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SYMPLECTIC BIEXTENSIONS AND A
GENERALIZATION OF THE

FOURIER-MUKAI TRANSFORM

A. Polishchuk

Let A be an abelian variety over an algebraically closed field k, Â be
the dual abelian variety. The Fourier-Mukai transform is an equivalence
between the derived categories of coherent sheaves Db(A) and Db(Â). No-
tice that there is a “symplectic” line bundle LA on (Â × A)2, namely,
LA = p∗14P ⊗ p∗23P−1 where P is the Poincaré line bundle on Â × A, such
that the standard embeddings A ⊂ Â×A and Â ⊂ Â×A are “lagrangian”
with respect to LA, i.e. the restrictions of LA to A2 and Â2 are trivial
(and they are maximal with this property). The purpose of this paper is
to establish an analogous equivalence of derived categories for arbitrary la-
grangian subvarieties in an abelian variety X equipped with a line bundle
L over X2 which satisfies some properties similar to that of LA (L should
be a symplectic biextension—see below). Namely, with every lagrangian
subvariety Y ⊂ X we associate a canonical element of the Brauer group
eY ∈ Br(X/Y ) and consider the derived category Db(X/Y, eY ) of modules
over the corresponding Azumaya algebra on X/Y . It turns out that for
every pair of lagrangian subvarieties in X there is an equivalence between
these categories generalizing the Fourier-Mukai transform (more precisely,
for this we have to assume that either char k �= 2 or that there exists a
biextension P of X2 such that L � P ⊗ σ∗P−1 where σ : X2 → X2

is the permutation of factors). The class eY is trivial if and only if the
projection X → X/Y splits, in this case Db(X/Y, eY ) � Db(X/Y ). This
implies the “if” part of the following conjecture: the derived categories of
coherent sheaves on abelian varieties A and A′ are equivalent if and only
if there is an isomorphism f : Â×A→̃Â′×A′ such that (f ×f)∗LA′ � LA.
In particular, for any abelian variety A and a symmetric homomorphism
f : A → Â we construct an equivalence Db(A) � Db(A/ ker(fn)) where
fn = f |An

provided that mn ker(f) = 0 for some m relatively prime to n.
The construction is based on analogy with the classical theory of rep-

resentations of the Heisenberg group of a symplectic vector space: the
categories Db(X/Y, eY ) are just different models of the same “irreducible”
representation of the Heisenberg groupoid—a monoidal groupoid naturally
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814 A. POLISHCHUK

attached to (X, L). The corresponding analogue of Weil representation is
studied in [5].

1. Symplectic biextensions

Let X be an abelian variety. A biextension of X2 is a line bundle L on
X2 together with isomorphisms

Lx+x′,y � Lx,y ⊗ Lx′,y,

Lx,y+y′ � Lx,y ⊗ Lx,y′

— this is a symbolic notation for isomorphisms (p1 + p2, p3)∗L � p∗13L ⊗
p∗23L and (p1, p2 + p3)∗L � p∗12L ⊗ p∗13L on X3, satisfying some natural
cocycle conditions (see e.g. [1]).

A skew-symmetric biextension of X2 is a biextension L of X2 together
with an isomorphism of biextensions φ : σ∗L→̃L−1, where σ : X2 → X2 is
the permutation of factors, and a trivialization ∆∗L � OX of L over the
diagonal ∆ : X → X2 compatible with φ.

Every biextension L of X2 induces a homomorphism ψL : X → X̂ which
is given on the level of points by x �→ Lx×X . If L is skew-symmetric, then
ψ̂L = −ψL. It is easy to see that ψL = ψL′ if and only if L and L′

are isomorphic. A skew-symmetric homomorphism ψ : X → X̂ defines a
skew-symmetric biextension by the formula L(ψ) = (ψ × id)∗P, where P
is the normalized Poincaré line bundle on X̂×X, provided that ∆∗L(ψ) =
(ψ, id)∗P is trivial (apriori this is an element of 2-torsion in Pic(X)). In
this case we have ψL(ψ) = ψ. A skew-symmetric biextension L is called
symplectic if ψL is an isomorphism.

Let Y ⊂ X be an abelian subvariety. Then Y is called isotropic with
respect to L if there is an isomorphism of skew-symmetric biextensions
L|Y ×Y � OY ×Y . This is equivalent to the condition that the composition

Y
i→ X

ψL→ X̂
î→ Ŷ

is zero. An isotropic subvariety Y ⊂ X is called lagrangian if the mor-
phism Y → X̂/Y induced by ψL is an isomorphism. A skew-symmetric
biextension L of X2 is called quasi-split if there exists a lagrangian sub-
variety in X. One can see easily that such a biextension is necessarily
symplectic. The simplest example of an abelian variety with a symplectic
biextension is X = Â × A for any abelian variety A with the biextension
LA = P ⊗ σ∗P−1 where

P = p∗14P ∈ Pic(Â × A × Â × A),
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P is the Poincaré line bundle on A× Â. A symplectic biextension is called
split if it is isomorphic to this one. Below we show how to construct all
quasi-split symplectic biextensions.

Let Y ⊂ X be a lagrangian subvariety. Let us denote A = X/Y � Ŷ
so that there is an exact sequence

0 → Â → X
p→ A → 0,

such that ψL|Â = p̂. The projection p splits up to isogeny, that is there
exists a homomorphism s : A → X such that ps = n idA.

Lemma 1.1. One can always choose a section s : A → X as above such
that ŝψLs = 0.

Proof. Start with any s as above and then replace n by 2n2, and s by
2ns − ŝψLs.

Choose s : A → X as in lemma, and let π = (id, s) : Â × A → X be
the corresponding isogeny. Then since L|Â2 and (s × s)∗L are trivial, it
is easy to see that π∗L � L⊗n

A = p∗14P⊗n ⊗ p∗23P⊗−n. Thus, every quasi-
split symplectic biextension descends from the power of the split one. It
remains to determine which subgroups ker(π) ⊂ Â × A can occur.

Let P be any biextension of X ′ ×X ′′. Then the restrictions of P⊗n on
X ′

n ×X ′′ and X ′ ×X ′′
n are canonically trivialized but these trivializations

differ over X ′
n × X ′′

n by a bilinear morphism en(P ) : X ′
n × X ′′

n → Gm.
In the case of the Poincaré line bundle P over Â × A this construction
gives a canonical perfect pairing en : Ân × An → Gm. In our situation
the canonical trivializations of L⊗n

A over (Ân × An) × (Â × A) and (Â ×
A) × (Ân × An) differ over (Ân × An)2 by a bilinear morphism en(LA) :
(Ân × An)2 → Gm which is given by the formula

en(LA)((ξ, x), (ξ′, x′)) = en(ξ, x′)en(ξ′, x),(1.1)

where x, x′ ∈ An, ξ, ξ′ ∈ Ân.
By definition kerπ is the graph of a morphism φ : An → Ân induced

by s. Now the biextension L⊗n
A descends to X if and only if there exist

trivializations (as a biextension) of L⊗n
A over kerπ × (Â × A) and (Â ×

A)×kerπ which are compatible over (kerπ)2. Since such trivializations are
unique they coincide with the restrictions of the canonical trivializations
above. Hence, the descent condition is that ker(π) is isotropic with respect
to en(LA) which means that φ : An → Ân is skew-symmetric with respect
to en, that is φ̂ = −φ.

Thus, any quasi-split symplectic biextension arises from a pair (A, φ),
where φ : An → Ân is a skew-symmetric morphism, as described above. It
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is easy to see that if we change φ by φ + fn where fn is the restriction of
a symmetric homomorphism f : A → Â to An (then fn is automatically
skew-symmetric), then we get isomorphic symplectic biextensions—this
corresponds to a change of an isotropic morphism s : A → X. Also, one
can change n by nm and φ by the composition

Anm
m→ An

φ→ Ân → Ânm,

so that the corresponding symplectic biextension will be the same. How-
ever, this doesn’t exhaust examples of pairs (A, φ) giving isomorphic biex-
tensions. For example, it is easy to see that A/ ker(φ) = s(A) ⊂ X is
a lagrangian subvariety in X, X/s(A) � Â/φ(An), and the biextension
associated with the pair (A, φ) corresponds also to the pair (Â/φ(An), ψ)
where ψ is the composition

ψ : (Â/φ(An))n → φ(An)
φ−1

→ An/ ker(φ) → (A/ ker(φ))n.

These considerations lead to the following theorem.

Theorem 1.2. Let L be a symplectic biextension of X2. For any la-
grangian subvariety Y ⊂ X there exists a lagrangian subvariety Z ⊂ X
such that Y ∩ Z is finite. Any pair of lagrangian subvarieties (Y, Z)
in X such that Y ∩ Z is finite, is isomorphic to the pair (Â, A/ ker(φ))
in Â × A/(φ, id)(An) with its canonical symplectic biextension for some
abelian variety A and a skew-symmetric homomorphism φ : An → Ân.

Proof. The first assertion is clear. To prove the second we should start
with the lagrangian subspace Y ⊂ X in the above argument and choose a
splitting of p : X → X/Y up to isogeny which factors through Z. More
precisely, let f : Z → X/Y be the restriction of p to Z. Choose an isogeny
g : X/Y → Z such that fg = n idX/Y . Then the composition of g with
the embedding of Z in X gives a lagrangian morphism s : X/Y → X such
that ps = n idX/Y . Now we get an isogeny Â × A → X as above (where
A = X/Y ) such that Y and Z are the images of Â and A respectively,
which finishes the proof.

Let us give an example of a quasi-split symplectic biextension which is
not split. Let A be a principally polarized abelian variety with End(A) =
Z. Then there is a symplectic isomorphism φn : An → Ân such that for
every symmetric morphism f : A → Â the corresponding morphism f |An

is proportional to φn. Now if dim(A) > 1 we can choose a symplectic
morphism φ : An → Ân which is not proportional to φn. It is easy to
see that the corresponding symplectic biextension of X2, where X = Â ×
A/(φ, id)(An), is not split.
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2. Representations of the Heisenberg groupoid

Let X be an abelian variety and L a symplectic biextension of X2.
Throughout this section we assume that there exists a biextension P of
X2 such that L � P ⊗σ∗P−1 (an isomorphism of skew-symmetric biexten-
sions). This is equivalent to the condition ψL = f− f̂ for some f : X → X̂.
For example, the quasi-split biextension associated with a pair (A, φ),
where φ : An → Ân and n is odd, satisfies this condition.

Definition 2.1. The Heisenberg groupoid H(X) = H(X, P ) is the stack
of monoidal groupoids such that H(X)(S) for a scheme S over k is the
monoidal groupoid generated by the central subgroupoid Pic(S) of Gm-
torsors on S and the symbols Tx, x ∈ X(S) with the composition law

Tx ◦ Tx′ = Px,x′Tx+x′ .

In other words, objects of H(X)(S) are pairs (M, x) where M is a line
bundle over S, x ∈ X(S). A morphism (M, x) → (M ′, x′) exists only if
x = x′ and is given by an isomorphism M → M ′. The composition law is
defined by the formula

(M, x) ◦ (M ′, x′) = (Px,x′ ⊗ M ⊗ M ′, x + x′).

Denoting Tx = (OS , x) we recover the above relation.

If we replace P by P ′ = P ⊗Λ(M) for some line bundle M on X trivial-
ized along the zero section, where Λ(M) = (p1 +p2)∗M ⊗p∗1M

−1⊗p∗2M
−1

(see e.g. [1]) we get an equivalent Heisenberg groupoid. The equivalence
H(X, P ) → H(X, P ′) is defined by the functor which is the identity on
Pic(S) and sends Tx to M−1

x Tx. Since any symmetric biextension of X2

has form Λ(M) this shows that up to a non-unique equivalence the Heisen-
berg groupoid doesn’t depend on a choice of P such that L = P ⊗ σ∗P−1.

Remark. One can see easily that the Heisenberg groupoid can be consid-
ered as an extension of the group scheme X by the stack of line bundles in
the sense of Deligne (see [2]), namely, we associate to each point x ∈ X(S)
the trivial gerb of line bundles, and the composition is given by the formula
above.

The Heisenberg groupoid H(Â×A) corresponding to a split biextension
is generated by the Picard subgroupoid Pic and symbols Tx, Ty where
x ∈ Â, y ∈ A with the following defining relations:

TxTx′ = Tx+x′ ,

TyTy′ = Ty+y′ ,

TyTx = 〈x, y〉TxTy.
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Is is easy to see (see e.g. [5]) that the map Ty �→ t∗y, Tx �→ ·⊗Px defines
an action of H(Â × A) on Db(A), where ty : A → A is the translation by
y ∈ A, Px = P|x×A for x ∈ Â. Below we construct an analogous action for
an arbitrary isotropic subvariety of an abelian variety with a symplectic
biextension.

Let Y ⊂ X be an isotropic subvariety. Then P |Y ×Y has a natural
structure of a symmetric biextension.

Definition 2.2. A pair (Y, α), where Y is an isotropic abelian subscheme
of X with respect to L and α is a line bundle on Y with fixed trivialization
along the zero section, is called isotropic if an isomorphism of symmetric
biextensions of Y × Y is given:

Λ(α) � P |Y ×Y

which can be written symbolically as Py,y′ = αy+y′α−1
y α−1

y′ for y, y′ ∈ Y .

For any isotropic subvariety Y ⊂ X there exists α such that the pair
(Y, α) is isotropic.

Definition 2.3. For an isotropic pair (Y, α) we define F(Y, α) as the cat-
egory of pairs (A, a) where A ∈ Db(X), a is an isomorphism in Db(Y ×X):

a : (ip1 + p2)∗A→̃P−1|Y ×X ⊗ p∗1α
−1 ⊗ p∗2A(2.1)

where i : Y ↪→ X is the embedding, such that (e × id)∗a = id. This
isomorphism can be written symbolically as follows:

ay,x : Ay+x→̃P−1
y,xα−1

y Ax

where y ∈ Y , x ∈ X. These data should satisfy the following cocycle
condition:

ay1+y2,x = ay2,x ◦ ay1,y2+x :

Ay1+y2+x → P−1
y1,x+y2

P−1
y2,xα−1

y1
α−1

y2
Ax � P−1

y1+y2,xα−1
y1+y2

Ax,

or in standard notation

(p1 + p2, p3)∗a = (p2, p3)∗a ◦ (p1, ip2 + p3)∗a

in Db(Y × Y × X). The morphisms between such pairs are morphisms
between the corresponding objects in Db(X) commuting with the isomor-
phisms in (2.1).
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It is easy to see that the category F(Y, α) is equivalent to Db(X/Y )
provided the projection p : X → X/Y has a section s : X/Y → X.
However, in general this is not true: one encounters some twisted versions
of Db(X/Y ) considered in the next section.

There is a natural action of the Heisenberg groupoid H(X) on the cat-
egory F(Y, α) such that an object (M, x) acts by the functor

A �→ M ⊗ P |X×x ⊗ t∗x(A).

In the case X = Â × A, Y = Â ⊂ X this action coincides with the action
of H(Â × A) on Db(A) � F(Â) mentioned above.

By analogy with the classical Heisenberg group it is natural to ask when
these representations are irreducible in some sense. More precisely, for the
construction of Weil representation it is relevant to know that all intertwin-
ing operators from Schrödinger representation to itself are proportional to
the identity. As shown in [5] certain analogue of this property holds for
the action of H(Â × A) on Db(A). One can treat the case of an arbitrary
lagrangian subvariety similarly, however, we don’t need this result.

3. Modules over Azumaya algebras

We begin this section by briefly recalling the various ways to speak
about the category of coherent modules over a scheme S “twisted” by an
element e ∈ H2(S, Gm): via Cech cocycles, gerbs, and Azumaya algebras.
The simplest way to define such a category is to fix an open covering (Ui)
of S (say, in flat topology) such that e is represented by a Cech cocycle
αijk ∈ O∗(Uijk) where Uijk = Ui ×S Uj ×S Uk. Then we define Coh(S, α)
as the category of collections (Fi) of coherent sheaves on Ui together with
a system of isomorphisms fij : Fi → Fj over Uij = Ui ×S Uj (such that
fji = f−1

ij ) satisfying the twisted cocycle condition: fjkfij = αijkfik over
Uijk. It is easy to see that up to equivalence this category depends only on
the cohomology class of α. The more abstract way to define this category
(which doesn’t involve a choice of covering) is to represent e by a Gm-
gerb. Recall that a Gm-gerb is a stack of groupoids G such that locally
there is a unique isomorphism class of objects of G and the automorphism
group of any object is Gm. Equivalence classes of Gm-gerbs over S are in
bijective correspondence with H2(S, Gm). Now consider the category of
representations of G, i.e. the category of functors of stacks G → Coh(S)
where Coh(S) is the stack of coherent sheaves. Choosing an open covering
and a collection of objects Vi ∈ G(Ui) we arrive to the Cech description
above. Sometimes e is represented by a sheaf of Azumaya algebras A over
S. Then locally A is isomorphic to a matrix algebra of rank n2 over S.
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Now let G(A) be the Gm-gerb of representations of A in locally free OS-
modules of rank n. Then it is easy to see that G(A) represents the same
cohomology class e ∈ H2(S, Gm) and the categories of representations of
G(A) and A in coherent sheaves on S are equivalent. By abuse of notation
we denote all these equivalent categories by Coh(S, e).

Let E → S be a K-torsor where K is a finite flat commutative group
scheme over S, let 0 → Gm → G → K → 0 be a central extension of
K. Then it defines an element e(G, E) ∈ H2(S, e) such that the cate-
gory of G-equivariant coherent sheaves on E of weight 1 is equivalent to
Coh(S, e(G, E)). Here a weight of a G-equivariant coherent sheaf is de-
fined as the weight of the induced Gm-equivariant sheaf. Indeed, consider
the gerb G(G, E) of liftings of E to G-torsors (an object of G(G, E) over
U → S is a G-torsor Ẽ over U together with an isomorphism of K-torsors
Ẽ/Gm � E). Then we claim that the category of weight-1 G-equivariant
sheaves is equivalent to the category of representations of G(G, E)op which
is Coh(S, e) where e is the inverse of the cohomology class of G(G, E).
To see this note that a lifting of E to a G-torsor can be considered as
a weight-1 G-equivariant line bundle L over E. A choice of such bundle
over EU defines the equivalence F �→ F ⊗L−1 of the category of weight-1
G-equivariant sheaves with the category of K-equivariant sheaves on EU ,
therefore with Coh(U). This equivalence depends contravariantly on L,
hence the assertion. The class e(G, E) is trivial if and only if there is a
global object of G(G, E), i.e. a global lifting of E to a G-torsor. Also
it is easy to see that e(G, E) depends biadditively on the pair of classes
[G] ∈ H2(K, Gm), [E] ∈ H1(S, K).

We apply this in the particular case when S = A is an abelian variety,
p : E → A is an isogeny of abelian varieties, so that E can be considered as
a K-torsor where K = ker(p). Then for any central extension π : G → K
by Gm the previous construction gives a class e(G, E) ∈ H2(A, Gm) which
is an obstruction for existence of a line bundle M over E such that K ⊂
K(M) and G is the restriction of Mumford’s extension G(M) → K(M)
to K (see [4]). Let ρ : G → GLn be a weight-1 representation of G,
ρ : K → PGLn be the corresponding projective representation of K. Then
the PGLn-torsor Eρ on A obtained as the push-forward of E by ρ gives rise
to an Azumaya algebra with the class e(G, E). Consider G as a Gm-torsor
over K so that Gu = π−1(u) for u ∈ K. Let us denote by OK(G) the
corresponding line bundle over K. Then a weight-1 G-equivariant sheaf
on E can be described by the following data: a coherent sheaf F on E and
an isomorphism over K × E:

p∗1OK(G) ⊗ p∗2F→̃(ip1 + p2)∗F(3.1)
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where i : K → E is the inclusion, satisfying the natural cocycle condi-
tion. The above construction gives an equivalence of this category with
Coh(A, e(G, E)).

We need also a derived category version of this equivalence. The slight
difficulty is that derived categories of coherent sheaves don’t glue well
in any of standard topologies. However, as shown in the Appendix, the
descent formalism for finite flat morphisms extends to derived categories.
This allows to rephrase the definition of Coh(S, e) (e.g. in Cech version)
for a class e which is killed by a finite flat morphism S′ → S into a
description of the corresponding derived category Db(S, e). Similarly, one
can describe the derived category of weight-1 G-equivariant sheaves above
as the category of objects F ∈ Db(E) with isomorphisms (3.1) satisfying
the cocycle condition and to show that it is equivalent to Db(A, e(G, E)).

Let X be an abelian variety, L = P⊗σ∗P−1 be a symplectic biextension
of X2, (Y, α) be an isotropic pair.

Proposition 3.1. There is a canonical class e(Y ) ∈ H2(X/Y, Gm) such
that the category F(Y, α) defined in the previous section is equivalent to
Db(X/Y, e(Y )).

Proof. Choose a homomorphism of abelian varieties s : Z → X and a line
bundle β on Z such that the composition ps : Z → X/Y is an isogeny and
there is an isomorphism of biextensions of s−1(Y ) × Z

(s × s)∗P |s−1(Y )×Z � Λ(β)|s−1(Y )×Z .(3.2)

For example, one can take Z = X/Y and s′ : Z → X such that ps′ =
n idX/Y , then s′−1(Y ) = (X/Y )n and (ns′ × ns′)∗P |(X/Y )n2×X/Y is a
trivial biextension (see [1], 4.2), hence we can take s = ns′ and β = OZ .

Then Λ((s|s−1(Y ))∗α⊗β−1|s−1(Y )) is a trivial biextension, hence the Gm-
torsor β|s−1(Y )⊗(s|s−1(Y ))∗α−1 defines a central extension G of s−1(Y ) by
Gm. It is easy to see that the class e(G, Z) ∈ H2(X/Y, Gm) defined above
doesn’t depend on a choice of α such that the pair (Y, α) is isotropic.
We claim also that it doesn’t depend on a choice of Z and β. Indeed,
if we change β by β′ = β ⊗ γ where Λ(γ)|s−1(Y )×Z is trivial, then the
new central extension is the sum of G and the restriction of Mumford’s
extension G(γ) → K(γ) to s−1(Y ). But γ has a natural structure of G(γ)-
equivariant line bundle, hence e(G(γ), Z) = 0. Also, it is easy to see that
e(G, Z) doesn’t change if we replace s : Z → X by the composition of s
with an isogeny Z ′ → Z. It remains to check that e(G, Z) is invariant
under the change s′ = s + f where f : Z → Y is any homomorphism. In
this case s′−1(Y ) = s−1(Y ) and

(s′ × s′)∗P |s−1(Y )×Z � Λ(β′)|s−1(Y )×Z
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where β′ = β ⊗ f∗α ⊗ (f, s)∗P . On the other hand

(s′|s−1(Y ))∗α � (s|s−1(Y ))∗α ⊗ (f∗α ⊗ (f, s)∗P )|s−1(Y )

so that the corresponding central extension of s−1(Y ) is the same.
Given an object (A, a) of F(Y, α) where A ∈ Db(X), a is an isomor-

phism (2.1), we can consider s∗A ∈ Db(Z). Then a induces an isomorphism

as(u),s(z) : s∗Au+z→̃(s × s)∗P−1
u,zα−1

s(u)s
∗Az

where u ∈ s−1(Y ), z ∈ Z, satisfying the usual cocycle condition. Let
F (A) = s∗A⊗ β, then as(u),s(z) together with (3.2) gives an isomorphism

F (a) : F (A)u+z→̃βu ⊗ α−1
s(u) ⊗ F (A)z(3.3)

where u ∈ s−1(Y ), z ∈ Z. In other words, (F (A), F (a)) can be consid-
ered as a weight-1 G-equivariant object of Db(Z). This gives the required
equivalence as one can check applying Theorem A of Appendix to the mor-
phism Y × Z → X and the trivial descent for the projection Y × Z → Z.

Remark. If (Y, α) and (Z, β) are isotropic pairs, then Gm-torsor β|Y ∩Z ⊗
α|−1

Y ∩Z defines a central extension G of Y ∩Z by Gm, which in case when Y
and Z are lagrangian and Y ∩Z is finite gives the class eY ∈ H2(X/Y, Gm).
The corresponding commutator form on Y ∩ Z measures the difference
between the symmetric structures on P |(Y ∩Z)2 restricted from Y 2 and Z2.
In other words, this is the standard skew-symmetric form associated with
the biextension L|Y ×Z measuring the difference between two trivializations
of L|(Y ∩Z)2 restricted from Y × (Y ∩ Z) and (Y ∩ Z) × Z. When Y and
Z are lagrangian and Y ∩ Z is finite, this form is non-degenerate since it
corresponds to the canonical duality between Y ∩ Z = ker(Y → X/Z) =
ker(Y → Ẑ) and ker(Z → Ŷ ) = ker(Z → X/Y ) = Y ∩ Z.

By definition the class e(Y ) vanishes if the projection X → X/Y splits.
It turns out that if Y is lagrangian then the converse is also true.

Proposition 3.2. Let Y ⊂ X be a lagrangian subvariety. If eY = 0 then
the projection X → X/Y splits.

Proof. According to Theorem 1.2 we can assume X = Â × A/(φ, id)(An),
Y = A/ ker(φ) ⊂ X for an abelian variety A and a skew-symmetric homo-
morphism φ : An → Ân. Now we can take Z = Â ⊂ X in the definition
of eY . The kernel of the projection Z → X/Y is φ(An) ⊂ Â and the
commutator form of its central extension considered above is (up to sign)

e(φ(x), φ(y)) = en(φ(x), y)
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where x, y ∈ An. The triviality of eY implies that there exists a symmetric
homomorphism g : Â → A such that φ(An) ⊂ ker(g) and e = eg|φ(An)2

where eg is the standard symplectic form on ker(g). In other words, the
following equality holds:

en(φ(x), y) = en(φ(x), g(n−1φ(y)))

for all x, y ∈ An, which implies that y − g(n−1φ(y)) ∈ ker(φ) for y ∈ An.
Note that x �→ g(n−1x) mod(ker(φ)) is a well-defined homomorphism Â →
A/ ker(φ) since g(An) ⊂ ker(φ) (which is obtained from φ(An) ⊂ ker(g)
by duality). Thus, the homomorphism

Â × A → A/ ker(φ) : (x, y) �→ y − g(n−1x) mod(ker(φ))

descends to a homomorphism X = Â × A/(φ, id)(An) → A/ ker(φ) = Y
splitting the embedding Y → X.

4. Intertwining functors

Let X be an abelian variety with a symplectic biextension L of X2. In
this section we construct an equivalence of H(X)-representations
F(Y, α) � F(Z, β) for isotropic pairs (Y, α) and (Z, β) such that Y and Z
are lagrangian.

The idea is to mimic the classical construction. Namely, consider the
functor of “integration over Z”

R : F(Y, α) → F(Z, β) : A �→ p2∗(P |Z×X ⊗ p∗1β ⊗ (ip1 + p2)∗A).

The following symbolic notation stresses the analogy with the classical
case:

R(A)x =
∫

Z

Pz,xβzAz+xdz.

It easy to check that R(A) has a natural structure of an object of F(Z, β):

R(A)z′+x =
∫

Z

Pz,z′+xβzAz+z′+xdz �
∫

Z

Pz,xβz+z′β−1
z′ Az+z′+xdz �∫

Z

Pz−z′,xβzβ
−1
z′ Az+xdz � P−1

z′,xβ−1
z′ R(A)x

— here we used the isomorphism P |Z2 � Λ(β) and the change of variable
z �→ z − z′. It is also clear that R commutes with the action of H(X). In
the classical theory in order to get an invertible intertwining operator one
should replace the integration over Z by the integration over Z/Y ∩ Z in
the above formula. This doesn’t work literally in our context— it turns
out that in the correct definition one eliminates the “excess” integration
over the connected component of Y ∩ Z, and over a “largangian half” of
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the group of connected components of Y ∩ Z. Instead of working out the
case when dim(Y ∩Z) > 0 we use the following simple lemma which allows
to avoid it.

Lemma 4.1. For any pair Y and Z of lagrangian subvarieties of X there
exists a lagrangian subvariety T ⊂ X such that the intersections Y ∩T and
Z ∩ T are finite.

Proof. We can work in the category of abelian varieties up to isogeny. We
have an isogeny X ∼ Y × Ŷ and Z/Y ∩Z ⊂ Y × Ŷ is isogenic to the graph
of a symmetric morphism

g : Z/Y ∩ Z → Y/Y ∩ Z ∼ ̂Z/Y ∩ Z.

Let K ∼ ker(g). We have a decomposition Z/Y ∩Z ∼ K ×K ′ such that g
is given by a symmetric isogeny K ′ → K̂ ′. Now let Ŷ ∼ Z/Y ∩Z ×K ′′ ∼
K × K ′ × K ′′. Let us define a symmetric morphism f : Ŷ → Y to be a
symmetric isogeny on K and zero on two other factors. Then we can take
the graph of f to be T .

Thus, we may assume that Y ∩ Z is finite. We have a natural central
extension G of Y ∩Z by Gm given by the Gm-torsor β|Y ∩Z ⊗α−1|Y ∩Z such
that F(Y, α) is equivalent to the category of weight-1 G-equivariant objects
of Db(Z), while F(Z, β)—to that of weight-1 G−1-equivariant objects of
Db(Y ), where G−1 is the inverse central extension of Y ∩ Z (given by the
inverse Gm-torsor). Let e be the commutator form of G. Then as we
observed above e is non-degenerate (i.e. G is a non-degenerate theta-group
in the terminology of [3]). Hence, we can choose a lagrangian subgroup
H ⊂ Y ∩ Z and a trivialization of the central extension G over H, which
is the same as a lifting of H to a subgroup in G (cf. [3], Lemma 2.5.4).
Then we can define the reduced functor

R : F(Y, α) → F(Z, β) : R(A)x =
∫

Z/H

Pz,xβzAz+xdz.

To give a meaning to this notice that an object Pz,xβzAz+x ∈ Db(Z ×X)
descends canonically to an object of Db(Z/H×X) (use the additional data
on A ∈ F(Y, α) and the isomorphism α|H � β|H). As above it is easy to
check that R(A) has a natural structure of an object of F(Z, β) and R
commutes with H(X)-action.

Theorem 4.2. The functor R is an equivalence of categories.

Proof. First let us rewrite R as the functor from the category of weight-1 G-
equivariant objects of Db(Z) to that of weight-1 G−1-equivariant objects of
Db(Y ) using the equivalences defined above. Recall that the equivalence of
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the first category with F(Y, α) is given by the functor FY which associates
to A ∈ F(Y, α) the G-equivariant object A|Y ⊗ β ∈ Db(Z), while the
second equivalence is induced by FZ : F(Z, β) → Db(Y ) : A′ �→ A′|Y ⊗ α.
Now for A ∈ F(Y, α) we have

FZ(R(A))y = αy

∫
Z/H

Pz,yβzAz+ydz � αy

∫
Z/H

Pz,yβzP
−1
y,z α−1

y Azdz

�
∫

Z/H

Lz,yFY (A)zdz

The latter integral should be understood in the same sense as above: the
G-equivariance data on FY (A) allow to descend Lz,yFY (A)z to an object of
Db(Z/H×Y ). Notice that G-equivariance data on an object G ∈ Db(Z) in-
cludes the descent data for the projection Z → Z/H, so that G-equivariant
objects of Db(Z) can be considered as objects of Db(Z/H) with some ad-
ditional data. More precisely, the isomorphism

Gz+u � GuLz,uGz

where u ∈ Y ∩Z, induced by the G-equivariance data and the trivialization
of Lz,u commutes with the descent data for Z → Z/H, so it induces an
isomorphism of descended objects on Z/H × (Y ∩ Z)

Gz+u � GuLz,uGz

— these are the additional data for G ∈ Db(Z). Similar, we can consider
G−1-equivariant objects of Db(Y ) as objects of Db(Y/H) with additional
data. It is easy to see that biextension Lz,y of Z×Y descends to a biexten-
sion L of Z/H×Y/H which induces an isomorphism Z/H→̃Ŷ/H. Thus, R
is compatible with the Fourier-Mukai transform Db(Z/H) → Db(Y/H) via
the “forgetting” functors F(Y, α) → Db(Z/H) and F(Z, β) → Db(Y/H)
described above. Let Q : F(Z, β) → F(Y, α) be the functor defined in the
same way as R but with Y and Z interchanged. Then it is compatible
with the “inverse” Fourier transform Db(Y/H) → Db(Z/H) given by the
kernel Ly,z � L

−1

z,y. Its composition with the direct Fourier transform is
isomorphic to a shift in the derived category and it is easy to see that this
isomorphism extends to our additional data, so that Q is quasi-inverse to
R up to shift.

Consider the following example. Let X = Â × A, L = LA be the
standard split symplectic biextension, Y = Â ⊂ Â × A be its standard
lagrangian subvariety. Let f : A → Â be a symmetric morphism, Z =
A/ ker(fn) � (f, n idA)(A) ⊂ Â × A where fn = f |An . Then it is easy to
see that Z is lagrangian. Assume in addition that mn ker(f) = 0 for some
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m relatively prime to n. Then we claim that the projection X → X/Z
splits. Indeed, changing m if necessary we may assume that m+kn = 1 for
some integer k. Notice that we have an isomorphism X/Z � Â/f(An) �
A/(n ker(f)). Now we can define the splitting morphism

X/Z � A/(n ker(f))
(k,m)→ A/ ker(f) × A � X.

Hence, eY = eZ = 0 and we get an equivalence of derived categories

Db(A) = Db(X/Y ) � Db(X/Z) � Db(Z) = Db(A/ker(fn))

— here we used the Fourier-Mukai equivalence for Z and X/Z � Ẑ.
The proof of Theorem 4.2 shows that we can eliminate the assumption

that there exists a biextension P of X2 such that L � P ⊗σ∗P−1 once we
can define the categories in question without it. In fact, if the characteristic
of the base field is not equal to 2, we can do it as follows. Let Y ⊂ X
be a lagrangian subvariety. Choose another lagrangian subvariety Z ⊂ X
such that Y ∩ Z is finite. Then we have a Gm-valued symplectic form on
Y ∩Z defined by the canonical duality between Y ∩Z = ker(Y → Ẑ) and
ker(Z → Ŷ ) = Y ∩ Z. Since the characteristic is different from 2 there
exists a central extension G of Y ∩ Z by Gm with such commutator form
(unique up to an isomorphism), so we have the corresponding class eY ∈
H2(X/Y, Gm) which doesn’t depend on the choices made (and coincides
with the one defined previously using P ).

Theorem 4.3. Assume that the characteristic of the base field is differ-
ent from 2. Then for every pair of lagrangian subvarieties Y and Z the
categories Db(X/Y, eY ) and Db(X/Z, eZ) are equivalent.

Proof. As before we may assume that Y ∩Z is finite. Now choose a central
extension G of Y ∩ Z inducing the canonical symplectic form on it and
define the functor from the category of weight-1 G-equivariant objects of
Db(Z) to that of weight-1 G−1-equivariant objects of Db(Y ) by the formula

R(F)y =
∫

Z/H

Lz,yFzdz

where H ⊂ Y ∩ Z is lagrangian. As above it is easy to check that this is
an equivalence.

Remarks. 1. The constructed equivalences are not canonical and they
don’t agree for triples of lagrangian subvarieties. The corresponding ana-
logue of Maslov index and a partial generalization of this theory to abelian
schemes will be discussed in a forthcoming paper.
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2. The following observation is due to M. Kontsevich. If (X, L = P ⊗
σ∗P−1) is a split symplectic biextension then the monoidal categories
Fun(Db(X/Y ),Db(X/Y )) (here Fun denotes the category of exact func-
tors) for all split lagrangian subvarieties Y ⊂ X (together with line bundles
M ∈ Pic(Y ) such that P |Y 2 � Λ(M)) are canonically equivalent. Hence,
there should be a natural definition of this category not depending on a
choice of Y . These categories of functors are rather unmanagable but we
can ask the same question about the categories Db(X/Y ×X/Y ) with the
monoidal structure K∗L = p13∗(p∗12L⊗p∗23K) where pij are the projections
from (X/Y )3. If we take X = Â×A, P = p∗14P, and Y = Â ⊂ Â×A, then
X/Y � A and the category Db(A×A) with the above monoidal structure
is equivalent to the category Db(X) with the monoidal structure given by

(K ∗ L)x =
∫

x1+x2=x

Lx1 ⊗ Kx2 ⊗ Px1,x2 .(4.1)

The required monoidal equivalence Db(X) = Db(Â × A) → Db(A × A) is
given by the functor K �→ K̃ where

K̃x,y =
∫

ξ∈Â

Pξ,y ⊗ Kξ,x−y.

Thus, the category Db(X) with the monoidal structure given by (4.1)
provides an answer to the above question.

Appendix. Descent for derived categories

An unpleasant property of the derived category of coherent sheaves of
OS-modules on a scheme S is that one can not glue this category from its
counterparts over open parts of S. However, the following descent result
holds.

Theorem A. Let p : S′ → S be a finite flat morphism. Then the cate-
gory Db(S) is equivalent to the the following category Db(S′, p): its objects
are pairs (F , f) where F ∈ Db(S′), f : p∗1F→̃p∗2F is an isomorphism in
Db(S′×S S′) (where pi : S′×S S′ → S′, i = 1, 2 are the projections) satisfy-
ing the following cocycle condition p∗23f ◦ p∗12f = p∗13f over S′×S S′×S S′.

Proof. Let p∗ : Db(S) → Db(S′, p) be the natural functor. Let us check first
that p∗ is fully faithful. Assume that we have a morphism f : p∗F → p∗G
in Db(S′) such that the following diagram is commutative:
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p∗1p
∗F ✲ p∗2p

∗F

❄
p∗1(f)

❄
p∗2(f)

p∗1p
∗G ✲ p∗2p

∗G

(4.2)

Applying the functor p1∗ to this diagram and composing it with the
adjunction morphism p∗F → p1∗p∗1p

∗F we get the following diagram

p∗F

❄
f ❅

❅
❅❘

p∗G ✲ p∗p∗p∗G

(4.3)

where the diagonal morphism is p∗f ′, f ′ : F → p∗p∗G is obtained from f
by adjunction. Let us denote by f ′′ the composition

F f ′
→ p∗p∗G � p∗OS′ ⊗ G → (p∗OS′/OS) ⊗ G.

Then it follows from the diagram above that p∗(f ′′) = 0. Since p∗p∗(?) �
p∗OS′⊗? it follows that f ′′ = 0, hence f ′ factors through a morphism
f : F → G and f = p∗(f). Thus, the functor p∗ : Db(S) → Db(S′, p) is full
and faithful. It remains to check that any object of Db(S′, p) belongs to
its essential image. This is easy to prove by devissage with respect to the
standard t-structure on Db(S′) since the corresponding truncation functors
are compatible with descent data (the base of induction is provided by the
classical descent for coherent sheaves).
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