ϕ(q)) v̂l(−η − ∂2ϕ(q))
dξdηdq

(2π)2n
.

This is the expression which will allow us not only to evaluate limε→0 Iε, but to
get the L2 estimate as well. To this end, by applying Taylor’s formula, we write
bε,q(z) = bq(z)ψ(εm) + ε rε,q(z) where bq = b0,q and

rε,q(z) = bq(z)
ν∑

j=1

θj

∫ 1

0

∂jψ(εm + εtθ) dt.

To this corresponds the (a priori formal) decomposition : Iε = I ′ε + εI ′′ε with

I ′ε =
∫

eiϕ(q)b̂q(ξ, η,−∂3ϕ(q))ψ(εm) ûk(−ξ − ∂1ϕ(q)) v̂l(−η − ∂2ϕ(q))
dξdηdq

(2π)2n
.

We shall prove that I ′ε and I ′′ε are well defined Lebesgue integrals and that we
can pass to the limit in Iε. Consider I ′ε and let us show that

(3.5) (ξ, η, q) �→ b̂q(ξ, η,−∂3ϕ(q)) ûk(−ξ − ∂1ϕ(q)) v̂l(−η − ∂2ϕ(q))

is an integrable function in R
4n+ν . By Cauchy-Schwarz inequality, we have

J
def=

∫
|b̂q(ξ, η,−∂3ϕ(q)) ûk(−ξ − ∂1ϕ(q)) v̂l(−η − ∂2ϕ(q))| dξdηdq

≤
(∫

|b̂q| |ûk|2 dξdηdq

) 1
2

(∫
|b̂q| |v̂l|2 dξdηdq

) 1
2

.

Set β = supq |b̂q|. This is an integrable function in R
2n+ν . Performing the

changes of variables

(3.6)
{

l′ = ∂1ϕ(k, l, m)
m′ = ∂3ϕ(k, l, m)

and
{

k′ = ∂2ϕ(k, l, m)
m′ = ∂3ϕ(k, l, m)

respectively in the first and second factors of the right hand side of the last
inequality and using the assumption (2.3), we get

J2 ≤
∫

β(ξ, η,−m′) |ûk(−ξ − l′)|2 dξdηdkdl′dm′

δ

×
∫

β(ξ, η,−m′) |v̂l(−η − k′)|2 dξdηdk′dldm′

δ

≤ cst
δ2

∫
β(ξ, η, m) |ûk(l)|2 dξdηdq

∫
β(ξ, η, m) |v̂l(k)|2 dξdηdq

≤ cst
δ2

(∫
β(ζ) dζ

)2

|u|0 |v|0 .
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This and (3.4) imply that J ≤ cst
δ ||a||Sw exp(cst ||ϕ′′||Sw) |u|0 |v|0 . Hence, (3.5)

is Lebesgue integrable in R
4n+ν . Applying Lebesgue dominated convergence

theorem yields the convergence of I ′ε to

I =
∫

eiϕ(q)b̂q(ξ, η,−∂3ϕ(q)) ûk(−ξ − ∂1ϕ(q)) v̂l(−η − ∂2ϕ(q))
dξdηdq

(2π)2n
.

The discussion of I ′′ε is similar. Indeed, by an easy argument, one can show that

∫
sup

q
|r̂ε,q(ζ)| dζ≤cst ||aε||Sw exp(cst ||ϕ′′||Sw)≤cst ||a||Sw exp(cst ||ϕ′′||Sw) .

Consequently, arguing as for I ′ε yields the fact that I ′′ε is bounded with respect
to ε, so that limε→0 Iε = I which shows that A is an operator from S(Rn) to
S ′(Rn) independent of ψ. Moreover, since

|I| ≤ J ≤ cst
δ

||a||Sw exp(cst ||ϕ′′||Sw) |u|0 |v|0 , u, v ∈ S(Rn),

A extends uniquely to a bounded operator in L2(Rn) whose norm satisfies the
desired estimate. Theorem 3.1 is so proved.

Next, we give a last result on L2 boundedness for Fourier integral operators
related to the class Sw.

Theorem 3.3. Let a be in Hs,s′,σ
ul (Rn × R

n × R
ν), s, s′ > n

2 , σ > ν, all the
other assumptions being as in Theorem 3.1. Then, concerning the operator A,
we have the same conclusion as that of Theorem 3.1, with, of course, |a|s,s′,σ;ul

replacing ||a||Sw in the estimate.

Proof. Since the proof is similar to that of Theorem 3.1, we only show how to
get the basic estimate, that is, how to estimate the integral

I =
∫

eiϕ(q)b̂q(ξ, η,−∂3ϕ(q)) ûk(−ξ − ∂1ϕ(q)) v̂l(−η − ∂2ϕ(q))
dξdηdq

(2π)2n
,

the notations being that of the proof of Theorem 3.1. Write bq = χ aq eiϕq

with some appropriate χ ∈ D(R2n+ν) and set γ(ζ) = supq |F(χ eiϕq )(ζ)|. It
follows easily from (3.3) that γ is an integrable function in R

2n+ν and that∫
γ(ζ) dζ ≤ cst exp(cst ||ϕ′′||Sw). If ζ = (ζ1, ζ2, ζ3) ∈ R

n × R
n × R

ν , we estimate
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as follows :

|I| ≤
∫

γ(−ζ)×

|âq(ζ1 − ξ, ζ2 − η, ζ3 − ∂3ϕ(q)) ûk(ξ − ∂1ϕ(q)) v̂l(η − ∂2ϕ(q))| dξdηdqdζ

(2π)4n+ν

≤
∫ ( ∫

〈ξ − ζ1〉2s〈η − ζ2〉2s′〈ζ3 − ∂3ϕ(q)〉2σ

|âq(ζ1 − ξ, ζ2 − η, ζ3 − ∂3ϕ(q))|2dξdη

) 1
2

×
(∫ |ûk(ξ − ∂1ϕ(q)) v̂l(η − ∂2ϕ(q))|2dξdη

〈ξ − ζ1〉2s〈η − ζ2〉2s′〈ζ3 − ∂3ϕ(q)〉2σ

) 1
2 γ(−ζ) dqdζ

(2π)4n+ν

≤ sup
q

|âq|s,s′,σ

∫ (∫ |ûk(ξ)|2dξdq

〈ξ − ζ1 + ∂1ϕ(q)〉2s〈ζ3 − ∂3ϕ(q)〉σ
) 1

2

×
(∫ |v̂l(η)|2dηdq

〈η − ζ2 + ∂2ϕ(q)〉2s′〈ζ3 − ∂3ϕ(q)〉σ
) 1

2 γ(−ζ) dζ

(2π)4n+ν
.

Here, we used essentially Cauchy-Schwarz inequality and the following elemen-
tary lemma whose proof is left to the reader (this is Lemma 1 of [5]):

Lemma 3.4. For all s ∈ R, all compact sets K ⊂ R
n and all α ∈ N

n, there
exists a constant Cs,α,K > 0 such that |xα(1 − ∆)

s
2 u(x)|0 ≤ Cs,α,K |u|s for all

u ∈ Hs(Rn) with support in K.

Performing the changes of variables (3.6) and estimating, we get :

(2π)4n+νδ|I| ≤ |aq|s,s′,σ;ul

∫
γ(ζ)

(∫ |ûk(ξ)|2dξdkdl′dm′

〈ξ + ζ1 + l′〉2s〈m′ + ζ3〉σ
) 1

2

×
(∫ |v̂l(η)|2dηdk′dldm′

〈η + ζ2 + k′〉2s′〈m′ + ζ3〉σ
) 1

2

dζ

≤ cst |aq|s,s′,σ;ul

∫
γ(ζ) dζ |u|0 |v|0

≤ cst |aq|s,s′,σ;ul exp(cst ||ϕ′′||Sw
) |u|0 |v|0 .

We do not go further into the proof.

Remark 3.5. This remark concerns the comparison between the spaces
Sw(R2n+ν) and Hs,s′,σ

ul (Rn × R
n × R

ν), s, s′ > n
2 , σ > ν. This is impor-

tant since it explains why we gave above three similar statements : Theo-
rem 2.1, Theorem 3.1 and Theorem 3.3. We show here that both inclusions
Sw(R2n+ν) ⊂ Hs,s′,σ

ul (Rn × R
n × R

ν) and Hs,s′,σ
ul (Rn × R

n × R
ν) ⊂ Sw(R2n+ν)

are false in general. First, we have the following proposition :
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Proposition 3.6. The inclusion

Hs1,s2,s3
ul (Rn1 × R

n2 × R
n3) ⊂ Sw(Rn1+n2+n3)

holds if si > ni, i = 1, 2, 3, and is false if n1 = n2 = n3 = n and s3 = n.

Proof. If u ∈ Hs1,s2,s3
ul and χ, χ̃ ∈ D, χ̃ = 1 on supp(χ), by Cauchy-Schwarz

inequality, we have

|F(u τkχ)(ξ)| ≤ (2π)−n1−n2−n3

(∫
|〈η1〉s1〈η2〉s2〈η3〉s3F(u τkχ̃)(η)|2dη

) 1
2

×
(∫ |τ̂kχ(ξ − η)|2dη

〈η1〉2s1〈η2〉2s2〈η3〉2s3

) 1
2

,

where we used the notation η = (η1, η2, η3) ∈ R
n1 × R

n2 × R
n3 . Applying the

inequalities 〈ηi〉−2si ≤ cst 〈ξi〉−2si〈ηi − ξi〉2si , i = 1, 2, 3, we obtain

|F(u τkχ)(ξ)| ≤ cst
|u|s1,s2,s3;ul

〈ξ1〉s1〈ξ2〉s2〈ξ3〉s3
,

the constant being independent of k. Since the right hand side of this inequality
is integrable, we have proved the first part of the proposition.

Consider now the function a(x, y, θ) = 〈x− y〉−ne−θ2−i(x−y)θ. One can check
(see also [8]) that the operator given by (2.1) is not bounded in L2(Rn). It
follows from Theorem 2.1 or Theorem 3.1 that a /∈ Sw(R3n). Now, a direct
computation shows that

∂α
x ∂β

y ∂γ
θ a ∈ L∞(R3n) for all α, β, γ ∈ N

n, |γ| ≤ n.

Hence, a ∈ Hs1,s2,n
ul (Rn × R

n × R
n), for all s1, s2 ≥ 0, which proves the second

part of the proposition.
Proposition 3.6 shows, after permutations of coordinates, that

Hs,s′,σ
ul (Rn × R

n × R
ν), at least when n = ν, is not contained in

Sw(R2n+ν) if s ≤ n or s′ ≤ n or σ ≤ ν. On the other hand, Sw(R2n+ν) is
neither contained in Hs,s′,σ

ul (Rn×R
n×R

ν), if s, s′ > n
2 , σ > ν, for Hs,s′,σ

ul (Rn×
R

n × R
ν) ⊂ Cτ (R2n+ν) (Hölder space) if 0 < τ ≤ min{s − n

2 , s′ − n
2 , σ − ν

2},
as one can check easily, and the class Sw contains functions that are merely
continuous. Indeed, take u(x) =

∑
j≥1

1
j2 ei2jx in dimension 1. If χ ∈ S(R),

then, χ(D − k)u(x) =
∑

j≥1
1
j2 χ(2j − k)ei2jx, so that,

∫
||χ(D − k)u||L∞dk ≤

||χ||L1
∑

j≥1
1
j2 < ∞. Hence, u ∈ Sw(R). However, u is in no Hölder space

Cε(R), ε > 0, since it is given by a dyadic series.
As an application of the results above, we discuss now oscillating integrals

with a large parameter in the phase.
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Corollary 3.7. Let a and ϕ be as in Theorem 2.1 or Theorem 3.1 or Theorem
3.3, and let Aλ, λ ≥ 1, be the operator defined from S to S ′ by :

Aλv(x) =
∫

Rn+ν

eiλϕ(x,y,θ) a(x, y, θ) v(y)dydθ, v ∈ S(Rn).

Then,

(3.7) sup
λ≥1

λ
n+ν

2 ||Aλ||L(L2) ≤
cst
δ

exp(cst ||ϕ′′||E) ||a||F ,

where E (resp. F ) is one of the spaces Sw(R2n+ν) and Hs,s′,σ
ul (Rn × R

n×
R

ν), s, s′ > n
2 , σ > ν, and the constant is independent of (a, ϕ, δ).

Proof. We disregard the case E = F = Hs,s′,σ
ul since it is treated in [5]. Set

I(λ) = 〈Aλv, u〉S′,S , u, v ∈ S(Rn) and write

(3.8) λ
n+ν

2 I(λ) = lim
ε→0

∫
R2n+ν

eiϕλ(x,y,θ) aλ(x, y, θ) ψλ(εθ) uλ(x)vλ(y) dxdydθ,

with uλ(x) = λ−n
4 u(λ− 1

2 x), vλ(y) = λ−n
4 v(λ− 1

2 y), ψ ∈ S(Rν), ψ(0) = 1, ψλ(θ)=
ψ(λ− 1

2 θ), aλ(x, y, θ)=a(λ− 1
2 (x, y, θ)), ϕλ(x, y, θ)=λϕ(λ− 1

2 (x, y, θ)). Since aλ and
ϕλ satisfy the assumptions of Theorem 2.1 (resp. Theorem 3.1, Theorem 3.3),
it follows from its conclusion that the integral (3.8) does not depend on ψ and
verifies the estimate :

|λn+ν
2 I(λ)| ≤ cst

δ
exp(cst ||ϕ′′

λ||E) ||aλ||F |u|0|v|0 , λ ≥ 1,

where E = Hs,s′,σ
ul , F = Sw (resp. E = F = Sw; E = Sw, F = Hs,s′,σ

ul ).
Now, applying Proposition 3.2 and its analogue concerning the Hs,s′,σ

ul space
(see Proposition 1 of [5]), we obtain the corollary.

Notice that the estimate (3.7) is sufficiently explicit to allow one to treat the
case where also the amplitude a depends on the parameter λ, a case that often
occurs in the applications and, for instance, in semi-classical pseudodifferential
analysis.

We end this section by stating a particular (but important) case of the above
results. This is the case where the phase and the amplitude do not depend on
the θ variables (i.e. ν = 0). Unfortunately, this case is not a consequence of
the preceding results except when only the space Sw is involved. However, the
proofs are similar to that above and even simpler since there is no problem to
define the integrals. For this reason, we leave them to the reader.

Theorem 3.8. The estimate (3.7) also holds in the case ν = 0, that is, when
a and ϕ do not depend on θ and the non-degeneracy condition (2.3) reduces to
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|det ∂x∂yϕ| ≥ δ. In this case, E (resp. F ) stands for Sw(R2n) or Hs,s′

ul (Rn ×
R

n), s, s′ > n
2 , and Aλ is given by

Aλv(x) =
∫

Rn

eiλϕ(x,y) a(x, y) v(y)dy, v ∈ S(Rn).

As we said before, the case when E = F = Sw(R2n) is just a consequence of
Corollary 3.7. Indeed, if I(λ) = 〈Aλv, u〉S′,S , u, v ∈ S(Rn), then,

I(λ) = lim
ε→0

(
λ

2π

)n ∫
R3n

eiλϕ1(x,η,y) a(x, y) ψ(εy) u(x) v̂(λη) dxdydη,

where ψ ∈ S(Rn), ψ(0) = 1, and ϕ1(x, η, y) = ϕ(x, y) − yη. Now, |det ϕ̃′′
1 | =

|det ∂x∂yϕ| ≥ δ and (x, η, y) �→ a(x, y) is in Sw(R3n), so, applying Corollary 3.7
yields the desired result.

4. On composition

The spectral characterization of Sw can also be used to discuss, in a natural
manner, the composition of symbols in Sw.

For one thing, applying Theorem 1.2 or Corollary 1.3, one can reduce the
problem, via decompositions, to composition of symbols in S0

0,0. Since the com-
position in S0

0,0 is already known and since it respects spectra, one can sum up
the terms to obtain an element of Sw. We do not give the details of this since
the idea is clear. For another thing, one can simplify Sjöstrand’s proof ([1], [2])
based on the study of the action on Sw, by convolution, of non degenerate imag-
inary exponentials. Notice that this action is also useful to prove that the class
of operators Opt(Sw) does not depend on t. The spectral point of view allows
us to give a simple proof of this action. In fact, the main (and simple!) idea is
to study Fourier multipliers instead of convolutions. Notice that the formulas
of the symbolic calculus, mainly in the non standard quantizations, are often
written by means of Fourier multipliers.

Consider the Fourier multiplier eiΦ(D) where Φ is a quadratic form on R
n

(which may be degenerate). We want to prove that this operator is bounded
from Sw to Sw. There is a symmetric matrix M such that we have the classical
(polarization) formula

<Mξ, η>=
Φ(ξ + η) − Φ(ξ) − Φ(η)

2
, ξ, η ∈ R

n.

If χ ∈ S(Rn) and u ∈ Sw(Rn), by applying this formula, we can write

χ(D − k)eiΦ(D)u(x) =eiΦ(k)−2i<Mk,k>e2i<MD,k>+iΦ(D−k)χ(D − k)u(x)

=eiΦ(k)−2i<Mk,k>χ̃(D − k)u(x + 2Mk),
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where χ̃(ξ) = eiΦ(ξ)χ(ξ) is also in S(Rn). Hence,

||χ(D − k)eiΦ(D)u||L∞ = ||χ̃(D − k)u||L∞ ,

so that ∫
Rn

||χ(D − k)eiΦ(D)u||L∞ ≤ cst ||u||Sw ,

which is the desired inequality.
Finally, we notice that one can even compose Fourier integral operators of

type (2.2) satisfying a ∈ Sw, ϕ′′ ∈ Sw and condition (2.3). Indeed, if A1, A2

are operators of the same type and are associated with amplitudes a1, a2 and
phases ϕ1, ϕ2, then, A1A2 is given, at least formally, by the kernel∫

eiϕ(x,z;y,θ,θ′) a(x, z; y, θ, θ′) dydθdθ′,

where a(x, z; y, θ, θ′) = a1(x, y, θ) a2(y, z, θ′) and ϕ(x, z; y, θ, θ′) = ϕ1(x, y, θ)
+ϕ2(y, z, θ′). The new “θ-variables” are (y, θ, θ′). Clearly, a, ϕ′′ are in Sw(Rn ×
R

n × R
n+ν+ν′

) and the fact that the geometric condition (2.3) is satisfied by
this ϕ is easy to check and has been noticed by K. Asada and D. Fujiwara, [4].
Thus, the composite A1A2 is a Fourier integral operator of the same type.

5. What about the action of changing variables?

The one failing of Sw is that it is not invariant under the action of a change
of variables. Indeed, suppose that h : R

n → R
n is a diffeomorphism such

that h)(u) = u ◦ h ∈ Sw(Rn) for all u ∈ Sw(Rn). If u has compact sup-
port the same holds for h)(u). Using the definition of Sjöstrand, it is easy to
check that (Sw)comp(Rn) = (FL1)comp(Rn). Hence, h) maps (FL1)comp(Rn)
into (FL1)comp(Rn), and (FL1)loc(Rn) into (FL1)loc(Rn). It is then a classical
fact that h is necessarily an affine mapping, in other words, h − h(0) is linear.
We refer to Kahane [6] or Rudin [7]. Notice that in this argument, h may be
merely a continuous and proper mapping. Since an affine change of variables
clearly preserves Sw, we have proved

Theorem 5.1. Let h : R
n → R

n be proper and continuous. If

h)[Sw(Rn)] ⊂ Sw(Rn),

then, h is affine. The class Sw is preserved by and only by affine changes of
variables.
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