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THE SYMPLECTIC FLOER HOMOLOGY
OF A DEHN TWIST

Paul Seidel

Abstract. We compute examples of symplectic Floer homology in the
lowest dimension i.e. for surfaces.

1. Statement

In two dimensions a diffeomorphism is symplectic if and only if it pre-
serves volumes. As a consequence, the symplectic geometry of surfaces
lacks many of the interesting phenomena which are encountered in higher
dimensions. For example, two symplectic automorphisms of a closed sur-
face are symplectically isotopic iff they are homotopic, by a theorem of
Moser [4]. On the other hand symplectic fixed point theory is nontrivial
even in dimension 2, as shown by the Poincaré-Birkhoff theorem [1]. So
while symplectic Floer homology on surfaces is essentially a topological
invariant, it is not clear how much information it contains. In this note we
compute it in some simple cases.

Let Σ be an oriented closed connected surface of genus ≥ 2 and C ⊂
Σ a closed 1-submanifold whose components C1, . . . Cn are labeled with
σ1, . . . σn ∈ {±1}. We assume that no component of Σ − C is a disc,
and that both boundary circles of any component which is an annulus
carry the same sign. Let Ti be the positive Dehn twist along Ci. This
is an automorphism of Σ defined as follows: choose an oriented tubular
neighbourhood

ci : [−2; 2] × S1 −→ Σ,

such that ci(0 × S1) = Ci and a monotone function ψ ∈ C∞(R, R) such
that ψ(t) = 0 for t ≤ −1 and ψ(t) = 1 for t ≥ 1. Then

c−1
i Ti(ci(s, t)) = (s, t − ψ(s)),

which we extend trivially over Σ. Actually we will choose the ci to have
disjoint images; then the standard volume forms given by ci can be ex-
tended to an ω ∈ Ω2(Σ) which is fixed by all Ti, and

T = T σ1
1 T σ2

2 . . . Tσn
n ,
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is a symplectic automorphism of (Σ, ω). As we will see below T has well-
defined symplectic Floer cohomology groups1 HF ∗(T ). Moreover there is
a ‘quantum’ product

H∗(Σ) ⊗ HF ∗(T ) −→ HF ∗(T ).

Our result is

Theorem 1. Let C+ be the union of all Ci such that σi = +1, C− =
C − C+. Then there is an isomorphism of H∗(Σ)-modules

HF ∗(T ) ∼= H∗(Σ − C−, C+),

where H∗(Σ) acts on the r.h.s. by cup product.

Actually there is some ambiguity in the grading of the Floer homology
groups; HF ∗(T ) can be split into several parts, and the grading on each of
these parts is only determined up to an even constant. The theorem says
that for a suitable choice of these constants, the isomorphism preserves
the grading.

Example 2. Take C to be a single curve which divides Σ into two parts,
labeled with +1. Then

HF 2(T ) = Z
2, HF 1(T ) = Z

2g, HF 0(T ) = 0,

where g = genus(Σ). It is interesting to compare this with the instanton
Floer homology of the mapping torus TT Σ. For g = 2 Callahan (unpub-
lished) showed that HF ∗

inst(TT Σ) and HF ∗
inst(Σ × S1) are isomorphic as

Z/4-graded abelian groups, but are distinguished by their multiplicative
structures. The same thing is true in our case if we reduce the grading
mod 2:

HF ev(T ) ∼= HF ev(idΣ), HF odd(T ) ∼= HF odd(idΣ),

but HF 2(Σ) acts trivially on HF ∗(T ) and nontrivially on HF ∗(idΣ). Sim-
ilarly HF ∗(T ) is not isomorphic to HF ∗(T−1) as Z/2-graded H∗(Σ)-
module because H1(Σ) acts trivially on HF ev(T ) and nontrivially on
HF odd(T ).

In fact one can see symplectic Floer homology on surfaces as a simple
model for the instanton theory; this point of view will be pursued further
in subsequent work.

We will now discuss briefly the questions that arise when trying to set
up Floer homology for an arbitrary symplectic automorphism f of Σ. Floer

1Note that our convention differs from that of [2] by a sign: our HF ∗(T ) is their
HF ∗(T−1). This change was made in order to make the notation coherent with that
for time-dependent Hamiltonians [3].
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homology is an analogue of Morse theory for a certain closed one-form on
the space

ΛfΣ = {α ∈ C∞(R, M) | α(s) = f(α(s + 1))}.
The one-form is

daα(ξ) =
∫ 1

0

ω(
dα

ds
, ξ(s))ds.

One problem is familiar from ordinary Morse theory: da might have peri-
ods. A loop in ΛfΣ is a map

h : S1 × [0; 1] −→ Σ,

such that h(s, 0) = f(h(s, 1)), and

〈da, [h]〉 = −
∫

S1×[0;1]

h∗ω.

To prove that these periods vanish for f = T , we need the first part of the
following elementary

Lemma 3. Let T be a product of Dehn twists as above.
(i) Denote by ΛΣ the free loop space. If L ∈ π0(ΛΣ) is fixed by T∗

there is an l ∈ L such that im(l) ⊂ Fix(T ).
(ii) Let x, y be fixed points of T , and Ωx,yΣ the space of paths from x

to y. If A ∈ π0(Ωx,yΣ) is fixed by T∗ there is an a ∈ A such that
im(a) ⊂ Fix(T ).

Given this, we can represent any element of π1(ΛT Σ) by an h such that
h(s, 0) = h(s, 1). Since genus(Σ) ≥ 2 this implies

∫
h∗ω = 0.

A second point (which does not arise in finite dimensions) is that the
relative index of two critical points may depend on a path connecting them,
which makes it impossible to find a Z-grading for the Floer complex. The
problem is caused by a class µ ∈ H1(ΛfΣ, Z) which is defined as follows:
let TfΣ be the mapping torus of f . There is a map

d : H2(TfΣ) −→ H1(ΛfΣ),

and µ = d(c1(TfΣ)). More concretely any loop in ΛfΣ gives a map

h : S1 × S1 −→ TfΣ,

as above and the value of µ on it is
∫

S1×S1 h∗c1(TfΣ). Now we can use
the same argument as before to show that µ vanishes in our examples.

Finally the main difficulty in Floer homology for general symplectic
manifolds is the noncompactness of moduli spaces due to bubbling off of
holomorphic spheres, which does not occur in our case since π2(Σ) = 0.
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2. Proof

The proof of Theorem 1 uses the familiar technique of ‘stretching the
neck’ (note however that it is here applied to the target manifold Σ). First
let

Σ′ = Σ −
n⋃

i=1

ci(]−1; +1[ × S1),

and denote by ω′ the restriction of ω to Σ′. Choose an ω′-compatible
complex structure J on Σ′ which agrees with the standard one given by
the ci near ∂Σ′. Finally we need a Morse function h : Σ′ −→ R satisfying
h(ci(±1, t)) = 0 for all t and

(c∗i dh)(s, t) =

{
−σiε ds −2 ≤ s ≤ −1
σiε ds 1 ≤ s ≤ 2

,

for some small ε > 0. This defines a Hamiltonian flow φt on Σ′ and complex
structures Jt = φ∗

t J which are equal to J near the boundary.
Now consider the surfaces (ΣR, ωR) (for R ≥ 2) obtained by replacing

the necks im(ci) ⊂ Σ by NR
i = [−R; R] × S1 with the standard volume

form. Σ′ ⊂ ΣR in an obvious way, and there are unique complex structures
JR

t which are standard on the NR
i and agree with Jt on Σ′. Similarly let

hR : ΣR −→ R be the function whose differential on NR
i is

dhR(s, t) = σi ε(2ψ(s) − 1) ds,

and which agrees with h on Σ′ (such a function exists for suitable choices
of ψ), and φR

t its Hamiltonian flow.
We define symplectic diffeomorphisms TR of ΣR such that on NR

i

TR(s, t) = (s, t − σi ψ(s)),

extending it by the identity as before, and perturbations TR
0 = φR

1 TR.
This means that on NR

i

TR
0 (s, t) = (s, t + σi((2ε − 1)ψ(s) − ε)),

has no fixed points.
TR can be obtained from T by a deformation of the symplectic form;

this implies that
HF ∗(T ) ∼= HF ∗(TR

0 ),

for all R.
Recall that the Floer cohomology of TR

0 is constructed using the moduli
spaces MR(x−, x+) of maps

u : R × R −→ ΣR,



THE FLOER HOMOLOGY OF A DEHN TWIST 833

such that

u(s, t) = TR
0 (u(s, t + 1)),

du

ds
+ JR

t (u(s, t))
du

dt
= 0,

lim
s−→±∞u(s, t) = x±,

where x−, x+ ∈ Fix(TR
0 ). The main step in the proof is then the following

Lemma 4. Let R be large. Then for any x−, x+ ∈ Fix(TR
0 ) and u ∈

MR(x−, x+) we have
u(R × R) ⊂ Fix(TR).

This means that u never reaches the regions inside [−1; 1]×S1 ⊂ NR
i ⊂

ΣR where the Dehn twist actually takes place.
To prove this consider first points x+, x− ∈ Fix(TR

0 ) which lie in dif-
ferent components of Σ′. It follows from Lemma 3 (ii) that the con-
stant paths at x−, x+ lie in different components of ΛT R

0
ΣR. Therefore

MR(x−, x+) = ∅ (this separation mechanism is well-known from Nielsen
fixed point theory).

Now assume that x± lie in the same component of Σ′, and that there
are Ri −→ ∞ and ui ∈ MRi(x−, x+) such that ui(R × R) �⊂ Fix(TRi).
Their energy is

E(ui) =
∫

R×[0;1]

|dui|2 = a(x−) − a(x+) = h(x−) − h(x+),

and therefore uniformly bounded (here we used the fact that da has an
integral a). It follows easily that |dui|∞ has to be unbounded. Let zi ∈
R×[0; 1] be a point where |dui| is maximal. Then for a suitable subsequence

Ci = |dui(zi)| −→ ∞ as i −→ ∞,

and one of the following holds:
Case 1: the distance of ui(zi) to Σ′ ⊂ ΣRi goes to ∞ as i −→ ∞. Then

the rescaled maps
ũi(z) = ui(C−1

i z + zi),

converge on compact subsets to a nonconstant holomorphic curve ũ : C −→
R × S1. But such a curve cannot have finite energy.

Case 2: ui(zi) stays within a finite distance of Σ′. Then by rescal-
ing we would obtain a nonconstant Jt-holomorphic sphere (for some t) in
the surface obtained from Σ′ by attaching a semi-infinite cylinder to each
boundary component, which is again impossible.
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Theorem 1 now follows by a standard argument [6, Theorem 7.3]: for
large R and small ε, MR(x+, x−) is homeomorphic to the space of u :
R −→ Σ′ such that

du

dt
= −∇Jh(u), lim

t−→±∞u(t) = x±,

and for a generic J every solution is regular. This gives an isomorphism
between the Floer chain complex of TR

0 and the Morse-theoretic chain
complex associated to h on Σ′, whose cohomology is H∗(Σ−C−, C+).Using
the ‘extrinsic’ definition of the quantum product [5] it is easy to see that
this is an isomorphism of H∗(Σ)-modules.
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