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LOGARITHMIC HARNACK INEQUALITIES

F. R. K. Chung and S.-T. Yau

1. Introduction

We consider the relationship between eigenvalues and the log-Sobolev
constant for the Laplace operator on smooth compact Riemannian mani-
folds and for finite graphs. We will establish Logarithmic Harnack inequal-
ities which can be used to derive lower bounds for log-Sobolev constants.

Logarithmic Sobolev inequalities first arose in the analysis of elliptic
differential operators in infinite dimensions. Many developments and ap-
plications can be found in several survey papers [1, 9, 12]. Recently, Di-
aconis and Saloff-Coste [8] considered logarithmic Sobolev inequalities for
Markov chains. The lower bounds for log-Sobolev constants can be used to
improve convergence bounds for random walks on graphs [4, 8]. The prob-
lem of bounding log-Sobolev constants tends to be harder than estimating
eigenvalues. Logarithmic Harnack inequalities provide a direct approach
for estimating the log-Sobolev constant. We will derive lower bounds for
log-Sobolev constants for Riemannian manifolds and for large classes of
graphs.

The continuous and discrete cases have a very similar flavor but they
also have their natural differences. In this section, we will describe a unified
approach and leave the detailed descriptions and definitions in Sections 2
and 3. We will give self-contained proofs for both manifolds and graphs.

For a smooth, compact, connected Riemannian manifold M , we let ∇
denote the gradient with the associated Laplace-Beltrami operator ∆. The
logarithmic Sobolev inequality is of the following form:∫

M

f2(x) log f2(x) ≤ α

∫
M

|∇f(x)|2(1)

for a function f : M → R satisfying
∫

|f |2 = vol M. The log-Sobolev

constant is the smallest α satisfying (1) for any function f defined on M .
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We will show that the function f on M achieving the log-Sobolev con-
stant α satisfies the following logarithmic Harnack inequality:

|∇f |2 + αf2 log f2 ≤ α sup(f2 log f2)(2)

provided that M has non-negative Ricci curvature. The inequality in (2)
is similar to the Harnack inequality except for a logarithmic factor. It can
be used to derive the following lower bound for log-Sobolev constants for
d-dimensional compact Riemannian manifold M (A similar inequality was
proved by Deuschel and Stroock [7] by a different method):

α ≥ min{λ1

8e
,

1
d D2(M)

}(3)

where D(M) denotes the diameter of M and λ1 is the first eigenvalue of
the Laplacian.

For a graph G = (V, E) with Laplacian L, the log-Sobolev constant α
can be expressed as follows:

α = inf
f �=0

∑
{x,y}∈E

(f(x) − f(y))2

∑
x∈V

f2(x)dx log f2(x)
(4)

where f ranges over all nontrivial functions f : V → R satisfying∑
x

f2(x)dx = vol G and dx denotes the degree of x. The function f

achieving the log-Sobolev constant α satisfies:∑
y∼x

(f(x) − f(y)) = αdxf(x) log f2(x)(5)

where y ranges over all y adjacent to x, denoted by y ∼ x.
For the discrete case, we can only establish the logarithmic Harnack

inequality for Ricci flat graphs (which are defined later in Section 3).∑
y∼x

(f(x) − f(y))2 ≤ 6αdx sup
z

f2(z) log f2(z)(1 +
α

4
log f2(z)).(6)

For a graph G with isoperimetric dimension δ and isoperimetric constant
cδ (see the definition in Section 5) and with the assumption that G is a
k-regular Ricci flat graph, we can use (6) to show that

α ≥ min{ c

kD2δ log δ
,

c′

k(vol G)2/δ
}(7)

where D denotes the diameter of G, c denotes an absolute constant, and
c′ depends on the isoperimetric constant.
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The above results on logarithmic Harnack inequalities and can be ex-
tended to manifolds with convex boundary and for strongly convex graphs
with Neumann and Dirichlet boundary conditions. This will be described
in Section 6.

Since a random walk on a graph G on n vertices approaches station-
arity after order log log n/α steps, the above lower bounds for the log-
Sobolev constant α immediately implies a convergence bound of order
(log log n)kD2 if the isoperimetric dimension is bounded.

2. On a compact Riemannian manifold

Let M be a smooth connected compact Riemannian manifold and ∆ be
a Laplace operator associated with the Riemannian metric, i.e., in coordi-
nates x1, x2, ...xn

∆ =
1√
g

n∑
i,j=1

∂

∂xi

(√
ggij ∂u

∂xj

)

where gij are contra-variant components of the metric tensor, g = det ‖gij‖
and u is a smooth function on M. The Laplace operator with the boundary
condition is self-adjoint and has a discrete spectrum in L2(M, µ), where µ
is the Riemannian measure;

If the manifold M has a boundary ∂M , we consider either Dirichlet or
Neumann boundary conditions. The boundary condition implies u∂u

∂ν ≤ 0
where ν is the outer normal field on ∂M.

We also consider a distance function dist(x, y) on M ×M which may be
equal to the geodesic distance, but in general does not have to be. Other
than being a distance function, the function dist(x, y) must be Lipschitz
and, moreover, for all x, y ∈ M, |∇dist(x, y)| ≤ 1. Suppose f satisfies∫

M

|f |2 = vol M and f achieves the log-Sobolev constant. That is,

α =

∫
M

|∇f |2∫
M

f2 log f2
= inf

g �=0

∫
M

|∇g|2∫
M

g2 log g2
.

We may assume that the function f achieving α is non-negative (since we
can use |f | and the ratio above is not increased.)
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By Lagrange’s method, we have

−2∆f∫
M

f2 log f2
−

2(f log f2 + 2f)
∫

M

|∆f |2

(
∫

M

f2 log f2)2
+ c1f = 0(8)

for some constant c1. After substituting for α and simplifying, we get

− ∆f − α(f log f2 + 2f) + c2f = 0.(9)

After multiplying (9) by f and integrating over M , we have∫
M

|∇f |2 − α

∫
M

f2(log f2 + 2) + c2

∫
M

f2 = 0.

This implies c2 = 2α. Therefore we obtain from (9) that ∆f = −αf log f2

which was also proved in [10].

Theorem 1. If f achieves log-Sobolev constant α and
∫

M

f2 = vol M ,

then f satisfies

∆f = −αf log f2.(10)

One of the consequences of (10) is f(x) �= 0 for all x. To see this, we note

that f ∈ Lp for any p > 1 since
∫

|∇f |2 < ∞ and
∫

f2 = volM . Hence,

∆f ∈ Lp for any p > 1 and
∑

f2
ij ∈ Lp for any p > 0. By a standard

bootstrap argument, one can then prove that f is smooth everywhere. If
f(x) = 0 and vanishes only up to finite order at x, (10) shows that f
cannot be smooth. On the other hand, if f vanishes up to infinite order
at x, the unique continuity argument shows that f ≡ 0. Hence, we may
assume f(x) > 0 for all x.

Theorem 2. Suppose M is a d-dimensional connected compact Rieman-
nian manifold with non-negative Ricci curvature.. If f > 0 solves ( 10),
then we have

sup f ≤ ed/2

and

|∇f |2 + 2αf2 log f ≤ αdf2.
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Proof. Let ϕ = log f . Then we have

∆ϕ =
∆f

f
− |∇ log f |2 = −α log f2 − |∇ϕ|2 = −2αϕ − |∇ϕ|2

by using Theorem 1. We consider φ = |∇ϕ|2 + 2αϕ. Let x0 denote a
maximum point of φ. Then the derivatives φi satisfy φi(x0) = 0 and

φi = 2
∑

j

ϕjϕji + 2αϕi.(11)

Also,

∆φ = 2
∑

ϕ2
ij + 2ϕj(∆ϕ)j + 2

∑
Rijϕiϕj + 2α∆ϕ.

Using Theorem 1 and substituting for ∆ϕ = −φ, we have

∆φ =2
∑

ϕ2
ij − 2

∑
ϕiφi + 2

∑
Rijϕiϕj − 2αφ

≥2
d
(∆ϕ)2 − 2

∑
ϕiφi + 2

∑
Rijϕiϕj − 2αφ

≥2
d
φ2 − 2

∑
ϕiφi + 2

∑
Rijϕiϕj − 2αφ.

Since 0 ≥ ∆φ(x0) at a maximum point x0 and Rij ≥ 0, we have φ(x0) ≤
αd. This implies φ(x) ≤ φ(x0) ≤ αd. Hence, we have

|∇ϕ|2 + 2αϕ ≤ αd

which is equivalent to

|∇f |2 + 2αf2 log f ≤ α d f2.

Suppose y0 is a maximum point of f . Then we have ∇f(y0) = 0 and

U = sup
y

f(y) ≤ ed/2.

Theorems 1 and 2 will be repeatedly used for establishing the following
logarithmic Harnack inequality:

Theorem 3. Suppose M is a compact Riemannian manifold with non-
negative Ricci curvature and the function f solves ( 10). Then we have

|∇f |2 + αf2 log f2 ≤ α sup(f2 log f2).

In particular, we have

|∇f |2 ≤ αU2 log U2 + α/e

where U = sup f ≥ 1 and e is the base of the natural logarithm.
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Proof. We consider
F = |∇f |2 + αf2 log f2

Let x0 denote a maximum point of F . Then the derivatives Fi satisfies
Fi(x0) = 0.

Fi = 2
∑

j

fjfji + 2αf fi log f2 + 2αf fi.(12)

∆F =2
∑

f2
ij + 2

∑
j

fj(∆f)j + 2
∑

Rijfifj + 2α|∇f |2 log f2

+ 4α|∇f |2 + 2αf ∆f log f2 + 2α|∆f |2 + 2αf ∆f.

Using Theorem 1 to substitute for ∆f , we have

∆F =2
∑

f2
ij − 2α|∇f |2 log f2 − 4α|∇f |2 + 2

∑
Rijfifj

+ 2α|∇f |2 log f2 + 4α|∇f |2 − 2α2f2 log2 f2

+ 2α|∇f |2 − 2α2f2 log f2.

After cancellations, we have

∆F =2
∑
ij

f2
ij + 2

∑
Rijfifj − 2α2f2 log2 f2

+ 2α|∇f |2 − 2α2f2 log f2.

(13)

We may choose a frame such that fi = 0 for i > 1. Since F1(x0) = 0, we
conclude from (12) that if f1 �= 0,

2f11 + 2αf log f2 + 2αf = 0.

This implies
f2
11 = α2f2(log2 f2 + 2 log f2 + 1).

Substituting into (13), we obtain

∆F ≥ 2
∑
i,j �=1

f2
ij + 2

∑
Rijfifj + 2α2f2 log f2 + 2α|∆f |2

When Rij ≥ 0, this inequality cannot hold at x0. Hence ∇f = 0 at x0 and
we conclude that

F (x) ≤ F (x0) = α sup(f2 log f2).

In particular, we have

|∇f |2 ≤ αU2 log U2 + α sup
0<z≤1

z2 log z2 ≤ αU2 log U2 + α/e.

This completes the proof for Theorem 3.
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Theorem 4. The log-Sobolev constant α of a smooth connected compact
manifold with non-negative Ricci curvature in d-dimensions satisfies

α ≥ min{λ1

8e
,

1
d D2(M)

}

where D(M) denotes the diameter of M and λ1 is the first eigenvalue of
the Laplacian.

Proof. Let f denote the function achieving α and
∫

M

f2 = vol M . We

consider two possibilities:
Case 1: sup |f − 1| ≤ β. We consider f = 1 + g. By Theorem 1, we have
∆f = −αf log f2. We consider

−g∆g = αg(1 + g) log(1 + g)2.

This implies ∫
M

|∇g|2 = α

∫
M

g(1 + g) log(1 + g)2

≤ 2(1 + β)α
∫

M

|g| log(1 + |g|)

≤ 2(1 + β)α
∫

M

g2.

(14)

On the other hand, from the definition of eigenvalues we have

∫
M

|∇g|2 ≥ λ(
∫

M

g2 −
(
∫

M

g)2

vol M
)

Since
∫

M

f2 =
∫

M

(1 + g)2 = vol M , and sup |g| ≤ β, we have

−
∫

M

g =
1
2

∫
M

g2 ≤ β2

2
vol M.

This implies

∫
M

|∇g|2 ≥ λ(
∫

M

g2 −
(
∫

M

g)2

vol M
) ≥ λ(1 − β2

4
)
∫

M

g2.

Together with (14), we have

α ≥ 1
2(1 + β)

(1 − β2

4
)λ1.
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Using known eigenvalue lower bounds on d-dimensional smooth compact
Riemannian manifold, we have

α ≥ const.

D2(M)
.

Case 2: sup |f − 1| ≥ β. From Theorem 2, we have

|∇ log f |2 ≤ α(d − 2 log f).

There is a path γ so that f(γ(0)) = 1 and either f(γ(1)) = 1 − β or
f(γ(1)) = 1 + β. In both cases, we can assume that the length of γ is no
more than the diameter D(M) of M . In the former case, we have

− log(1 − β) ≤
∫

γ

|∇ log f |

−
√

d +
√

d − 2 log(1 − β) ≤
∫

γ

|∇ log f |√
d − 2 log f

≤ √
αD(M).

In the latter case, we have
√

d −
√

d − 2 log(1 + β) ≤ √
αD(M).

Hence,

√
αD(M) ≥ min

(
−2 log(1 − β)√

d +
√

d − 2 log(1 − β)
,

2 log(1 + β)√
d +

√
d − 2 log(1 + β)

)
.

If we choose β = 1, then in Case 1, we have α ≥ 3λ1/16 and in case 2,

√
αD(M) ≥ 2 log 2√

d +
√

d − 2 log 2
≥ log 2√

d
.

Note that we can choose any 0 < β < 2. In particular, β = e − 1 will give

α ≥ min
(

λ1

8e
,

1
dD(M)2

)
.

We remark that we can consider log-Sobolev constants and logarithmic
Harnack inequalities for manifolds with convex boundary. In fact, the
proofs in Theorems 1-4 can be carried out in the same way for Laplace
operators with Dirichlet and Neumann boundary conditions as long as the
maximum points are interior points of the manifolds. This is indeed the
case when we have convex boundary (or even weaker conditions). We also
remark that the factor of d in Theorem 4 is necessary as shown by examples
such as d-dimensional balls (see [12]).
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3. Log-Sobolev constants for graphs

Let G denote a graph with vertex set V and edge set E. For a function
f : V (G) → R, we define

Lf(x) =
∑
y∼x

(f(x) − f(y)).(15)

It is easy to see that

〈f, Lf〉 =
∑
x∼y

(f(x) − f(y))2(16)

where
∑
x∼y

denotes the sum over all (unordered) adjacent pairs. Here

〈f, g〉 =
∑

x

f(x)g(x) denotes the standard inner product in R
n.

For a graph G, the log-Sobolev constant α of G is defined as:

α = inf
f �=0

∑
x∼y

(f(x) − f(y))2

∑
x

f2(x)dx log f2(x)
(17)

where the infimum ranges over all nonzero functions g satisfying

∑
x

g2(x)dx =
∑

x

dx = vol G

and dx denotes the degree of x in G.

Theorem 5. For a graph G, suppose f : V → R achieves the log-Sobolev
constant and

∑
x

f2(x)dx = vol G. Then f satisfies, for any vertex x,

Lf(x) = αf(x)dx log f2(x).

Proof. The proof is basically the same as in Theorem 1. We also use



802 F. R. K. CHUNG AND S.-T. YAU

Lagrange’s method, by taking the derivative with respect to f(x):

2Lf(x)∑
x

f2(x) log f2(x)

−
2(f(x)dx log f2(x) + 2f(x)dx)

∑
x∼y

(f(x) − f(y))2

(
∑

x

f2(x)dx log f2(x))2

+ c1f(x) = 0

(18)

for some constant c1. After substituting for α, the above expression can
be simplified:

Lf(x) − α(f(x) log f2(x) + 2f(x)) + c2f(x) = 0.(19)

After multiplying (19) by f(x) and summing over all x in V , we have∑
x∼y

(f(x) − f(y))2 − α
∑

x

f2(x)(log f2(x) + 2) + c2

∑
x

f2(x) = 0.

This implies c2 = 2α. Therefore we obtain from (19) that

Lf(x) = αf(x)dx log f2(x).

4. Logarithmic Harnack inequalities for graphs

Let G = (V, E) denote a graph with vertex set V = V (G) and edge
set E = E(G). For a vertex v, the neighborhood N(v) of v consists of v
and vertices adjacent to v. We say G has a local k-frame at v if there are
mappings η1, · · · , ηk: N(v) → V satisfying

(1) G is k-regular;
(2) u is adjacent to ηiu for every u ∈ V and 1 ≤ i ≤ k;
(3) ηiu �= ηju if i �= j.

A graph G is said to be Ricci flat if G has a local k-frame and⋃
j

ηiηjv =
⋃
j

ηjηiv

for any i and v.
For example, a homogeneous graph associated with an abelian group is

Ricci flat [6].
We will prove the following logarithmic Harnack inequality for Ricci flat

graphs.
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Theorem 6. In a Ricci flat G, suppose a function f : V (G) → R satisfies

Lf(x) =
∑
y∼x

[f(x) − f(y)] = αkf(x) log f2(x).

Then the following inequality holds for x ∈ V (G), and for U =
supy |f(y)| ≥ 1:

∑
y∼x

[f(x) − f(y)]2 ≤ 6kα max{U2 log U2(1 +
α

4
log2 U2), 1}.

Proof. We define ρ(x) =
∑
y∼x

[f(x) − f(y)]2 and we consider

Lρ(x) =
∑

i

∑
j

{[f(x) − f(ηjx)]2 − [f(ηix) − f(ηjηix)]2}

= −
∑

i

∑
j

[f(x) − f(ηjx) − f(ηix) + f(ηjηix)]2

+ 2
∑

i

∑
j

[f(x) − f(ηjx) − f(ηix) + f(ηjηix)][f(x) − f(ηjx)]

Let X denote the second term above. Then we have

X =2
∑

i

∑
j

[f(x) − f(ηjx) − f(ηix) + f(ηjηix)] [f(x) − f(ηjx)]

=2
∑

j

{
∑

i

[f(x) − f(ηjx) − f(ηix) + f(ηiηjx)]}[f(x) − f(ηjx)]

+ 2
∑

j

[
∑

i

(f(ηjηix) − f(ηiηjx))][f(x) − f(ηjx)]

=2αk
∑

j

[f(x) log f2(x) − f(ηjx) log f2(ηjx)](f(x) − f(ηjx))

+ 2
∑

j

[
∑

i

(f(ηjηix) − f(ηiηjx))][f(x) − f(ηjx)].

Since G is Ricci flat,
∑

i

(f(ηjηix) − f(ηiηjx)) = 0 and therefore

Lρ(x) ≤ X = 2αk
∑

j

[f(x) log f2(x) − f(ηjx) log f2(ηjx)](f(x) − f(ηjx)).
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Now we consider

Lf2(x) log f2(x) =
∑

j

[f2(x) log f2(x) − f2(ηjx) log f2(ηjx)]

=2
∑

j

f(x)[f(x) − f(ηjx)] log f2(x) −
∑

j

[f(x) log f2(x)

− f(ηjx) log f2(ηjx)](f(x) − f(ηjx))

+
∑

j

f(x)f(ηjx)[log f2(x) − log f2(ηjx)]

=2kαf2(x) log f2(x) −
∑

j

[f(x) log f2(x)

− f(ηjx) log f2(ηjx)](f(x) − f(ηjx))

+
∑

j

f(x)f(ηjx)[log f2(x) − log f2(ηjx)].

We will need to upper bound∑
j

f(x)f(ηjx)[log f2(x) − log f2(ηjx)].

This can be done by maximizing
k∑

i=1

abi(log a2− log b2
i ) subject to

k∑
i=1

bi =

ka − αka log a2. We can then use Lagrange’s method. The maximum is
achieved when all b’s are equal. Thus∑

j

f(x)f(ηjx)[log f2(x) − log f2(ηjx)]

≤ kf(x)(f(x) − αf(x) log f2(x)){log f(x) − log(f(x) − αf(x) log f2(x))2}
≤ 2kαf2(x) log f2(x).

Also, we consider a lower bound for∑
j

[f(x) log f2(x) − f(ηjx) log f2(ηjx)](f(x) − f(ηjx)).

We can use the Lagrange method again for minimizing
k∑

i=1

{(a log a2 −

bi log b2
i )(a−bi)−2(a−bi)2} subject to

k∑
i=1

bi = ka−αka log a2. Therefore
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we have

∑
ηj

[f(x) log f2(x) − f(ηjx) log f2(ηjx)](f(x) − f(ηjx))

− 2
∑

j

(f(x) − f(ηjx))2 ≥ kα3f2(x)| log3 f2(x)|.

Combining the above arguments, we have, for any positive σ, the fol-
lowing:

L(
∑

j

[f(x) − f(ηjx)]2 + σαkf2(x))

≤4σα2f2(x) log f2(x)

− (σ − 1)
∑

j

[f(x) log f2(x) − f(ηjx) log f2(ηjx)](f(x) − f(ηjx))

≤4σα2f2(x) log f2(x) + (σ − 1)α3f2(x)| log3 f2(x)|
− 2(σ − 1)

∑
j

(f(x) − f(ηjx))2.

Now we consider a vertex v which achieves the maximum value over all
x ∈ S, for ∑

j

[f(x) − f(ηjx)]2 + σαkf2(x) log f2(x).

We have

0 ≤L(
∑

j

[f(v) − f(ηjv)]2 + σαf2(v))

≤4σα2f2(x) log f2(x) + (σ − 1)α3f2(x)| log3 f2(x)|
− 2(σ − 1)

∑
j

(f(x) − f(ηjx))2

This implies

∑
j

[f(v) − f(ηjv)]2 ≤ 2σαk

σ − 1
f(v) log f2(v)(1 +

α

4
log2 f2(v))
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for σ > 1. Therefore for every x ∈ V , we have∑
j

[f(x) − f(ηjx)]2 + σαkf2(x) log f2(x)

≤kα(
2σ

σ − 1
+ σ)f2(v) log f2(v)(1 +

α

4
log f2(v))

≤kα
σ + σ2

σ − 1
sup

v
f2(v) log f2(v)(1 +

α

4
log f2(v))

for any σ > 1. For U = sup |f(x)| ≥ 1, we have
∑

j

[f(x) − f(ηjx)]2 ≤ kα
σ + σ2

σ − 1
max{U2 log U2(1 +

α

4
log2 U2), 1}.

The proof of Theorem 6 is complete.
By taking σ = 2 in Theorem 6 we have

Corollary 1. In a Ricci flat graph G, suppose a function f : V (G) → R

satisfies
Lf(x) =

∑
j

[f(x) − f(ηjx)] = αkf(x) log f2(x).

Then for all x ∈ V (G)∑
j

[f(x) − f(ηjx)]2 ≤ 6αk max{U2 log U2(1 +
α

4
log U2), 1}

provided supy f(y) ≥ 1.

5. Consequences of logarithmic Harnack inequalities for graphs

Theorem 7. In a connected Ricci flat graph G = (V, E), suppose a func-
tion f : V → R satisfies the logarithmic Harnack inequality and∑

x

f2(x)dx = vol G. Then the log-Sobolev constant α of G satisfies

α ≥ min(
1

32kD2
,

1
24kD2 log U2

)

where U = supz |f(z)|, k denotes the degree and D denotes the diameter of
G.

Proof. We consider the following two cases:
Case 1: sup |f − 1| ≤ 1/2. The proof for this case is almost identical to
that of Case 1 of the proof of Theorem 4. We omit the proof here and we
have

α ≥ λ1

4
.
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The following eigenvalue lower bound for a Ricci flat graph is given in [6]:

λ1 ≥ 1
8kD2

.(20)

Therefore we have
α ≥ 1

32kD2
.

Case 2: sup |f −1| ≥ 1/2. We consider vertices x0, y0 satisfying f(x0) = c
and f(y0) = 1. The existence of y0 is guaranteed by the fact that∑

v

f2(v)dx = vol G.

Let P = (x0 = v0, v1, · · · , vs = y0) denote a shortest path joining x0

and y0. Clearly, s ≤ D. We consider the case that f(x0) = sup f and
U2 log U2 ≥ 1. The other case can be dealt with in a similar way. Using
the logarithmic Harnack inequality, we have

(f(vi) − f(vi+1))2 ≤6αkU2 log U2

s−1∑
i=0

(f(vi) − f(vi+1))2 ≤6αksU2 log U2 ≤ 6αkDU2 log U2.

On the other hand, we have
s−1∑
i=0

(f(vi) − f(vi+1))2 ≥ 1
D
{

s−1∑
i=0

(f(vi) − f(vi+1))}2

≥ 1
D

(f(x0) − f(y0))2

≥ (c − 1)2

D

≥U2

4D
.

Together we have

α ≥ 1
24kD2 log U2

.

For the case of f(x0) ≤ 1 or U2 log U2 ≤ 1, the proof for α ≥ 1
24kD2

is
quite similar and we can and will be omitted. This completes the proof of
Theorem 7.

The eigenvalue lower bound given in (20) is sharp and the factor of k
is necessary for some homogeneous graphs [6, 3] ( for example, the graph
with vertex set Zp × Z2 and edge generators (a, b), a ∈ Zp, b ∈ Z2.) It is
not difficult to show that the log-Sobolev constant is bounded above by



808 F. R. K. CHUNG AND S.-T. YAU

λ1 (see [8]). As a consequence of Theorem 6, for a homogeneous graph the
lower bounds for the log-Sobolev constant and the eigenvalue λ1 can differ
by at most a factor of log2 U .

The factor of log U can be bounded for certain graphs in terms of an
isoperimetric invariant for graphs. We say a graph G = (V, E) has isoperi-
metric dimension δ with isoperimetric constant cδ if for any subset X of
V with vol X ≤ vol G/2, the number of edges leaving X satisfies

|E(X, X̄)| ≥ cδ(vol X)1−1/δ.

For a vertex v in a graph G and an integer r, the r- neighborhood of v,
denoted by Nr(v) is defined by Nr(v) = {u ∈ V : d(u, v) ≤ r} where
d(u, v) denotes the distance between u and v. A graph with isoperimetric
dimension δ has growth-rate (c, δ) in the following sense [3]:

vol Nr(v) ≥ crδ

where r ≤ D and D denotes the diameter of G. It is not hard to show
that a graph with isoperimetric dimension δ has growth-rate (c, δ) where
c depends only on the isoperimetric constant cδ. However, graphs with
growth-rate (c, δ) do not necessarily have isoperimetric dimension δ (see
[3]) and do not in general have good eigenvalue lower bounds. For graphs
with isoperimetric dimension δ, we will show that log U is bounded above
by δ log δ.

Theorem 8. For a Ricci flat graph with isoperimetric dimension δ, let f
denote a function achieving the log-Sobolev constant α with supx f(x) = U .
Then we have either

α ≥ c1

k(vol G)2/δ

or
log U ≤ c2δ log δ

where k denotes the degeree and constants c1, c2 depend only on the isoperi-
metric constant.

Proof. Let P denote a shortest path with vertices x0, · · · , xs where f(x0) =
U and f(xs) ≤ 1. To upper bound U , we consider the ball Br = {y :
d(x0, y) ≤ r}. And we consider

s = � 1

2
√

6αk log U2
�.

Using Corollary 1, for y ∈ Br, we have

U − f(y) =
∑

i

[f(xi−1) − f(xi)] ≤ sU
√

6αk log U2 ≤ U

2
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Therefore we have

vol G ≥
∑

x∈Bs

f2(x)dx ≥ U2

4
vol Bs.

This implies
U2

4
≤ vol G

vol Br
≤ vol G

csδ
.

Substituting for s, we have

αδ/2vol G ≥ U2

4c(6k log U2)δ/2
.(21)

We consider two subcases:
Subcase (a):

U2

(log U2)d/2
≥ 1.

Then (21) implies

α ≥ c′

k(vol G)2/δ
,

where c′ = (4c)−2/δ6−1.
Subcase (b):

U2

(log U2)δ/2
< 1.

This is equivalent to

log U ≤ δ

2
log log U2.

Thus
log U ≤ δ log δ.

Combining Theorems 7 and 8, we have

Theorem 9. In a Ricci flat graph G with isoperimetric dimension δ, the
log-Sobolev constant α satisfies

α ≥ min{ c

(vol G)2/δ
,

c′

kD2δ log δ
},

where k denotes the degree of G, c depends only on the isoperimetric con-
stant, and c′ is an absolute constant.
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6. Logarithmic Harnack inequalities for subgraphs

The definition for the log-Sobolev constant for a graph G can be easily
generalized to induced subgraphs with boundary conditions. Let S denote
a subset of vertices in a graph G and let S∗ denote the set of edges with at
least one endpoint in S. Let δS denote the vertex boundary of S. The log-
Sobolev constant αS for the induced subgraph S with Dirichlet boundary
condition can be defined as follows:

α = inf
f

∑
{x,y}∈S∗

(f(x) − f(y))2wx,y

∑
x∈V

f2(x)dx log
f2(x)vol S∑
z∈S

f2(z)dz

,(22)

where f ranges over all nontrivial functions f : S ∪ δS → R satisfying
f(y) = 0 for y ∈ δS.

Also, the log-Sobolev constant αS for the induced subgraph S with
Neumann boundary condition can be defined as follows:

α = inf
f �=c

∑
{x,y}∈S∗

(f(x) − f(y))2wx,y

∑
x∈V

f2(x)dx log
f2(x)vol S∑
z∈S

f2(z)dz

,(23)

where f ranges over all non-constant functions f : S ∪ δS → R. Many
methods for bounding log-Sobolev constants for graphs can be extended
to the log-Sobolev constant for certain subgraphs as well.

Here we state the corresponding theorems on logarithmic Harnack in-
equalities for certain subgraphs. The proofs are quite similar to the bound-
aryless case and will be omitted.

Theorem 10. In a k-regular Ricci flat graph G, consider a strongly con-
vex subgraph S of G. Suppose a function f : S ∪ δS → R satisfies the
Dirichlet or Neumann boundary condition and achieves the log-Sobolev
constant. Also, assume

∑
x∈S

f2(x)dx = volS. Then the following inequality

holds for all x ∈ S:
∑
y∼x

[f(x) − f(y)]2 ≤ 6kα sup
z

f2(z) log f2(z)(1 +
α

4
log f2(z)).
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Theorem 11. Let S denote a strongly convex subgraph of a connected
Ricci flat graph. Suppose a function f : V → R satisfies the Dirichlet
or Neumann boundary condition and achieves the log-Sobolev constant α.
Also, assume

∑
x∈S

f2(x)dx = vol S. Then the log-Sobolev constant α of G

satisfies

α ≥ min(
1

32kD2
,

1
24kD2 log U2

),

where U = supz |f(z)|,, k is the degree, and D denotes the diameter of S.

Here we used the fact that a k-regular Ricci flat graph or a strongly

convex subgraph has the eigenvalue bound λ1 ≥ 1
8kD2

and this lower

bound is sharp up to a constant factor (the factor of k is necessary for
some homogeneous graphs) [6]. Based on the fact of α ≤ λ1/2 and as
a consequence of Theorems 6 and 10, the log-Sobolev constant and the
eigenvalue λ1 can differ by at most a factor of log U .

For graphs with isoperimetric dimension δ, similar to Theorem 10 the
following lower bound for α holds in terms of δ.

Theorem 12. Let S denote a strongly convex subgraph of a Ricci flat
graph with isoperimetric dimension δ. Suppose a function f : V → R

satisfies the Dirichlet or Neumann boundary condition and achieves the
log-Sobolev constant. Then the log-Sobolev constant α of G satisfies

α ≥ min(
c

k(vol S)δ/2
,

c′

kD2δ log δ
),

where k is the degree, and D denotes the diameter of S, and c is a constant
depending only on the isoperimetric constant and c′ denotes some absolute
constant.
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