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DISTINGUISHING ISOSPECTRAL

NILMANIFOLDS BY BUNDLE LAPLACIANS

Carolyn Gordon, He Ouyang, and Dorothee Schueth

Introduction

Two closed Riemannian manifolds are said to be isospectral if the associ-
ated Laplace Beltrami operators, acting on smooth functions, have the same
eigenvalue spectrum. When two metrics are isospectral in this sense, one may
ask whether the metrics can nonetheless be distinguished by additional spectral
data—e.g., by the spectra of the Laplacians acting on p-forms.

In this article we consider isospectral deformations, i.e., continuous families
of isospectral metrics on a given manifold. In 1984, E. N. Wilson and the first
author [GW] gave a method for constructing isospectral deformations (M, gt)
on nilmanifolds M , generalized slightly in ([Go], [DG2]). The construction of
these isospectral families is reviewed in section one. These were the only known
examples of isospectral deformations of metrics on closed manifolds until recently
when R. Gornet [Gt] constructed new examples of isospectral deformations of
metrics on nilmanifolds by a different method. However, the metrics in Gornet’s
examples can be distinguished by the spectra of the associated Laplacians acting
on 1-forms. Thus we focus here on the earlier deformations.

The metrics in these deformations are actually strongly isospectral; i.e., all
natural self-adjoint elliptic partial differential operators associated with the met-
rics are isospectral. (Here natural refers to operators that are preserved by
isometries; for the definition, see [St].) We show in section two, answering a
question raised to us by P. Gilkey, that they are even strongly π1-isospectral;
i.e., all natural self-adjoint elliptic operators with coefficients in locally flat bun-
dles (defined by representations of the fundamental group of M) are isospectral.
In contrast, Gilkey [Gi] showed that some strongly isospectral spherical space
forms constructed by A. Ikeda are not strongly π1-isospectral.

For this reason, we next consider non-flat Hermitian line bundles E over the
manifold M . Associated to any metric on M and metric connection ∇ on E is
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a bundle Laplacian with discrete spectrum. If one is given a trivial deformation
gt of the metric on M—i.e., the gt are pairwise isometric—then one can always
deform the connection through a family ∇t so that the bundle Laplacians associ-
ated with (gt ,∇t) have spectrum independent of t. (In general, even in this case
of a trivial deformation of the base metric, one must deform the connection along
with the metric in order to keep the line bundle Laplacians isospectral.) Thus
to spectrally detect the non-triviality of the isospectral deformations (M, gt), it
suffices to find a Hermitian line bundle E over M and a connection ∇ such that
no choice of metric connections ∇t with ∇0 = ∇ leads to isospectral bundle
Laplacians on E.

This program was initiated by the second author in his thesis [Ou], where he
considered several explicit examples. The third author [Sch] recently showed that
the non-triviality of isospectral deformations of generic two-step nilmanifolds can
be detected in this way. We describe the key ideas in section three.

The third author would like to thank Dartmouth College for its hospitality
during her one year stay there.

§1 Isospectral deformations

A Riemannian nilmanifold is a compact quotient Γ\N of a simply-connected
nilpotent Lie group N by a discrete subgroup Γ together with a Riemannian
metric g whose lift to N , again denoted g, is left-invariant. We will for simplicity
refer to g as a left-invariant metric on Γ\N even though Γ\N does not admit a
left G-action.

The cocompact, discrete subgroup Γ defines a rational structure on the Lie
algebra N of N as follows: The Lie group exponential map exp : N → N is
a diffeomorphism; we denote its inverse by log. Then span Z(log Γ) is a lattice
of full rank in N , each of whose elements is a rational multiple of an element
of log Γ; the structure coefficients with respect to any basis of this lattice are
rational. (See [Ra] for these facts.) We call X ∈ N a Γ-rational vector if
X ∈ span Q(log Γ), and a linear subspace of N is called Γ-rational if it is spanned
by Γ-rational vectors, or equivalently, if it is spanned by elements of log Γ.

1.1 Definition. (i) An automorphism Φ of N is said to be Γ-almost inner if
Φ(γ) is conjugate in N to γ for every γ ∈ Γ. We denote the group of all Γ-almost
inner automorphisms of N by AIA(N ; Γ). A derivation ϕ is said to be Γ-almost
inner if ϕ(X) ∈ [X,N ] for every Γ-rational vector X ∈ N . The set of Γ-almost
inner derivations forms a Lie algebra which we denote by AID(N ; Γ).

(ii) An automorphism Φ of N , respectively a derivation ϕ of N , is called
p-fold Γ-almost inner if for every p-dimensional Γ-rational subspace U ⊆ N
there exists a ∈ N such that Φ∗|U = Ada|U , respectively, there exists A ∈ N
such that ϕ|U = adA|U .

According to [Go], AIA(N ; Γ) is a Lie subgroup of Aut(N), contained in the
subgroup of unipotent automorphisms, and its Lie algebra is AID(N ; Γ). It is
easy to see that the same holds for the p-fold Γ-almost inner automorphisms and
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derivations. The group Inn(N) of inner automorphisms and, for each p, the group
of p-fold Γ-almost inner automorphisms are clearly contained in AIA(N ; Γ); in
general, these inclusions are nontrivial.

1.2 Theorem ([GW], [DG2], [Go]). If Φ ∈ AIA(N ; Γ) and g is left-invariant,
then the Riemannian nilmanifolds (Γ\N, g) and (Γ\N, Φ∗g) are isospectral.

In particular, if {Φt} is a continuous family of automorphisms in AIA(N ; Γ)
with Φ0 = Id, then (Γ\N, Φ∗

t g) is an isospectral deformation. As shown in [GW],
(Γ\N, Φ∗

t g) is a trivial deformation (i.e., the metrics are pairwise isometric) if
and only if Φt ∈ Inn(N) for every t.

In [GW], a version of Theorem 1.2 is proved by representation theoretic tech-
niques. A second proof is given in [DG2], under somewhat more general condi-
tions, using heat trace methods. The latter proof follows the ideas of T. Sunada
[Su]. Both of these proofs show that the manifolds of Theorem 1.2 are strongly
isospectral.

In the case of two-step nilmanifolds, a converse to Theorem 1.2 holds:

1.3 Theorem ([Pe], [Ou], [OP]). Let N be a simply-connected two-step nilpo-
tent Lie group, Γ a cocompact, discrete subgroup of N , and gt a continuous family
of left-invariant metrics such that (Γ\N, gt) is an isospectral deformation. Then
there exists a continuous family Φt of Γ-almost inner automorphisms of N with
Φ0 = Id and gt = Φ∗

t g0 .

Theorem 1.3 fails for higher-step nilmanifolds as recent examples of R. Gornet
[Gt] show.

§2 Strong π1-isospectrality

Let (Γ\N, g) be a compact Riemannian nilmanifold. Any finite dimensional
unitary representation σ : Γ → U(n) gives rise to a locally flat n-plane bundle Eσ

over Γ\N . The bundle Eσ may be identified with N ×σ C
n, i.e., the quotient of

N × C
n by the equivalence (γx, σ(γ)z) ∼ (x, z) for γ ∈ Γ, x ∈ N , and z ∈ C

n.
The space Eσ of smooth sections of Eσ is then identified with the space Cσ(N) of
all smooth C

n-valued functions on N satisfying f(γx) = σ(γ)f(x) for all γ ∈ Γ.
The Riemannian metric g on Γ\N defines a Laplace operator ∆σ acting on Eσ .
Under the identification of Eσ with Cσ(N), this Laplace operator coincides with
the restriction to Cσ(N) of the Laplacian ∆ of (N, g). (Note that Cσ(N) is
invariant under ∆ since the left action of Γ on N is by isometries.)

2.1 Definition. Two left-invariant metrics g1 and g2 on Γ\N are said to be
π1-isospectral if for every finite dimensional unitary representation σ of Γ, the
associated bundle Laplacians ∆σ

1 and ∆σ
2 are isospectral.

2.2 Theorem. Let Φ be a Γ-almost inner automorphism of N . Then for any
left-invariant metric g on N , the metrics g and Φ∗g are π1-isospectral. Thus the
isospectral deformations described in section one are also π1-isospectral.
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2.3 Remark. As discussed in the introduction, the metrics are actually strongly
π1-isospectral. In fact, the proof below goes through when the bundle Laplacian
is replaced by any natural self-adjoint elliptic operator with coefficients in Eσ .

Each of the two proofs of Theorem 1.2 referred to in section one can be
modified to prove Theorem 2.2. The first proof is based on the Kirillov theory
of representations of nilpotent Lie groups. In order to avoid an excursion into
this theory, we outline only the second proof here.

We recall the notion of the heat kernel, first for the Laplace-Beltrami operator
on a Riemannian manifold and then for bundle Laplacians. Let M be a Rie-
mannian manifold. A function K : R

+ ×M ×M → M is called a heat kernel, or
fundamental solution of the heat equation, if it satisfies the following properties:

(K1) K(t, x, y) is C1 in t and C2 in (x, y);
(K2) ( ∂

∂t + ∆x)K(t, x, y) = 0 where ∆x denotes the Laplacian acting on the
second variable;

(K3) limt→0+

∫
M

K(t, x, y)f(y)dy = f(x) for any smooth function f with com-
pact support on M .

In case M is noncompact, K is also required to satisfy a certain decay condi-
tion (see e.g. [Do].)

For compact Riemannian manifolds M , the trace of the heat kernel, defined by
Z(t) =

∫
M

K(t, x, x) dx, satisfies Z(t) =
∑∞

j=0 e−λjt where λ0 ≤ λ1 ≤ λ2 ≤ . . .
is the Laplace spectrum of M . Thus to show that two compact Riemannian
manifolds are isospectral, it suffices to show that their heat kernels have the
same trace.

The existence and uniqueness of the heat kernel on compact Riemannian
manifolds is classical. H. Donnelly [Do] proved further that if M is a possibly
non-compact Riemannian manifold which covers a compact Riemannian mani-
fold Γ\M , then M has a unique heat kernel K. Moreover, the heat kernel KΓ

of Γ\M satisfies

KΓ(t, x, y) =
∑
γ∈Γ

K(t, x, γ(y)),

where x and y are any lifts of x and y.
From the uniqueness of the heat kernel, one sees that

(1) K(t, a(x), a(y)) = K(t, x, y) for a ∈ Iso(M).

In the context of a Hermitian bundle E over a Riemannian manifold M with
a metric connection, there is a similar notion of heat kernel K (see [BGV]).
Consider the bundle E�E∗ over M×M given by

⋃
(x,y)∈M×M

Hom (Ey , Ex). The

heat kernel associated with the bundle Laplacian is a map K : R
+ ×M ×M →

E � E∗ which for each t is a section of E � E∗. The defining properties are
analogous to (K1–3) above, with f in (K3) being a section of E.
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Proof of Theorem 2.2. Let K be the heat kernel associated with the Laplace-
Beltrami operator of (N, g). The heat kernel K∗ of (N, Φ∗g) is given by

(2) K∗(t, x, y) = K(t,Φ(x),Φ(y)).

Given a representation σ : Γ → U(n), a section s of the bundle Eσ � E∗
σ

corresponds to a function Fs : N × N → End(Cn) satisfying

(3) Fs(γ1x, γ2y) = σ(γ1)Fs(x, y)σ(γ−1
2 )

for all γi ∈ Γ, x, y ∈ N . The correspondence is explicitly given by

s(x, y) = px ◦ Fs(x, y) ◦ p−1
y

for x, y ∈ Γ\N , where x and y are any lifts to N of x and y, and px denotes the
restriction to the fiber over x ∈ N of the projection p : N×C

n → N×σC
n ∼= Eσ .

Denote by Kσ the heat kernel for the bundle Laplacian ∆σ on Eσ
∼= Cσ(N).

An argument similar to that in [Do] shows that the section Kσ(t, ·, ·) of Eσ �E∗
σ

corresponds (in the above sense) to the function

(4) (x, y) �→
∑
γ∈Γ

K(t, x, γy)σ(γ).

The fact that this function defines a section of Eσ � E∗
σ , i.e., that it satisfies

equation (3), is an elementary consequence of equation (1) and the fact that Γ
acts by isometries on N .

For γ ∈ Γ, we have Φ(γ) = a−1γa for some a ∈ N and

K∗(t, x, γx)=K(t,Φ(x),Φ(γx))=K(t, Φ(x), a−1γaΦ(x))=K(t, aΦ(x), γaΦ(x))

by (1) and (2). Now the Γ-almost inner automorphism Φ is a volume preserving
diffeomorphism of N ; in fact its differential is a unipotent automorphism of the
Lie algebra (see [DG2]). Since the isometry a is also volume preserving, we
would thus have

∫
N

K∗(t, x, γx) dx =
∫

N
K(t, x, γx) dx if these integrals made

sense. If also Γ were finite, (4) would then show that Kσ and K∗
σ have the same

trace. Of course the integrals above don’t make sense and Γ is infinite, but these
complications can be handled in the same way as in the proof given in [DG2] of
Theorem 1.2.

§3 Spectra of line bundle Laplacians

Let (M, g) be a compact Riemannian manifold, and let π : E → M be a
complex line bundle over M endowed with a smooth Hermitian fiber metric
〈. , .〉. Let P := {u ∈ E | 〈u, u〉 = 1} ⊂ E. Then P can be considered as a
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principal S1-bundle with which E is associated via the canonical representation
S1 → U(1).

The space E(E) of smooth sections of E can be canonically identified with
the space C(P )S1

of functions on P given by

C(P )S1
:= {f ∈ C∞(P, C) | f(uz) = z−1 · f(u) ∀u ∈ P, ∀ z ∈ S1}.

There is a canonical correspondence between connections on P (that is, S1-in-
variant distributions on P which are complementary to the fiber direction) and
metric connections on E. Consider a given connection H on P and the cor-
responding metric connection ∇ on E. For a smooth vector field X on M ,
denote the unique H-horizontal lift of X to P by X∗. The bundle Laplacian
∇∗∇ : E(E) → E(E) is given by

(∇∗∇Ψ)(p) = −
n∑

i=1

(
∇ei(p)∇ei

Ψ −∇∇̃ei(p)ei
Ψ

)
,

where ∇̃ is the Levi-Cività connection associated with the metric g on M , and
e1, . . . , en are vector fields in some neighborhood of p such that {e1(p), . . . , en(p)}
is an orthonormal basis of TpM . It is well-known that ∇∗∇ is an elliptic self-
adjoint positively semi-definite operator with discrete spectrum consisting of
real nonnegative eigenvalues tending to infinity. Each eigenvalue occurs with
finite multiplicity, and every eigenvector is a smooth section of E. Denote the
spectrum of ∇∗∇ by spec (g,H). Under the identification of E(E) with C(P )S1

,
the bundle Laplacian corresponds to the operator ∆̃ : C(P )S1 → C(P )S1

given
by (

∆̃f
)
(u) = −

n∑
i=1

(
e∗i |u

(
e∗i (f)

)
−

(
∇̃eiei

)∗
|u(f)

)
,

where e1, . . . , en are given as in the definition of ∇∗∇ (with p := π(u)).

3.1 Remark. Consider the unique Riemannian metric g̃ on P such that π :
(P, g̃) → (M, g) is a Riemannian submersion, the fibers of P are g̃-orthogonal to
the H-horizontal subspaces, g̃ is S1-invariant, and the fibers of P have length 1.
Let W be the S1-invariant unit vector field tangent to the fibers of P ; i.e., for
u ∈ P we have W (u) = d

ds |s=0
e2πisu. Denote the Laplacian of the Riemannian

manifold (P, g̃) by ∆g̃ . Then ∆̃(f) = ∆g̃(f) + W 2(f) = ∆g̃(f) − 4π2f for all
f ∈ C(P )S1

; thus

(5) ∆̃ =
(
∆g̃ − 4π2Id

)
|C(P )S1 .

We now let M = Γ\N be a compact nilmanifold. A principal S1-bundle P

over N is isomorphic to a bundle of the form π : Γ̃\Ñ → Γ\N , where Ñ is
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a simply-connected one-dimensional central extension of N , Γ̃ is a cocompact,
discrete subgroup of Ñ with π̃(Γ̃) = Γ where π̃ : Ñ → N is the homomorphic
projection, and the bundle projection π is induced by the homomorphism π̃.
The Lie group Ñ is also nilpotent, and Ñ and Γ̃ are determined uniquely up
to isomorphism. We will refer to Γ̃\Ñ as a nilmanifold extension of Γ\N . A
connection H on Γ̃\Ñ , viewed as a distribution, will be called left-invariant if
it lifts to a left-invariant distribution on Ñ . Thus a left-invariant connection H
is defined by a choice of vector space complement to the kernel of π∗ in the Lie
algebra of Ñ .

We will say an automorphism Φ̃ of Ñ is a lift of an automorphism Φ of N if
π̃ ◦ Φ̃ = Φ ◦ π̃. Lifts to Ñ of derivations on N are similarly defined.

3.2 Proposition. Let Γ be a cocompact, discrete subgroup of a simply-connected
nilpotent Lie group N and let Φt be a continuous family of Γ-almost inner au-
tomorphisms of N . Let g be a left-invariant metric on N and set gt = Φ∗

t (g).
(Thus, by Theorem 1.2, the Riemannian nilmanifolds (Γ\N, gt) are mutually
isospectral.) Let Γ̃\Ñ be a principal S1-bundle over Γ\N and E the line bundle
associated with Γ̃\Ñ by the canonical representation S1 → U(1). Let H be a left-
invariant connection on Γ̃\Ñ . Suppose that the Φt lift to a continuous family of
Γ̃-almost inner automorphisms Φ̃t of Ñ . Set Ht = (Φ̃t)−1

∗ (H). Then the bundle
Laplacians ∆̃t associated with the metrics gt on Γ\N and the connections Ht

are mutually isospectral; i.e., spec (gt ,Ht) is independent of t.

Proof. As in Remark 3.1, the pair (gt ,Ht) gives rise to a Riemannian metric g̃t on
Γ̃\Ñ for each t. These metrics are left-invariant and satisfy g̃t = Φ̃∗

t (g̃) where g̃ =
g̃0 . Theorem 1.2 implies that the manifolds (Γ̃\Ñ , g̃t) are mutually isospectral.
By the discreteness of spec (Γ̃\Ñ , g̃t) and the continuity of the eigenvalues as t

varies, the Laplacians restricted to C(Γ̃\Ñ)S1
are also isospectral. It then follows

from equation (5) that the bundle Laplacians ∆̃t are isospectral.

3.3 Remarks. (i) Even in the case where the Φt are inner automorphisms, so
that the manifolds (Γ\N, gt) are mutually isometric, it is still necessary to de-
form the connection as in the Proposition in order for the bundle Laplacians
to be isospectral. Of course, in this case, it is always possible to deform the
connection through left-invariant connections in order to obtain isospectrality.
Thus in order to use line bundle Laplacians to prove the non-triviality of a de-
formation gt of left-invariant metrics on a given nilmanifold, one must find a line
bundle and (left-invariant) connection so that no matter how one deforms the
connection (through left-invariant connections), the spectrum of the line bundle
Laplacian deforms non-trivially with t. (The assumption of left-invariance of the
connections can be reformulated into a more intrinsic notion. See Remark 3.7
below.)

(ii) Let {Φt}t be a one-parameter group of Γ-almost inner automorphisms
of N , and let ϕ ∈ AID(N ; Γ) be the generator of {Φt}t , i.e., Φt∗ = exp tϕ. Then
the Φt lift to Γ̃-almost inner automorphisms Φ̃t of Ñ if and only if ϕ lifts to a
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Γ-almost inner derivation ϕ̃ of N .

Consider the following example of an isospectral deformation of a two-step
nilmanifold, which was originally given in [GW]:

Let N be the Lie algebra with basis {X1 , Y1 , X2 , Y2 , Z1 , Z2} whose non-zero
Lie brackets are given by

[X1 , Y1] = [X2 , Y2] = Z1 , [X1 , Y2] = Z2 .

Let N be the simply connected Lie group with Lie algebra N , and let Γ
be the cocompact, discrete subgroup of N generated by the set
exp{X1 , Y1 , X2 , Y2 , Z1 , Z2}. Consider the left-invariant metric g on N with
respect to which the left-invariant vector fields X1 , Y1 , X2 , Y2 , Z1 , Z2 are or-
thonormal. Let ϕ be the derivation of N which maps Y2 to Z2 and the other
basis elements to zero. Then ϕ is almost inner: For X = x1X1 + y1Y1 + x2X2 +
y1Y1 + y2Y2 + z1Z1 + z2Z2 we have

ϕ(X) =
{ [0, X] if y2 = 0 ,

[X1 − y1
y2

X2 , X] if y2 �= 0 .

Thus the one-parameter group of automorphisms Φt with differentials Φt∗ =
exp tϕ = Id+tϕ is a family of almost inner automorphisms of N , and (Γ\N, Φ∗

t g)
is an isospectral deformation. (See the remarks following Definition 1.1.) Each
of the following examples concerns bundle Laplacians on some line bundle over
this underlying isospectral deformation.

3.4 Example. Consider the central extension Ñ of N with basis {X̃1, Ỹ1, . . . ,

Z̃2, W}, whose nontrivial Lie brackets are given by

[X̃1 , Ỹ1] = [X̃2 , Ỹ2] = Z̃1 , [X̃1 , Ỹ2] = Z̃2 ,

[X̃1 , X̃2] = W.

Let Ñ be the corresponding simply connected Lie group, and let Γ̃ be the sub-
group of Ñ generated by the set exp{X̃1 , Ỹ1 , . . . , Z̃2 , W}. Obviously Γ̃ is co-
compact and discrete, and its projection to N is Γ. Lift the derivation ϕ to a
derivation ϕ̃ of Ñ given by

ϕ̃(Ỹ2) = Z̃2 , ϕ̃(X̃2) = W,

while the other basis elements of Ñ are mapped to zero. This lift ϕ̃ is almost
inner on Ñ : For X = x1X̃1 + y1Ỹ1 +x2X̃2 + y2Ỹ2 + z1Z̃1 + z2Z̃2 +wW , we have

ϕ̃(X) =




[0, X] if x2 = y2 = 0,

[X̃1 − y1
y2

X̃2 , X] if x1 = 0, y2 �= 0,

[X̃1 + y1
x2

Ỹ2 , X] if x1 = 0, x2 �= 0,

[−x2
x1

X̃2 − y2
x1

Ỹ2 , X] if x1 �= 0.
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Let {Φ̃t} be the one-parameter group of Γ̃-almost inner automorphisms gener-
ated by ϕ̃, so Φ̃t∗ = exp tϕ̃ = Id+ tϕ̃. By Proposition 3.2, the bundle Laplacians
associated with the metrics gt on the base manifold and the nonconstant family
of left-invariant connections

Ht := Φ̃−1
t∗ (H) = span {X̃1 , Ỹ1 , X̃2 − tW, Ỹ2 − tZ̃2 , Z̃1 , Z̃2 , W}

are isospectral.

3.5 Example. Consider the extension Ñ of N with basis {X̃1, Ỹ1, . . . , Z̃2, W},
whose nontrivial Lie brackets are this time given by

[X̃1 , Ỹ1] = Z̃1 + W, [X̃2 , Ỹ2] = Z̃1 ,

[X̃1 , Ỹ2] = Z̃2 − W.

Let Γ̃ be the cocompact, discrete subgroup of the corresponding simply con-
nected Lie group Ñ generated by the set exp{X̃1 , Ỹ1 , . . . , Z̃2 , W}. In this ex-
ample it turns out that there is no way to lift ϕ to a Γ̃-almost inner deriva-
tion of Ñ : Suppose ϕ̃ were such a lift. The conditions that ϕ̃ lifts ϕ and
that ϕ̃(Ỹi) ∈ [Ñ , Ỹi] imply that ϕ̃(Ỹ1) = 0 and ϕ̃(Ỹ2) = Z̃2 − W . But then
ϕ̃(Ỹ1 + Ỹ2) = Z̃2 −W /∈ [Ñ , Ỹ1 + Ỹ2] = span {Z̃1, Z̃2}. Note that Ỹ1 , Ỹ2 , Ỹ1 + Ỹ2

are Γ̃-rational vectors, hence ϕ̃ is not Γ̃-almost inner.
Thus (see Remark 3.3(ii)) one cannot lift Φt to a family of Γ̃-almost inner

automorphisms of Ñ . Since Ñ is still two-step nilpotent, it follows by Theo-
rem 1.3 that for any continuous family of left-invariant connections Ht on Γ̃\Ñ ,
the Laplacian associated to the corresponding left-invariant metric g̃t on Γ̃\Ñ
has nonconstant spectrum. Analogously to the proof in [Sch, §3], one can show
that even the spectrum of the restriction ∆|C(Γ̃\Ñ)S1 is nonconstant in t. Hence
for every continuous family of left-invariant connections Ht on Γ̃\Ñ , the bundle
Laplacians associated with gt and Ht will be non-isospectral.

The idea illustrated in Example 3.5 is developed in [Sch] to prove the following
(recall Definition 1.1(ii)):

3.6 Theorem ([Sch, Theorem 1.7]). Let N be a simply-connected two-step
nilpotent Lie group, and let Γ be a cocompact, discrete subgroup of N . Suppose
that N does not admit any 4-fold Γ-almost inner automorphisms that are not
inner. Let gt be a continuous family of isospectral left-invariant metrics on Γ\N .
If the deformation (Γ\N, gt) is nontrivial, then there exists a one-dimensional
central extension Ñ of N and a cocompact, discrete subgroup Γ̃ of Ñ whose
projection to N is Γ, such that for every continuous family of left-invariant con-
nections Ht on the S1-bundle π : Γ̃\Ñ → Γ\N , the spectrum spec (gt ,Ht) is
nonconstant in t.

We expect that the theorem is true without the technical hypothesis that N
does not admit any 4-fold Γ-almost inner automorphisms. In any case, while
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it is easy to construct abundant examples of nilmanifolds Γ\N with Γ-almost
inner, non-inner automorphisms, examples of such nilmanifolds admitting even
2-fold Γ-almost inner, non-inner automorphisms are very rare.

3.7 Remark. There is also a more intrinsic version of this theorem (see [Sch,
Theorem 1.15]) in which the statement is formulated in terms of a Hermitian
line bundle E over Γ\N and some intrinsically defined set L(E) of metric con-
nections on E. Note that in the above formulation of the theorem, the set of
left-invariant connections on Γ̃\Ñ is not intrinsically defined in terms of just
the bundle structure of Γ̃\Ñ , viewed as an S1-bundle over Γ\N , and the nil-
manifold structure of the base manifold. The reason is that there are bundle
isomorphisms from Γ̃\Ñ to itself, inducing the identity on the base manifold,
which do not preserve the nilmanifold structure of Γ̃\Ñ ; in particular, they need
not preserve the set of left-invariant connections on Γ̃\Ñ .

The set L(E) is defined as the set of all metric connections on E for which the
corresponding connection on the associated principal S1-bundle P corresponds to
a left-invariant connection under some realization of P as a nilmanifold extension
Γ̃\Ñ of Γ\N , i.e., under a bundle isomorphism from P to a nilmanifold extension
Γ̃\Ñ which induces the identity on Γ\N .

Then the more intrinsic version of the above theorem asserts the existence of
a Hermitian line bundle E over Γ\N such that for every continuous family of
metric connections ∇t ∈ L(E), the spectrum of the bundle Laplacians associated
with gt and ∇t is nonconstant in t. (“Continuous” is to be understood here with
respect to some appropriate topology on L(E) which is defined in [Sch].) As
shown in [Sch], the intrinsic version of the theorem actually turns out to be
equivalent to the version cited above.
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