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THE LIMIT SET INTERSECTION THEOREM FOR
FINITELY GENERATED KLEINIAN GROUPS

JAMES W. ANDERSON

1. Introduction

The purpose of this paper is to show that the limit set intersection theo-
rem holds for a pair of finitely generated subgroups of a purely loxodromic
Kleinian group with non-empty domain of discontinuity. This result is of
interest, as we make no assumption about whether the groups involved are
topologically tame. Specifically, we prove the following.

Theorem 5.4. Let ' be a purely lozodromic Kleinian group with non-
empty domain of discontinuity. If ®, and ®y are finitely generated sub-
groups of T', then A(P1) NA(Py) = A(P) N Py).

The proof of the Theorem proceeds by showing that it holds in some
special cases involving Kleinian groups with connected limit sets, and then
extending to the general case by using a decomposition argument based on
the Klein-Maskit combination theorems and a careful tracking of the limit
points resulting from this decomposition. We discuss various well-behaved
classcs of limit points in Section 2. We describe the decomposition results
taken from Klein-Maskit combination theory in Section 3. We apply the
decomposition results to a special subclass of groups in Section 4. We then
complete the proof in Section 5. In Section 6, we discuss the extension of
Theorem 5.4 to groups with torsion, the difficulty with extending to groups
with parabolics, and make note of a reduction of the Ahlfors measure
conjecture.

A general limit set intersection theorem for Kleinian groups gives a
description of A(®; N®,) in terms of A(®;) and A(P,), where ®; and P
are subgroups of a Kleinian group I'. Ideally, such a theorem has the form
that

A(D1) NA(Dy) = A(P) N Dy) U P(Py, Dy),
where P(®;,®;) are those parabolic fixed points z € A(I') for which the
stabilizers ste,(z) and ste,(z) of z are both rank one and generate a
rank two subgroup of I'. It is usually necessary to impose some finiteness
condition on ®;, ®5, and/or I for such a result to hold.
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Such a limit set intersection theorem has been shown to hold under
various hypotheses. Maskit [17] shows that it holds for pairs of analyt-
ically finite component subgroups of a Kleinian group, and that the set
P is empty in this case. Susskind [25] shows that it holds for pairs of
geometrically finite subgroups of a Kleinian group; this was generalized by
Susskind and Swarup [26] to hold in all dimensions. Soma [24] shows that
it holds for pairs of function groups in a Kleinian group. Anderson [6] and
Soma [24] show that it holds for pairs of topologically tame subgroups of
a Kleinian group, modulo certain exceptional cases involving hyperbolic
manifolds which fiber over the circle. Anderson [5] shows that it holds for
®, analytically finite and ®5 geometrically finite, under the additional as-
sumption that Q(T") is non-empty. Anderson and Canary [7] show that, if
®, is finitely generated, if @5 is a precisely embedded quasifuchsian or ex-
tended quasifuchsian group, if A(®3) is contained in and separates A(Pq),
and if ®; N ®, is finitely generated, then A(®1 N Py) = A(P1) N A(D2).

We close the introduction by giving a few basic definitions. For an
account of Kleinian group basics, the reader is referred to [18]. Given a
set X C C and a Jordan curve c, say that ¢ separates X if X is disjoint
from one of the components of C — ¢; that is, X lies in one of the closed
discs determined by c¢. We allow the possibility that ¢ N X is non-empty.

A group G is freely indecomposible if it does not admit a non-trivial free
product decomposition, and is freely decomposible otherwise.

A Kleinian group is a discrete subgroup I' of PSL2(C), which may be
viewed as acting either on the Riemann sphere C by conformal homeo-
morphisms or on hyperbolic 3-space H? by isometries. A Kleinian group
is purely lozodromic if every non-trivial element is loxodromic.

The action of T' partitions C as the union C = Q(T') U A(T'), where the
domain of discontinuity Q(T') is the largest open set in C on which I' acts
properly discontinuously, and the limit set A(T") is the smallest non-empty
closed set invariant under I'. A Kleinian group is non-elementary if its
limit set contains at least three points, and is elementary otherwise. A
torsion-free Kleinian group is elementary if and only if it is free abelian of
rank at most two.

Given a Kleinian group I' and a set X in H? UC, define the stabilizer of
X in T to be str(X) ={y e :v(X)=X}. A component subgroup of I'
is the stabilizer of a connected component of the domain of discontinuity
Q(T) of T.

Let I' be a finitely generated non-elementary Kleinian group with non-
empty domain of discontinuity, and let ® be a finitely generated non-
elementary subgroup of I'. There exists a canonical metric, the Poincaré
metric, on (') of curvature —1 so that I' acts on Q(I') by isometries.
The Ahlfors finiteness theorem [3] states that Q(I')/I" has finite area in
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this metric. If A(®) = A(T"), then Q(I")/® is a finite cover of Q(I")/T", and
so @ has finite index in I'. In particular, if ® has infinite index in I', then
A(®) is a proper subset of A(T").

Given a Kleinian group T, let CH(T") C H? be the convex hull of A(T),
which is the smallest convex set in H® invariant under I'. The quotient
C(T) = C(N) of CH(T') in N = H3/T is the convez core of T' (or N). In
the case that I' is finitely generated and purely loxodromic, the boundary
of the convex core dC(I") is homeomorphic to Q(I") [12], and so it follows
from the Ahlfors finiteness theorem [3] that OC(T") is a finite union of
compact surfaces.

Suppose that I is a purely loxodromic, finitely generated Kleinian group
and let N = H3/T. A compact core for N is a compact submanifold M
of N whose inclusion is a homotopy equivalence. It follows from the core
theorem of Scott [22] that a hyperbolic 3-manifold with finitely generated
fundamental group always has a compact core.

There are several classes of finitely generated Kleinian groups of special
interest. A quasifuchsian group I' is a finitely generated Kleinian group
whose limit set is a Jordan curve and which contains no element inter-
changing the components of C — A(T"). An extended quasifuchsian group T
is a finitely generated Kleinian group whose limit set is a Jordan curve and
which contains some element interchanging the components of C — A(T).
Note that an extended quasifuchsian group contains a canonical quasi-
fuchsian subgroup of index two, consisting of those elements which do not
interchange the components of its domain of discontinuity. A degenerate
group is a finitely generated Kleinian group whose domain of disconti-
nuity and limit set are both non-empty and connected. A web group is a
finitely generated Kleinian group I' whose domain of discontinuity contains
infinitely many components and the stabilizer of each is a quasifuchsian
group; in particular, the boundary of each component of Q(T") is a Jordan
curve. Note that, as each component of the domain of discontinuity of a
web group is simply connected, the limit set of a web group is necessarily
connected.

A function group is a finitely generated Kleinian group which has an
invariant component in its domain of discontinuity. Quasifuchsian and
degenerate groups are function groups, while extended quasifuchsian and
web groups are not.

We now state two useful Lemmas which are implicit in the literature.

Lemma 1.1. Let I' be a purely loxodromic, finitely generated Kleinian
group with non-empty domain of discontinuity. Then, I" has connected
limit set if and only if I' is either quasifuchsian, extended quasifuchsian,
degenerate, or web.
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Proof. By definition, a quasifuchsian, extended quasifuchsian, degener-
ate, or web group has connected limit set. Conversely, suppose that I" has
connected limit set. If Q(T") is connected, then I is degenerate. If Q(T") has
two components, then I' is either quasifuchsian or extended quasifuchsian
[19]. If Q(T") has more than two components, it has countably many. Let
A be any component of Q(I"), and let ® be its stabilizer in I". Since A is
simply connected and I' contains no parabolics, ® is either quasifuchsian
or degenerate [19]. If ® were degenerate, then Q(®) = A would be an
open dense subset of C, and so Q(T") could contain no other component,
a contradiction. This gives that ® is quasifuchsian, and hence that I' is a
web group. O

Lemma 1.2. LetT be a purely loxodromic Kleinian group with non-empty
domain of discontinuity which is isomorphic to the fundamental group of
a closed orientable surface of genus at least two. Then, I' is either quasi-
fuchsian or degenerate.

Proof. Since I is the fundamental group of a closed orientable surface, it
is freely indecomposible. Theorem 3.1 then implies that A(T") is connected.

Suppose that I' is a web group, let A be a component of Q(I") and let
® be its stabilizer in I". Since A(®) is a proper subset of A(T"), we see that
® has infinite index in I'. However, this implies that I" contains a finitely
generated, infinite index subgroup which is not free, which cannot occur.

If ' is an extended quasifuchsian group, then the 3-manifold M =
(H? U Q(T))/T is compact and has connected boundary. However, it is
known [15] that, since I' is isomorphic to the fundamental group of a
closed orientable surface S, it must be that M is homeomorphic to the
product S x I, a contradiction. O

The author would like to thank the Centre Emile Borel at the Institut
Henri Poincaré for their hospitality at the time this paper was conceived,
and the referee for a thorough and speedy reading.

2. Limit points

In this Section, we discuss various useful classes of limit points, and
state the results we use concerning them.

There is a particular type of limit point which plays an important role
in what follows. A limit point z of a Kleinian group I is a point of approz-
imation if there exists a hyperbolic ray » C H? ending at z, a compact set
K C H3, and a sequence {v,} of distinct elements of I' so that ~,(K)Nr
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is non-empty for all n. Equivalently, a limit point is not a point of approx-
imation if and only if, for each ray r in H?® ending at z, the image m(r) of
r under the covering map 7 : H® — H?3/T exits every compact subset of
H3/T. These points are also commonly referred to as conical limit points.

A Kleinian group is geometrically finite if there exists a finite sided
fundamental polyhedron for its action on H?. By way of example, quasi-
fuchsian and extended quasifuchsian groups are geometrically finite, while
degenerate groups are not [13]. Geometrically finite groups are always
finitely generated. It is a result of Beardon and Maskit [8] that a purely
loxodromic Kleinian group is geometrically finite if and only if every limit
point is a point of approximation. A Kleinian group which is not geomet-
rically finite is geometrically infinite.

The following Theorem combines results from Proposition 5.1 and The-
orem 5.2 from [5], adapted to the situation addressed in this paper.

Theorem 2.1. Let I' be a purely lozodromic Kleinian group with non-
empty domain of discontinuity, and let ®1 and Po be non-elementary
finitely generated subgroups of I'. If x € A(P1) N A(P3) is a point of
approzimation for ®1, then x € A(®P; N Py) and is a point of approrima-
tion for ®1 N $o. Moreover, if ®1 is geometrically finite, then ®; N $y is
geometrically finite and A(P1) N A(P2) = A(P1 N Dy).

A torsion-free Kleinian group I is topologically tame if its corresponding
hyperbolic 3-manifold H?/T" is homeomorphic to the interior of a compact
3-manifold, possibly with boundary. It is a result of Bonahon [9] that every
finitely generated, freely indecomposible Kleinian group is topologically
tame. It is also known that geometrically finite groups are topologically
tame [15], as are function groups [24], while freely decomposible web groups
are not yet known to be.

We make use of the fact that the limit set intersection theorem holds for
topologically tame groups. The result stated below combines information
from Theorem A, Lemma 5.1, and Theorem C from [6].

Theorem 2.2. Let I' be a purely lozodromic, co-infinite volume Kleinian
group. Let ®1 be a topologically tame subgroup of I', possibly cyclic, and let
®y be a non-elementary topologically tame subgroup of I'. Then, A(®1) N
A(D2) = A(P; N Py). Moreover, if P35 is a non-elementary subgroup of
' and if © € A(P2) N A(P3) is a point of approximation for ®s3, then
x € AN(Py N P3) and is a point of approzimation for o N Ps.

Let T" be a purely loxodromic, topologically tame Kleinian group, and
let M be a compact core for N = H?/I". Each component of OM then faces
an end of N. An end F of N is geometrically finite if it has a neighborhood
which is disjoint from C(N), and is geometrically infinite otherwise. Note
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that a purely loxodromic, finitely generated Kleinian group I' is geometri-
cally finite if and only if all the ends of H?/I" are geometrically finite.

A major tool used in handling topologically tame Kleinian groups is
the covering theorem, due to Thurston [27] for surface groups and gener-
alized by Canary [10] to all topologically tame groups. In the case of no
parabolics, a rough statement is that, if I' is a Kleinian group and if ®
is a topologically tame subgroup of T', then either H?3 /T is closed or the
covering map H?/® — H3 /T is finite-to-one on a neighborhood of every
geometrically infinite end of H?/®.

Let S be a component of M facing a geometrically infinite end of N.
The inclusion of S into N gives rise to a conjugacy class of subgroups of I,
and we refer to each such subgroup of I' as a geometrically infinite maximal
peripheral subgroup of I'. As OM has only finitely many components, there
are only finitely many conjugacy classes of geometrically infinite maximal
peripheral subgroups of I'.

In the case that I' is freely indecomposible and has non-empty domain
of discontinuity, each component of OM is incompressible. Each geometri-
cally infinite maximal peripheral subgroup is then isomorphic to the fun-
damental group of a closed, orientable surface, and so by Lemma 1.2 is
a degenerate group. We remark that Corollary C of [10] implies that a
finitely generated, infinite index subgroup of a degenerate group is geo-
metrically finite.

We make use of the following characterization of the limit points of
a purely loxodromic, finitely generated, freely indecomposible Kleinian

group.

Lemma 2.3. Let I' be a purely loxodromic, finitely generated, freely in-
decomposible Kleinian group. FEach point of A(T') either lies in the limit
set of a geometrically infinite maximal peripheral subgroup or is a point of
approzimation of I.

Proof. Let N = H3/T and let 7 : H> — N be the covering map. We
use a theorem of McCullough [21] to choose a compact core M for N so
that M C C(N) and so that 0C(N) C OM. Let = € A(T") be a limit point
which is not a point of approximation, and let r be any ray in CH(T)
which ends at x. As 7(r) exits every compact subset of N, there exists a
sub-ray of r, again called r, so that 7(r) is disjoint from M. Let E be the
end of N containing 7(r), let S be the component of OM facing E, and
let ® be a choice of conjugacy class of the image of 71(S) in I'. Note that
® is geometrically infinite.

There are a couple of special cases. It may be that N is closed, in
which case I' is geometrically finite, and so every point of A(T") is a point of
approximation. It may be that & has finite index in I, in which case ® and
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I" have the same limit set, and so z lies in the limit set of a geometrically
infinite maximal peripheral subgroup.

Suppose now that N has infinite volume, and that ® has infinite index
in I'. The assumption that I' is freely indecomposible implies that S is
incompressible, and so ® is isomorphic to the fundamental group of S.
In particular, this implies that ® is freely indecomposible, and hence is
topologically tame [9]. If ® has empty domain of discontinuity, then every
end is geometrically infinite, and the covering theorem [10] implies that N
is closed, a contradiction. Hence, the domain of discontinuity of ® must
be non-empty. In particular, we see by Lemma 1.2 that ® is a degenerate
group.

Let P =H3/®, and let o : P — N be the covering map. Since ® is de-
generate, P has one geometrically infinite end F. Since P is topologically
tame and has infinite volume, the covering theorem [10] implies that « is
finite-to-one on some neighborhood U of F'. By construction, a(U) lies in
E, and so there is a subray of r, again called r, so that 7(r) lies in a(U).
In particular, some lift of 7(r) to P lies in U. Let 3 : H> — P be the
covering map. The image of some ray in I'(r) = {y(r) : v € I'} then lies in
U. Hence, there is a conjugate ®" of ® so that (3(r) exits the geometrically
infinite end of H?/®’, and so z lies in A(®’). This completes the proof. [J

3. Decomposition

In this Section, we give a brief description of the portion of Klein-Maskit
combination theory which we make use of. We remark that we do not give
the most general statements from the literature of combination theorems;
instead we make statements sufficiently strong for their use here. We begin
with a few useful definitions.

A subset X C C is precisely invariant under a subgroup ® of a Kleinian
group I' if stp(X) = ® and if y(X) N X is empty for ally € ' — &. A
subgroup @ of a Kleinian group I is precisely invariant if A(®) is precisely
invariant under ® in T'.

In the special case that X is a Jordan curve, say that X is precisely
embedded under ® in T if stp(X) = @ and if no translate of X separates
X. That is, while a translate v(X) of X is allowed to intersect X, no
translate of X can cross X. A quasifuchsian or extended quasifuchsian
subgroup ® of a Kleinian group I' is precisely embedded if the Jordan curve
A(®) is precisely embedded under ® in I'. As an example, each component
subgroup of a web group I is a precisely embedded quasifuchsian subgroup
of T.

The form of the Klein-Maskit combination theorems we make use of
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gives information about the behavior of a Kleinian group in terms of sub-
groups of certain form, obtained by decomposition along a Jordan curve.
We now give a brief description of this decomposition. The material here
can be found largely in Chapter VII of [18].

Let I" be a purely loxodromic, finitely generated Kleinian group, and let
¢ be a Jordan curve which separates A(I"). Set ® = str(c), and suppose
that ® is finitely generated, that c is precisely embedded under ® in T,
that cNA(I") = A(®), and that ¢ — A(®) is precisely invariant under ® in
I'. Then, there exists a properly embedded disc D C H? which is precisely
invariant under ® in I' and which extends to a closed disc D in H? U C
with DN C = ¢. In particular, D — A(®) projects to a compact, properly
embedded surface S in P = (H3 U Q(T))/T.

If S separates P, let P; and P> be the components of P — S, and let T';
be the image of the fundamental group of P; in m(P) = I'. Then, both
I'y and I's are finitely generated, every limit point of I' either is a limit
point of a conjugate of either I'y or I's or is a point of approximation of I,
and I' is the amalgamated free product of I'y and I'y along their common
subgroup ® = I'y NI's. We refer to I'y and I'y as the factor subgroups of
the decomposition.

If S does not separate P, let P, = P — S and let I'; be the the image
of the fundamental group of P; in I'. Then, I'y is finitely generated, every
limit point of I' either is a limit point of a conjugate of I'; or is a point of
approximation of I', and I" is the HNN extension of I'; by some loxodromic
element v € I'. We refer to I'y and (y) as the factor subgroups of the
decomposition.

The first of the decomposition results involves the canonical decompo-
sition of a Kleinian group I with non-connected limit set. In this case, one
can find a Jordan curve in Q(I') which separates the limit set and which is
precisely invariant under the identity in I'. If one of the factor subgroups
of this decomposition is non-elementary and has non-connected limit set,
the decomposition can be carried out for the factor subgroup. This process
terminates after finitely many steps. This argument is carried out in detail
in [2].

Theorem 3.1. Let I’ be a non-elementary, purely loxodromic, finitely gen-
erated Kleinian group whose limit set is not connected. Then, there exists
a non-trivial free product splitting I' = Zx 'y x --- x I'), into precisely in-
variant subgroups, where = is a finitely generated free group and each 'y is
finitely generated and has connected limit set. If Z is a continuum in A(T")
containing more than one point, then the stabilizer of Z in I" is conjugate
to some I'y. Every limit point of I' either is a limit point of a conjugate
of some 'y, or is a point of approximation of I'. In the case that I" is a
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function group, each I'y is either quasifuchsian or degenerate.

Note that Theorem 3.1 implies that freely indecomposible finitely gen-
erated Kleinian groups have connected limit set.

The second of the decomposition results involves groups containing pre-
cisely embedded quasifuchsian or extended quasifuchsian subgroups.

Theorem 3.2. Let I' be a purely loxodromic, finitely generated Kleinian
group with non-empty domain of discontinuity, let ® be a finitely generated
subgroup of I', and let © be a precisely embedded quasifuchsian or extended
quasifuchsian subgroup of I'. Suppose that A(©) separates A(®). Then,
there exist finitely generated, infinite index subgroups ®, and ®o of ® so
that every limit point of ® either is a limit point of a conjugate of some
®; or is a point of approximation of ®.

All that need be checked is that the assumptions of Theorem 3.2 imply
that the hypotheses of the combination theorems as discussed above hold.
Let ¢ = A(©). Since c is assumed to be precisely embedded under © in I’ it
is precisely invariant under stg(c) = ®NO in &. Theorem 2.1 implies that
®NO is finitely generated and that cNA(P) = A(O)NA(P) = A(OND) =
A(sta(c)).

The third of the decomposition results is similar to Theorem 3.2, though
the hypotheses are slightly different.

Theorem 3.3. Let I' be a purely loxodromic, finitely gemerated, infinite
co-volume Kleinian group, let N = H3 /T, and let M be a compact core
for N. Let S = {S1,...,Sp} be a collection of disjoint, incompressible,
closed, embedded, orientable surfaces in M, so that no two surfaces in S
are parallel and so that no surface in S is parallel to a component of OM .
Let Ni,... , Ny be the components of N —S, and let I'; be the image of the
fundamental group of Nj in w1 (N) =T'. Then, every limit point of I" either
is a limit point of a conjugate of some I'; or is a point of approximation
of T.

In order to apply the combination theorems, it remains only to check, if
we let @5 be the image of the fundamental group of S in I', that @y is a
precisely embedded quasifuchsian subgroup of I'. The assumption that Sy
is incompressible implies that @ is isomorphic to the fundamental group
of Sk. The covering theorem [10] implies that ®; must be geometrically
finite, and so is either quasifuchsian or extended quasifuchsian. Let Dy be
the lift of Sj, to H? which is invariant under ®;, and note that Dj, extends
to a closed disc Dy, in H® UC with boundary A(®;). Since S, is embedded,
Dy, is precisely invariant under ®j, and so A(®Py) is precisely embedded
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under ® in I'. If &, were extended quasifuchsian, then S, would be non-
orientable. Theorem 3.3 follows by applying Theorem 3.2 successively to
®¢ through @,,.

We remark that, in general, a precisely embedded extended quasifuch-
sian subgroup ® of a Kleinian group I' corresponds to a non-orientable
surface S in N = H3/T" which is the core of a twisted I-bundle. A regu-
lar neighborhood of this core surface has boundary an orientable surface,
which corresponds to the quasifuchsian component subgroup of the ex-
tended quasifuchsian group.

We close this section with the following Corollary to Theorem 3.2. It is
a slight variation on the known fact [1] that degenerate groups cannot be
constructed from cyclic groups by Klein-Maskit combination.

Corollary 3.4. Let I' be a purely loxodromic, finitely generated Kleinian
group with non-empty domain of discontinuity, let ® be a degenerate sub-
group of ', and let © be a precisely embedded quasifuchsian or extended
quasifuchsian subgroup of I'. Then, A(©) cannot separate A(P).

Proof.  Suppose that A(©) separates A(®). Theorem 3.2 implies that
there exist finitely generated, infinite index subgroups ®; and ®5 of ® so
that every limit point of ® either is a limit point of a conjugate of some
®; or is a point of approximation of ®.

Since @ is isomorphic to the fundamental group of a closed, orientable
surface of genus at least two, every finitely generated, infinite index sub-
group is free. As both ®; and ®5 are finitely generated, free, purely
loxodromic Kleinian groups with non-empty domain of discontinuity, they
are Schottky groups [16]. In particular, both ®; and ®; are geometrically
finite, and hence, for both j, every point of A(®;) is a point of approxi-
mation.

This implies that every limit point of ® is a point of approximation,
and hence that ® is geometrically finite [8]. However, it is known [13] that
degenerate groups are not geometrically finite, a contradiction. O

4. Web groups

In this Section, we describe two useful classes of web groups. We begin
with the following Lemma.

Lemma 4.1. Let I" be a purely loxodromic, finitely generated, freely de-
composible Kleinian group, and let I' = I'y x --- x I'), be a mazimal free

product splitting of I'.  Then, each I'; is a precisely invariant subgroup of
T.
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Proof. Suppose that there exists v € I' so that v(A(I;)) N A(T'x) is
non-empty; we need to show that j = k£ and that v € I';. As finitely
generated, freely indecomposible Kleinian groups are topologically tame
[9], Theorem 2.2 implies that A(T;) Ny(A(T'x)) = AT; N4y~ 1). Since
A(T;) Ny(A(T)) is assumed to be non-empty, we see that I'; N,y ™!
is non-trivial. However, if j # k, or if j = k and v ¢ I';, this violates the
existence of unique normal forms in free products [14]. Hence, j = k and
AS Fj. ]

The following topological lemma will be useful.

Lemma 4.2. Let ®; and ®5 be Kleinian groups with connected limit sets,
and assume that I' = (&1, $2) is a purely lorodromic Kleinian group. If
A(®1) N A(D2) is non-empty, then A(T") is connected.

In addition, suppose I' contains a precisely embedded quasifuchsian or
extended quasifuchsian subgroup © whose limit set A(©) separates A(T).
If no translate of A(©) separates either A(®1) or A(Ps3), then there is a
conjugate ©" of © so that A(P1) N A(P2) C A(O).

Proof.  To see that A(T") is connected, note that both A(®;) and A(P2) lie
in A(T"). Define the length of an element v € I" to be the minimal number of
elements in the set ®; U ®5 whose product is «y, and let ', be the elements
of I" of length at most n for n € N. Note that I'y = &; U ®5. A simple
inductive argument on n shows that X, = U, cp 7(A(®1) N A(D2)) is
connected for each n € N. So, the set X = (J, cp 7(A(®1) NA(®P2)), which
is the union of the nested sets Xi,...,Xp,..., is connected, and so X
is connected. Since X is a closed, non-empty subset of A(T') which is
invariant under T, we see that X = A(T).

Since A(©) separates A(T"), we may choose points a and b in A(I') —A(O)
which are separated by A(©). Since X is dense in A(I") and since X is the
union of the nested sets X7 C Xo C ..., we see that A(O) separates X,,
for all n sufficiently large. If no translate of A(©) separates either A(®q)

or A(®3), then there is exists a conjugate ©’ of © so that A(©’) separates
A(®) from A(P2), and so A(P1) NA(P2) C A(O). O

We need to describe two related subclasses of web groups. A purely
loxodromic, finitely generated web group I is extreme if it admits a non-
trivial free product splitting I' = I'; * --- * Iy, where each I'; is either
quasifuchsian, degenerate, or infinite cyclic, and each quasifuchsian sub-
group which is a free factor is a component subgroup. An example of such
a group is given by Maskit [17].
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Lemma 4.3. A finitely generated, infinite index subgroup of an extreme
web group is a function group.

Proof. Let I' be an extreme web group, and let I' = 'y x--- % 'y be a
maximal free product splitting of I'. Let ® be a finitely generated, infinite
index subgroup of I'. Since A(®) is a proper subset of A(I"), there exists
a component A of Q(®) which is not a component of Q(I'), and hence
contains a point of A(T").

Consider the stabilizer st (A) of A in ®. Since ste(A) is finitely gener-
ated [4], it is a function group with invariant component A. If st (A) # ®,
there exists an element ¢ € ® — stg(A) so that p(A) # A. In particular,
there exists a quasifuchsian subgroup Z of ® whose limit set separates A
from p(A) [17]. We now make use of the Kurosh subgroup theorem (see,
for example, [14]), which states that a freely indecomposible subgroup of a
free product is conjugate into a free factor. This implies that = is conjugate
to a finite index subgroup of some I';, which contradicts the assumption
that each quasifuchsian group which is a free factor of I' is in fact a com-
ponent subgroup. Hence, ste(A) = @ and so P is a function group. O

A purely loxodromic, finitely generated web group I' is simple if it does
not contain a precisely embedded extended quasifuchsian subgroup, and
if every precisely embedded quasifuchsian subgroup is a component sub-
group. Note that an extreme web group is necessarily simple, but the
converse need not hold. However, we have the following characterization
of simple web groups.

Lemma 4.4. A simple web group either is freely indecomposible and topo-
logically tame, or is extreme.

Proof.  Let I' be a simple web group. If I' is freely indecomposible, it
is topologically tame [9]. Otherwise, it admits a non-trivial maximal free
product splitting I' = I'y * - - -+ I",,. Since each I'; is freely indecomposible,
Theorem 3.1 implies that it is either loxodromic cyclic or has connected
limit set, and Lemma 1.1 then implies that it is either loxodromic cyclic,
degenerate, quasifuchsian, extended quasifuchsian, or a web group.

Note that A(I'j) is a proper subset of A(I'), and that, by Lemma 4.1,
each free factor I'; is a precisely invariant subgroup of I'. Suppose that I';
is a web group. Then, there exists a component subgroup ® of I'; which
is not a component subgroup of I';, so that A(®) separates A(I"). Since
I'; is a precisely invariant subgroup of I' and since ® is a precisely embed-
ded quasifuchsian subgroup of I';, we see that ® is a precisely embedded
quasifuchsian subgroup of I', violating the assumption of simplicity of I
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If the free factor I'; is an extended quasifuchsian subgroup of I', note
that A(I';) must separate A(I"). To see this, choose any point z € A(T") —
A(T;). If v € T; is an element interchanging the components of C — A(T;),
then A(I';) separates x and ~(x). Again, this violates the simplicity of I'".
If the free factor I'; is a quasifuchsian subgroup which is not a component
subgroup of I', then A(T';) must separate A(I'), again violating the sim-
plicity of I'. This completes the proof. O

The final result of this section is an immediate consequence of Theorem
3.3.

Lemma 4.5. Let I' be a purely loxodromic, finitely generated web group.
Then, there exist subgroups I'y,... Ty, of I, where each I'; is either a
simple web group or an extended quasifuchsian group, such that every limit
point of I' either is a translate of a limit point of some I'; or is a point of
approximation of I".

Proof. Let N = H3/T" and let M be a compact core for N. Since T is
a web group, all the components of M facing geometrically finite ends
of N are incompressible, as they correspond to quasifuchsian component
subgroups of I'.

Let S = {S1,...,Sp} be a maximal collection of disjoint, incompress-
ible, closed, embedded, orientable surfaces in M, so that no surface in S
is parallel to a component of OM and so that no pair of surfaces in S are
parallel. Write N =S8 = Ny U---UN,, and let I'; be the image of the fun-
damental group of N; in 71 (NN) =I'. Note that the component subgroups
of I'; are all quasifuchsian, as they correspond either to the quasifuchsian
component subgroups of I' or to the quasifuchsian subgroups ®; corre-
sponding to the Sk.

No I'; can be quasifuchsian or degenerate, as the surfaces in S are not
parallel to each other or to components of M. Since § is a maximal
collection, no NN; contains an essential, closed, incompressible, orientable
surface, and so no I'; can contain a precisely embedded quasifuchsian sub-
group other than a quasifuchsian component subgroup. In particular, each
I'; is either an extended quasifuchsian group or is a simple web group.

The statement about limit points follows immediately from Theorem
3.3. O

5. The proof

The purpose of this section is to present the proof of Theorem 5.4. We
begin with a series of three Lemmas, each handling a special case, which
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we combine to complete the proof of the Theorem. Note that the inclusion
A(®1NP2) C A(P1)NA(D2) follows from the fact that NP4 is a subgroup
of both ®; and ®5. Hence, we need only show the opposite inclusion to
establish the equality A(®1 N Py) = A(Pq1) NA(D2).

Lemma 5.1. Let T be a purely loxodromic Kleinian group with non-empty
domain of discontinuity. If ®1 is a degenerate subgroup of I' and ®4 is a
simple web subgroup of T', then A(®1) N A(P2) = A(P1 N Dy).

Proof. Let z € A(®1) N A(P2) be any point. If = is a point of ap-
proximation of either ®; or ®5, Theorem 2.1 immediately implies that
x € A(P1 N Py), and is in fact a point of approximation for ®; N P,.
Henceforth, we assume that z is not a point of approximation of either &
or ®,. By replacing I by (@1, ®5), we may assume by Lemma 4.2 that
A(T) is connected, and hence that I' is a web group.

Suppose that ®, has finite index in I', so that A(®2) = A(I"). Then,
®; N P, has finite index in ®1, and so A(P; NPy) = A(Py). Since &; C T,
we have that A(®1) C A(T') = A(P2), and so A(Py N Py) = A(Py) =
A(D1) NA(D2).

Suppose that ®s is freely indecomposible, and hence topologically tame
[9]. As degenerate groups are topologically tame [9], Theorem 2.2 implies
that A(®1 N P2) = A(P1) N A(D2).

Hence, we may assume that @ is freely decomposible, and we may use
Lemma 4.4 to see that ®5 is an infinite index extreme web subgroup of
I'. In particular, Lemma 4.3 implies that I' cannot be extreme. If I' is
freely indecomposible, then it is topologically tame [9]. As infinite index
subgroups of co-infinite volume topologically tame groups are themselves
topologically tame [11], both ®; and ®5 are topologically tame, and The-
orem 2.2 implies that A(®1 N Py) = A(P1) NA(D2).

If I is freely decomposible, the proof of Lemma 4.4 implies that I’
contains a precisely embedded quasifuchsian or extended quasifuchsian
subgroup © whose limit set A(©) separates A(T'). By Corollary 3.4, no
translate of A(©) can separate A(®1). There are now two cases.

Suppose that some translate of A(©) separates A(P3). Since x is not
a point of approximation of ®5, Theorem 3.2 implies that there exists a
finitely generated, infinite index subgroup ®9 of ®5 so that z € A(®Y).
By Lemma 4.3, ®) is a function group, and so is topologically tame [24].
Hence, z € A(®; N ®Y) by Theorem 2.2. Since A(®; N ®Y) C A(P; N Dy),
we see that © € A(P1 N Py).

Suppose now that no translate of A(©
then implies that A(®;) N A(P2) C A(O
nite, Theorem 2.1 implies that both ©
rically finite and that A(®;) N A(O) =

) separates A(®3). Lemma 4.2
). Since © is geometrically fi-
N ®; and © N ¢y are geomet-
A(®; N ©) for both j. Hence,
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A(®1) NA(P2) = A(P1) NA(P2) NA(O). Since geometrically finite groups
are topologically tame [15], Theorem 2.2 implies that A(®1) N A(P2) N
A(@) = A((I)1 N @) N A((I)Q N @), and so A(‘pl) N A((I)Q) = A((I)l N q)g N @)
Since A(®1NP2NO) C A(P1NPy), we are done. This completes the proof.

O

Lemma 5.2. Let T be a purely loxodromic Kleinian group with non-empty
domain of discontinuity. If ®1 and o are extreme web subgroups of T,
then A(q)l) N A(‘I)Q) = A(q)l N q’g)

Proof. As in the proof of Lemma 5.1, we may assume that both ®; and
®,, are infinite index subgroups of I', that I' = (&, ®3) and is a web group,
and that x € A(®;) N A(P2) is not a point of approximation of either ®;
or (I)Q.

Since both ®; and ®5 have infinite index in I', Lemma 4.3 implies that
I" cannot be extreme. If I' is freely indecomposible, then it is topologically
tame [9]. As infinite index subgroups of co-infinite volume topologically
tame groups are themselves topologically tame [11], both ®; and ®, are
topologically tame, and Theorem 2.2 implies that A(®; N Py) = A(P1) N
A(Ds).

Otherwise, I' is freely decomposible, and so there exists a precisely em-
bedded quasifuchsian or extended quasifuchsian subgroup © of I' whose
limit set A(©) separates A(I'). If some translate of A(©) separates A(Pq),
Lemma 4.3 implies that ®; contains a function group ®{ whose limit set
contains . Theorem 3.1 then implies that ®{ contains a degenerate sub-
group ®° whose limit set contains x, as z is not a point of approximation
of ®). Lemma 5.1 then implies that z € A(®Y N ®y) C A(®; N Dy). The
same argument holds if some translate of A(O) separates A(®2).

If no translate of A(©) separates either A(®1) or A(P2), we may argue
as in the last paragraph of Lemma 5.1 that A(®1 N o) = A(P1) N A(D2).
This completes the proof. O

Lemma 5.3. Let T be a purely loxodromic Kleinian group with non-empty
domain of discontinuity. If ®1 and ®o are simple web subgroups of I', then
A(Dq) NA(D2) = A(P1 N Dy).

Proof. If both ®; and ®, are freely indecomposible, they are both
topologically tame [9], and Theorem 2.2 implies that x € A(P; N o). If
both ®; and ®, are extreme, Lemma 5.2 implies that x € A(®1 N Py).
Suppose that ®; is freely indecomposible and ®5 is extreme. As in the
proof of Lemma 5.1, we may assume that x € A(®1)NA(P2) is not a point
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of approximation of ®;. Lemma 2.3 implies that there exists a degenerate
subgroup ® of ®; whose limit set contains . Lemma 5.1 implies that
x € A(P; N Py). The same argument holds if ®; is extreme and P, is
freely indecomposible. This completes the proof. O

We are now ready to proceed with the proof of the main theorem.

Theorem 5.4. Let I' be a purely loxodromic Kleinian group with non-
empty domain of discontinuity. If ®1 and ®o are finitely generated sub-
groups of I', then A(®1) NA(P2) = A(P1 N Dy).

Proof. Let x € A(®1) N A(P2) be any point. If z is a point of approxi-
mation of either ®; or ®5, Theorem 2.1 implies that z € A(®; N P2). So,
we assume that x is not a point of approximation of either ®; or ®,. In
particular, both ®; and ®, are non-elementary.

For either j = 1 or j = 2, since z is not a point of approximation of
®,;, Theorem 3.1 implies that there exists a finitely generated subgroup
<I>9 of ®; whose limit set is connected and contains z. If CIJ? is a web
group, Lemma 4.5 implies that there exists either a simple web group
or an extended quasifuchsian subgroup of <I>(J)- whose limit set contains
x. Hence, we may assume, for both j, that ®; is either quasifuchsian,
extended quasifuchsian, degenerate, or a simple web group. If either &,
or @, is quasifuchsian or extended quasifuchsian, it is geometrically finite,
and so z is a point of approximation of ®;, contrary to assumption.

If both ®; and ®5 are degenerate, then Theorem 2.2 implies that
x € A(Py N Py). If &y is degenerate and P, is a simple web group (or
vice versa), Lemma 5.1 implies that € A(®; N P3). If both &1 and P,
are simple web groups, Lemma 5.3 implies that z € A(®; N ®3). This
completes the proof. O

6. Closing remarks

We begin by noting that Theorem 5.4 holds for groups with torsion.

Corollary 6.1. Let I' be a Kleinian group without parabolics and with
non-empty domain of discontinuity. If ®1 and o are finitely generated
subgroups of ', then A(®1) NA(P2) = A(P1 N Dy).

Proof.  If T' is not finitely generated, replace I' by (®q, ®5). Selberg’s
lemma [23] implies that there exists a finite index torsion-free subgroup
I'% of T'. Let @9 =&, NI Since @? has finite index in ®;, their limit
sets are equal and ®9 N ®Y has finite index in ®; N ®,. The Corollary now
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follows immediately from Theorem 5.4. O

It is well known, for a Kleinian group with non-empty domain of dis-
continuity, that the set of points of approximation has measure zero; this
can be obtained, for example, by using the alternate definition of point
of approximation, given in Proposition VI.B.9 of [18], to cover the set of
points of approximation by a set of measure € for each € > 0. It is also
well known [11] that the limit set of a topologically tame Kleinian group
with non-empty domain of discontinuity has measure zero. Hence, Theo-
rem 3.1, Lemma 4.4, and Lemma 4.5 together imply that, if the limit set
of an extreme web group could be shown to have measure zero, then the
Ahlfors measure conjecture would be established for purely loxodromic,
finitely generated Kleinian groups. We note that a variant of this remark
is contained in Maskit [20].

We close with a few remarks concerning groups with parabolic elements.
Unfortunately, many of the techniques used in this paper do not general-
ize to groups with parabolics. In particular, the notion of an extreme web
group becomes more complicated, as it is no longer possible to check al-
gebraically. Also, the statements of the decomposition results in Section
3, in which all limit points are either limit points of conjugates of factor
subgroups or points of approximation, are not known to generalize to the
case of groups with parabolic elements. For those familiar with the proofs
of the combination theorems, the difficulty is that limit points which are
limits of nested sequences of axes of accidental parabolic elements are not
known to be points of approximation.
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