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ASSOCIATIVITY PROPERTIES
OF THE SYMPLECTIC SUM

Dusa McDuff and Margaret Symington

Abstract. In this note we apply a 4-fold sum operation to develop an
associativity rule for the pairwise symplectic sum. This allows us to show
that certain diffeomorphic symplectic 4-manifolds made out of elliptic sur-
faces are in fact symplectically deformation equivalent. We also show that
blow-up points can be traded from one side of a symplectic sum to an-
other without changing the symplectic deformation class of the resulting
manifold.

1. Introduction

Recently there have been several new constructions for compact sym-
plectic 4-manifolds (X, ω) as well as great progress (via Taubes-Seiberg-
Witten theory) in understanding invariants for such manifolds. One of
the main consequences of Taubes’ work [10] is that the Gromov invariants
of (X, ω) are invariants of the diffeomorphism type of X rather than of
its symplectomorphism type. It would be very interesting to understand
whether or not a given diffeomorphism type can support two different sym-
plectic structures. In fact, as yet no 4-dimensional example is known of
a compact manifold with two distinct structures, though such examples
were found by Ruan [7] in dimensions 6 and higher. The results presented
here were developed to show that some possible candidates for such forms
ω, ω′ are in fact equivalent.

The appropriate notion of symplectic equivalence in the present context
is that of weak deformation equivalence. Specifically, two symplectic forms
ω, ω′ on X are deformation equivalent if there is a family of (possibly
non-cohomologous) symplectic forms ωt, 0 ≤ t ≤ 1, such that ω0 = ω
and ω1 = ω′, and two symplectic manifolds (X, ω), (X ′, ω′) are weakly
deformation equivalent if there is a diffeomorphism φ : X → X ′ such that
φ∗(ω′) is deformation equivalent to ω. For example, a Kähler manifold
supports a well-defined deformation class of symplectic forms since the set
of Kähler forms compatible with a fixed complex structure is convex and
hence path-connected.
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Throughout this paper we restrict to the 4-dimensional case, though
many of our results have higher dimensional analogues. When S ⊂ X and
S′ ⊂ X ′ are symplectically embedded surfaces in the 4-manifolds X, X ′,
we write

(X, S) = (X ′, S′)

if there is a symplectomorphism from X to X ′ that takes S to S′, and

(X, S) ∼= (X ′, S′)

if the manifold/submanifold pairs are weakly deformation equivalent.
(This means that the forms φ∗(ω′) and ω are equivalent under a symplec-
tic deformation ωt consisting of symplectic forms which are nondegenerate
on S. For example, this is always the case if (X, ωt) is Kähler and S is
a complex curve.) Finally, by a triple (X, S, T ) we mean a symplectic 4-
manifold X with two symplectically embedded Riemann surfaces S and T
which intersect transverally with positive orientation in a single point.

In [1] Gompf developed a pairwise symplectic sum, observing that when
a pair of manifolds X, X ′ are summed along a pair of codimension two
submanifolds, a transverse pair of submanifolds can be summed at the
same time provided that certain conditions are satisfied. In 4-dimensions,
the only pertinent condition is that the transverse surfaces must have
positive intersection with the submanifolds along which the sum is being
taken. Indeed, consider triples

(X1, S1, T1), (X2, S2, T2)

for which

gT1 = gS2 , ιT1 = −ιS2 ,

∫
T1

ω1 =
∫

S2

ω2,

where gS denotes the genus of S and ιS is the Chern number of its normal
bundle, which in this setting is equal to the self-intersection number of S.
Then one can form the pairwise sum of the manifold/submanifold pairs
(X1, S1) and (X2, T2) along the symplectomorphic surfaces T1, S2:

(X1, S1) #
T1=S2

(X2, T2) = (X1 #
T1=S2

X2, S1#T2)

where S1#T2 is the connected sum of surfaces isotopic to S1, T2. This sum
is described in detail in §2. (Our notation in which T1 is glued to S2 might
seem a little awkward, but will prove to be very convenient.)

Our first observation is that the 4-fold sum operation, which is devel-
oped by the second author in [9], is invariant under cyclic permutations.
The 4-fold sum is possible when four symplectic triples

(X1, S1, T1), (X2, S2, T2), (X3, S3, T3), (X4, S4, T4)
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are such that each (Xi, Si, Ti) can be summed to (Xi+1, Si+1, Ti+1) along
Ti, Si+1 as above, where i is understood mod 4. To form the sum, remove
all eight surfaces Si, Ti and naively start making symplectic pairwise sums:

X1 #
T1=S2

X2, X2 #
T2=S3

X3

X3 #
T3=S4

X4 X4 #
T4=S1

X1.

We explain in §2 how these sums continue into the neighborhoods of the
intersection points to yield a smooth symplectic manifold, the 4-fold sum.
Viewing each pair Si, Ti as one immersed manifold, the 4-fold sum is a
very simple example of an extension of the symplectic sum to a sum along
immersed manifolds, a possibility suggested by Gromov [3]. In §3 we prove:

Proposition 1.1 (4-fold sum rule). If triples (Xi, Si, Ti), 1 ≤ i ≤ 4 are
such that for all i (mod 4)

gTi = gSi+1 , ιTi = −ιSi+1 ,

∫
Ti

ωi =
∫

Si+1

ωi+1

then

(X1 #
T1=S2

X2) #
S1#T2=S3#T4

(X3 #
T3=S4

X4)

= (X4 #
T4=S1

X1) #
S4#T1=S2#T3

(X2 #
T2=S3

X3).

Using this we prove an associativity rule for a sum of three triples
(Xi, Si, Ti), i = 1, 2, 3. Before stating this, we note that if S and T are
symplectic submanifolds which intersect positively along a symplectic sub-
manifold it is always possible to construct a symplectic submanifold in the
class [S] + [T ] which equals S ∪ T except near the intersection S ∩ T . We
will think of this manifold as the desingularization of S ∪ T and will de-
note it by S + T . It is not hard to show that S + T is well-defined up to
symplectic isotopy.

Proposition 1.2 (Associativity). Suppose that for i = 1, 2, 3 (mod 3)

gTi = gSi+1 ,

∫
Ti

ωi =
∫

Si+1

ωi+1, and

ιT1 = −ιS2 , ιT2 = −ιS3 , ιT3 = −(ιS1 + 2).

Then

(X1 #
T1=S2

X2) #
S1#T2=S3+T3

X3 = X1 #
S1+T1=S2#T3

(X2 #
T2=S3

X3).
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Proof. (Sketch) To prove the result up to deformation we will find a
triple (X4, S4, T4) which, when summed with either X3 or X1, yields a
manifold symplectically deformation equivalent to the original summand
and containing S3#T4 or S4#T1 as a representative of the class [S3]+ [T3]
or [S1] + [T1] respectively.

The triple we will use is (Wg,Γ−k+2,Γk) where Wg is a ruled surface
over a Riemann surface of genus g with a pair of sections Γ−k+2,Γk that
intersect positively in one point. Indeed, we prove in §3:

Lemma 1.3. Given any triple (X, S, T ), if (g, k) = (gS ,−ιS) then the
symplectic sum with the triple (Wg,Γ−k+2,Γk) yields

(X, S + T ) ∼= (Wg #
Γk=S

X, Γ−k+2#T ).

Analogously, if (g, k) = (gT , ιT + 2) then

(X, S + T ) ∼= (X #
T=Γ−k+2

Wg, S#Γk).

Granted this, we apply the 4-fold sum rule with (X4, S4, T4) =
(Wg,Γ−k+2,Γk) where

g = gS1 = gT3 , k = −ιS1 = ιT3 + 2.

It is easy to check that the 4-fold sum is well-defined. Moreover, by Lemma
1.3

(X4 #
T4=S1

X1, S4#T1) ∼= (X1, S1 + T1) and

(X3 #
T3=S4

X4, S3#T4) ∼= (X3, S3 + T3).

This proves the two manifolds are deformation equivalent. The proof that
they are symplectomorphic is given in §4.

Remark 1.4. In order to prove Proposition 1.2 up to symplectomorphism
rather than deformation equivalence we will need a thickening/thinning
procedure which is described in §4. By thickening and thinning we can
build the necessary X4 = Wg out of pieces removed from the other Xi’s.

One application of these results is to prove the symplectic equivalence
of two manifolds which are constructed out of elliptic surfaces. Let E(n) be
the elliptic surface which is the n-fold branched cover of
E(1) = CP 2#9CP

2
along a pair of fibers. Then E(n) contains 9 sections

Σ−n which are n-fold covers of the exceptional spheres in E(1) and so have
self-intersection −n. In terms of the symplectic sum, we can inductively
define

(E(n),Σ−n) ∼= (E(n − 1) #
Fn−1=F1

E(1), Σ−n+1#Σ−1)
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where Fk is a generic fiber in E(k). When n = 4 one can sum along
the section Σ−4 and a quadric curve Q in CP 2 to form the manifold
E(4) #

Σ−4=Q
CP 2 which is not diffeomorphic to any complex surface (see

Gompf [1]). On the other hand, when n = 3 there is a torus T−1 in the
homology class [Σ−3] + [F3]. Since

T−1 · T−1 = Σ−3 · Σ−3 + 2Σ−3 · F3 = −1,

E(3) can be summed with Y = CP 2#8CP
2

along the tori T−1, T1 where
T1 is a torus of self-intersection +1 in Y which is obtained from an elliptic
curve in CP 2 through the 8 blown up points.

Stipsicz [8] proved that the Donaldson invariants of these two manifolds

E(4) #
Σ−4=Q

CP 2, E(3) #
T−1=T1

Y

are the same and Gompf [2] has shown using Kirby calculus that they
are diffeomorphic. We show here that the manifolds are symplectically
deformation equivalent. (Observe that, since they are built out of Kähler
surfaces, both manifolds have symplectic forms well-defined up to defor-
mation.)

Proposition 1.5. The manifolds E(4)#
Σ−4=Q

CP 2 and E(3)#
T−1=T1

Y

are symplectically deformation equivalent.

Proof. First, scale the symplectic forms on E(1), E(3) so that the symplec-
tic areas of the fibers are equal. Next, adjust these forms (by pulling back
suitable forms from the base of the elliptic fibrations) to make the sections
Σ−1,Σ−3 have the same symplectic area aΣ, and choose a symplectic form
on CP 2 such that the symplectic area of a line equals aΣ. Then, if we take

(X1, S1, T1) = (E(3), Σ−3, F3)
(X2, S2, T2) = (E(1), F1, Σ−1)
(X3, S3, T3) = (CP 2, L1, L2)

where L1, L2 are two lines in CP 2, the 3-fold sums of Proposition 1.2 are
defined. Further,

(X1 #
T1=S2

X2) #
S1#T2=S3+T3

X3

= (E(3) #
F3=F1

E(1)) #
Σ−4=Q

CP 2 = E(4) #
Σ−4=Q

CP 2.

On the other hand

X1 #
S1+T1=S2#T3

(X2 #
T2=S3

X3)

= E(3) #
T−1=F1#L2

(E(1) #
Σ−1=L1

CP 2) = E(3) #
T−1=T1

Y,
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where the last equivalence holds because the sum with CP 2 is just a sym-
plectic blow-down of Σ−1 and so takes E(1) to Y and F1 to T1.

Another application in the same spirit uses properties of the ruled sur-
faces Wg to show that blow-up points can be traded from one side of a
symplectic sum to the other without changing the deformation class of the
symplectic structure. McCarthy and Wolfson [6] noted that a standard
handle trading argument shows that this can be done up to diffeomor-
phism, as explained in detail by Gompf in Lemma 5.1 of [1]. However,
these authors left open the question of symplectic equivalence. We prove

Proposition 1.6. Consider symplectic pairs (X, S), (X ′, S′) such that

ιS = −ιS′ + 1, gS = gS′ .

Let X̃ be the blow-up of X at a point of S and S̃ the proper transform of
S, and similarly for (X̃ ′, S̃′). Then

X #
S=S̃′ X̃ ′ ∼= X̃ #

S̃=S′ X ′.

Remark 1.7. (i) Because the blow-down operation on X̃ may be inter-
preted as a sum with CP 2, an equivalent way of stating this (which shows
its similarity to the associativity rule) is:

(X̃ #
E=L1

CP 2) #
S̃#L2=S̃′ X̃ ′ ∼= X̃ #

S̃=L2#S̃′ (CP 2 #
L1=E′ X̃ ′).

Here E, E′ denote the exceptional spheres in X̃, X̃ ′, and L1, L2 are lines
in CP 2.
(ii) The invariance of the symplectic structure under the trading of blow-up
points can be at most up to deformation equivalence since it is impossible
to fix the symplectic areas of S and S′ in such a way that both sums can
be performed. To see this, observe that the area of the proper transform
of a surface (after a symplectic blow-up) is less than that of the original
surface, so the symplectic sum along S, S̃′ requires

∫
S

ω <
∫

S′ ω′ while a
sum along S̃, S′ requires the reverse inequality.

As another application, we show that rational blow-down of a −4-sphere
gives nothing new if this sphere is the blow-up of a −3-sphere. Again, this
was proved by Gompf as far as concerns diffeomorphism type.

Corollary 1.8. Let S ⊂ X be a sphere with ιS = −3 and let Q be a
quadric curve in CP 2. Then

X̃ #
S̃=Q

CP 2 ∼= X.
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Proof. Proposition 1.6 shows that X̃#
S̃=Q

CP 2 ∼= X#
S=Q̃

C̃P 2. But, we

may think of C̃P 2 as the projectivization P(C ⊕ L3) of a complex rank 2
bundle over CP 1 where L3 is a complex line bundle of Chern number 3.
Thus C̃P 2 is the union of a neighborhood of the section Q̃ with a neighbor-
hood of a −3 section, and it follows immediately that X#

S=Q̃
C̃P 2 ∼= X.

2. The 4-fold sum

The associativity rule (Proposition 1.2) is a consequence of the fact
that a simple version of the 4-fold sum is equivalent to a sequence of
three symplectic sums (two of which are pairwise) performed in either of
two ways. We begin with a description of the pairwise symplectic sum in
terms of images under the moment map for a local torus action.

2.1. The symplectic and pairwise sums. Given a pair of symplectic
submanifolds Si ⊂ (Xi, ωi), i = 1, 2 and a symplectomorphism φ : S1 →
S2, one can perform a symplectic sum of X1 and X2 along S1 and S2

provided the normal numbers (Chern numbers of the normal bundles) of
the submanifolds sum to zero. This operation was originally introduced
by Gromov [3] and can be viewed as an inverse to Lerman’s symplectic
cutting procedure [5]. Observe first that a codimension two symplectic
submanifold S in X always has a tubular neighborhood NS that admits
a Hamiltonian circle action with fixed point set S. Moreover, one can
clearly extend the induced action on NS − S to a free Hamiltonian action
on a collar neighborhood N S of the boundary in an appropriate closure
X − S of X − S. Here NS is an open disc bundle over S, and N S is the
associated bundle with fibers [0, 1)×S1 so that its boundary ∂S = {0}×S1

is a circle bundle over S. Furthermore, this boundary ∂S is a level set of the
Hamiltonian which generates the free action, and its symplectic reduction
is S itself. Now, the way to form the sum

X1 #
S1=S2

X2

is to remove the submanifolds Si, take the closures Xi − Si as described
above, and then identify the boundaries via an orientation reversing diffeo-
morphism φ : ∂S1 → ∂S2 that covers φ and thus matches the characteristic
foliations (along which the symplectic forms are degenerate).

Remark 2.1. Note that the diffeomorphism class of the summed manifold
depends on the choice of the fiber isotopy class of the map φ. In the
examples we consider in this paper we sum along fibers in elliptic surfaces
and use the canonical framings to get the boundary identifications.
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❅
❅

❅
❅

(a) (b) (c)

Figure 1. Images of moment maps.

In order to describe the pairwise sum in a similar way, one needs to
use torus actions rather than circle actions. Recall that when a closed
4-manifold admits a Hamiltonian action of T 2, the image of an associated
moment map is a convex polytope in R

2. The preimages of points on
the interior of the polytope are tori, while the preimages of points on an
edge or vertices are circles or points respectively. We use the convention
that replacing a solid line segment in the image of a moment map by a
heavy dotted line segment corresponds to replacing the submanifold S (the
preimage of the solid line) with the associated boundary ∂S . A light dotted
line indicates an open boundary. For instance,

Example 2.2. Figure 1 shows the image under the moment map for (a)
CP 2, (b) the open ball obtained by removing a CP 1 = S and (c) its closure,
a closed ball with boundary ∂S.

For the purposes of this paper we want to keep track of the effect of the
symplectic sum on transverse symplectic submanifolds. If two symplectic
surfaces S, T intersect transversely and positively, then one of them can
be perturbed, via an isotopy through symplectic surfaces, so that the in-
tersection is orthogonal with respect to the symplectic structure (see [1]
Lemma 2.3, for example).

Consider a triple (X, S, T ) as in §1. Then in a neighborhood Nx of the
intersection point {x} = S ∩ T there is a Hamiltonian T 2 action such that
the first S1 factor has fixed point set S∩Nx and the second has fixed point
set T ∩ Nx. Thus the image of the moment map is a neighborhood of a
corner in a square. We may close X − (S∪T ) by adding a boundary (with
corner) to get a compact symplectic manifold on which there is a free local
T 2 action acting in a neighborhood of the corner.

For triples (Xi, Si, Ti), i = 1 · · · 4 we choose neighborhoods of the inter-
section points whose images under the moment map are as in Figure 2(a),
where the slopes of the slanted edges are −ιSi and −1/ιTi .

Remark 2.3. These images show the correct convexity (or concavity) of
the symplectic neighborhoods. Indeed, when the normal number of a sub-
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manifold is positive, removing a tubular neighborhood whose boundary is
a level set of the Hamiltonian and taking the symplectic reduction of the
newly formed boundary yields a surface whose area is smaller than that of
the original surface.

In order for our notation to be consistent with that used for the 4-
fold sum, the summing operation identifies Ti with Si+1 (mod 4). We
assume that Si intersects Ti orthogonally in xi and that the gluing map
φi : Ti → Si+1 takes xi to xi+1. Then the first diagram of Figure 2(b)
shows the image under the moment map of these neighborhoods after the
symplectic sum has been taken along T1, S2 using the symplectomorphism
φ1. The bold horizontal line at the bottom consists of points with preimage
equal to a circle and so is a neighborhood in the connected sum S1#T2 of
the attaching circle. The heavy dotted vertical line segment represents the
normal 2-disc bundle over the attaching circle, or equivalently, the inter-
section of the neighborhood Nx and the identified boundaries associated
to the submanifolds T1, S2. The second diagram is a similar picture of the
sum along T3, S4. Since any positive intersection can be made orthogo-
nal via an isotopy of one of the intersecting surfaces, Figure 2(b) makes
the following lemma clear. It is a rephrasing of the 4-dimensional case of
Theorem 1.4 in Gompf [1].

Lemma 2.4. Consider two triples (Xi, Si, Ti), i = 1, 2. If T1 and S2

have the same area and genus, and ιT1 = −ιS2 , then in the manifold
X1 #

T1=S2
X2 there is a symplectic surface that is the connected sum of

surfaces isotopic to S1 and T2. The normal number of the surface S1#T2

is the sum of the normal numbers of S1 and T2.

2.2. The 4-fold sum. The 4-fold sum is a sum along the four pairs of
surfaces in four triples (Xi, Si, Ti), i = 1, · · · 4 such that for each i,

• Si ∩ Ti = {xi} and the intersection is orthogonal with
respect to ωi,

• ∫
Ti

ωi =
∫

Si+1
ωi+1 and

• ιTi
= −ιSi+1

where the subscripts are taken mod 4. Call such a collection of triples
admissible.

Because the normal numbers of each pair of symplectomorphic surfaces
sum to zero, it is possible to sum along all four pairs Ti, Si+1. Trying to
do these sums simultaneously leads to the following definition:

Definition 2.5. Given an admissible collection of triples (Xi, Si, Ti), i =
1, · · · 4 and symplectomorphisms φi : Ti → Si+1 such that φi(xi) = xi+1
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(a)

(b)

(c)

T1

S1

T2

S2

T3

S3

T4

S4

S1#T2 S3#T4

Figure 2. The symplectic sum.

(mod 4), let
Xi − (Si ∪ Ti)

be the closure of Xi− (Si∪Ti) with free local T 2 action as described above.
Then, choosing orientation reversing diffeomorphisms φi that cover the φi,
we define

�4
i=1 Xi − (Si ∪ Ti) / φi

to be the 4-fold sum of the Xi along the surfaces Ti, Si+1.

To see that this construction yields a smooth symplectic manifold, no-
tice that it is equivalent to a sequence of three symplectic sums. Indeed,
given a set of four triples as in the definition, by Lemma 2.4 we can use the
maps φ1 and φ3 to form pairwise sums along the pairs T1, S2 and T3, S4 to
yield two manifolds which contain surfaces S1#T2 and S3#T4 respectively.
These surfaces have the same area and genus, and have normal numbers
ιS1 + ιT2 and ιS3 + ιT4 = −ιT2 − ιS1 respectively. Therefore we can form
the symplectic sum along this new pair. In fact, to perform this sum, we
can use the diffeomorphisms φ2 and φ4 which agree on the overlapping
circle. Figure 2 shows these sums, keeping track of the convexity of all of
the tubular neighborhoods. Thus, the only place the 4-fold sum might not
have been a smooth symplectic manifold it is in fact symplectomorphic to
the product of T 2 and a domain in R

2 with the symplectic structure of
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T ∗T 2. A precise statement and proof of this fact is given in Symington
[9].

Proposition 1.1 follows immediately since the 4-fold sum is certainly also
equivalent to first summing pairwise along the surfaces T2, S3 and T4, S1

and then afterwards summing the resulting manifolds along the surfaces
S2#T3, S4#T1.

3. Proofs of the main results

We begin by describing the manifolds Wg of Lemma 1.3. For each genus
g and integer n ≥ 1 let Wg = Wg,n be an S2 bundle over a Riemann surface
of genus g. Make Wg be the trivial bundle (i.e. a product) if n is even,
and the nontrivial bundle when n is odd. In either case, there is a unique
symplectic structure on the ruled surface Wg up to deformation. (In fact,
by [4] symplectic forms in a given cohomology class on Wg are unique up
to isotopy.) We choose a symplectic structure on Wg so that the manifold
contains symplectic sections Γ−n+2p of self-intersection −n + 2p for all
p ≥ 0. Then in particular there are symplectic sections Γ−k+2 and Γk

which intersect once transversally (and positively) for each −n ≤ k ≤ n+2.
To be explicit, realize Wg as the projectivization of the complex rank

2 bundle C ⊕ Ln as in Corollary 1.8. Then Γn and Γ−n are the holomor-
phic (and therefore symplectic) sections at zero and infinity. Observe that
they are disjoint. If F is a fiber then [Γ−n] and [F ] form a basis for the
homology of Wg such that [Γn] = [Γ−n] + n[F ]. Because the fiber can also
be realized as a holomorphic curve it is clear that there are symplectic
sections Γ−n+2 ∈ [Γ−n] + [F ] and Γn−2 ∈ [Γ−n] + (n − 1)[F ]. Notice that
the ruled surface Wg is also the total space of a Hamiltonian S1-action
with fixed point sets Γn and Γ−n.

Henceforth, we assume that Wg = Wg,n with n sufficiently large that
any sections referred to can be (and are) taken to be symplectic. Note
that the parity of the self-intersection numbers of the sections will in all
cases make it clear whether or not Wg is the trivial bundle.

We claim that the manifold Wg has the exact properties we need in
order to prove Lemma 1.3. First of all, because the sections of opposite
self-intersection are disjoint, [Γk] · ([Γ−k] + [F ]) = 1, so the sections Γk

and Γ−k+2 intersect once positively. Second of all, we can view Wg either
as the union of symplectic neighborhoods of Γk and Γ−k or of Γk−2 and
Γ−k+2, thanks to the fibration by symplectic spheres.

We now show that summing (Wg,Γ−k+2,Γk) with a triple (X, S, T )
desingularizes the intersecting submanifolds S, T .

Proof of Lemma 1.3. We will show that if S ⊂ X has genus g and ιS = −k,
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then

(X, S + T ) ∼= (Wg #
Γk=S

X, Γ−k+2#T ).

The other identity then follows by replacing k by −k+2 and interchanging
the roles of S, T .

Now, it is obvious that X ∼= Wg #
Γk=S

X, i.e. Wg is a neutral element
for the symplectic sum operation in the category of symplectic deformation
equivalence classes. As for the statement about the submanifold S + T ,
observe that we have

(X, S, T ) ∼= (Wg #
Γk=S

X, Γ−k, F#T ).

Hence

(X, S + T ) ∼= (Wg #
Γk=S

X, Γ−k + F#T )
∼= (Wg #

Γk=S
X, (Γ−k + F )#T )

∼= (Wg #
Γk=S

X, Γ−k+2#T ),

where the second equivalence holds because Γ−k is disjoint from Γk.
To show that one can trade blow-up points we use a pair of disjoint

sections in the ruled surface Wg, rather than a pair that intersect once.

Proof of Proposition 1.6. Let W = Wg be a ruled surface with disjoint
sections Γ±(k+1) and let W ′ = W ′

g be one with disjoint sections Γ±k.
Thus, one of these manifolds W, W ′ will be a trivial fibration and the
other one non-trivial. Blow W up at a point of Γk+1 and blow W ′ up
at a point of Γ′

−k. It is well known that there is a diffeomorphism that
realizes W̃ ∼= W̃ ′, taking Γ̃k+1 to Γ′

k, and Γ−k−1 to Γ̃′
−k. Recall that the

symplectic structures on these manifolds are equivalent up to deformation.
Thus

(W̃ , Γ̃k+1,Γ−k−1) ∼= (W̃ ′,Γ′
k, Γ̃′

−k).

Letting k = −ιS − 1, we can deform (X, S) ∼= (X #
S=Γ−k−1

W, Γk+1)
and we clearly have:

(X̃, S̃) ∼= (X #
S=Γ−k−1

W̃ , Γ̃k+1)

∼= (X #
S=Γ̃′

−k

W̃ ′,Γ′
k).
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Hence, because Γ̃′
−k and Γ′

k are disjoint in W̃ ′,

X̃ #
S̃=S′ X ′ ∼= (X #

S=Γ̃′
−k

W̃ ′) #
Γ′

k
=S′ X ′

∼= X #
S=Γ̃′

−k

(W̃ ′ #
Γ′

k
=S′ X ′)

∼= X #
S=S̃′ X̃ ′.

Note that the effect of deforming (X, S) to (X #
S=Γ−k−1

W, Γk+1) is to
localize the argument near S, i.e. we represent a neighborhood of S in X
as a neighborhood of Γk+1 in W and then work in W .

4. Thickening and thinning

In order to prove the associativity rule up to symplectomorphism we
need a refinement of Lemma 1.3. The notation Wg,ε will mean that the
symplectic form on Wg has been scaled so that the fiber has symplectic
area ε > 0. By [4] the symplectic form on Wg,ε is then determined up to
symplectomorphism (even isotopy) by specifying the area of one section.
(The only condition on this area is the following: if ω(Γk) = a we need
a > kε/2, unless g = 0, k is odd, in which case we need a > (k + 1)ε/2.
Thus, given a, this is satisfied for sufficiently small ε.)

The next lemma says that W2ε can be thought of as the sum of two
copies of Wε.

Lemma 4.1. If symplectic forms on two copies W i
g,ε, i = 1, 2 of Wg,ε are

chosen so that the area of the section Γ1
k in the first equals the area of Γ2

−k

in the second, then

(W 1
g,ε #

Γ1
k
=Γ2

−k

W 2
g,ε,Γ

1
−k, Γ2

k) = (Wg,2ε, Γ−k,Γk).

Proof. We use Lerman’s symplectic cutting procedure [5] to show that
Wg,2ε decomposes as a sum of this kind. Choose a Hamiltonian function f
on Wg,2ε with fixed point sets Γ−k = f−1(0) and Γk = f−1(2ε). Then both
of the ruled manifolds obtained by cutting Wg,2ε along the S1-invariant
hypersurface f−1(ε) and taking the S1 reduction along the boundaries of
f−1([0, ε]), f−1([ε, 2ε]) have fiber of size ε and so may be identified with
the manifolds W 1

g,ε, W
2
g,ε.

Given a triple (X, S, T ) with symplectic structure ω we write

(T −
S (X), S−, T−)

for the (deformation equivalent) manifold formed by “thinning” X along
S by the amount ε, for some sufficiently small ε (which determines T −

S (X)
up to symplectomorphism). In terms of the language of §2, we remove
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an S1-invariant open tubular neighborhood NS of S with fiber of area ε,
and then reduce the boundary of X − NS by the S1 action. The surface
S− is the symplectic reduction of the boundary. Because T coincides near
S with an orthogonal symplectic fiber of NS , the manifold T− is just T
with a disk of area ε removed and the circle boundary collapsed to a point.
Indeed, we have

(X, S, T ) = (T −
S (X) #

S−=Γk
Wg,ε, Γ−k, T−#F )

where g = gS , k = −ιS and F is a fiber of the ruled surface Wg,ε. Letting
ω− be the symplectic form on T −

S (X), we have∫
T −

S
(X)

(ω−)2 <

∫
X

ω2,

∫
S−

ω− = −ειS +
∫

S

ω,

∫
T−

ω− = −ε +
∫

T

ω.

Analogously, we can “thicken” along the surface S by removing S, tak-
ing the closure X − S as in §2, and gluing in an S1 invariant neighborhood
of a surface S+ diffeomorphic to S. Again take the area of the fibers to
be some sufficiently small ε. We denote the triple that arises from the
thickening by ε along S by

(T +
S (X), S+, T+).

It is easy to see that this thickening is just given by summing with Wg,ε:

(T +
S (X), S+, T+) = (X #

S=Γk
Wg,ε, Γ−k, F#T ).

Moreover, the symplectic structure ω+ on this manifold has∫
T +

S
(X)

(ω+)2 >

∫
X

ω2,

∫
S+

ω+ = ειS +
∫

S

ω,

∫
T+

ω+ = ε +
∫

T

ω.

We will use the following property of thickening and thinning in the
proof of the associativity rule.

Lemma 4.2. If (Xi, Si, Ti), i = 1, 2 are triples such that the sum(
X1 #

T1=S2
X2, S1#T2

)
is defined, then for sufficiently small ε(

T −
T1

(X1) #
T−

1 =S+
2

T +
S2

(X2), S−
1 #T+

2

)
=

(
X1 #

T1=S2
X2, S1#T2

)
.
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Proof. This is clear, since it is just a matter of cutting points out of a
neighborhood of T1 in X1 and moving them to a neighborhood of S+

2 in
T +

S2
(X2). Explicitly, using the definitions of thickening and thinning, one

can see that both sides are equal to(
T −

T1
(X1) #

T−
1 =Γk

Wg,ε #
Γ−k=S2

X2, S−
1 #F#T2

)
where Wg,ε, g = gT1 is a ruled surface with fiber F and disjoint sections
Γk,Γ−k where k = −ιT1 .

The refined version of Lemma 1.3 that we need is the following:

Lemma 4.3. Given any triple (X, S, T ) and some sufficiently small ε, let
k = −ιS and consider the manifold Wg,2ε, g = gS, which has a section Γk

of area AS + (k + 1)ε where AS is the symplectic area of S. Then(
Wg,2ε #

Γk=(S−)+
T +

T−(T −
S (X)), Γ−k+2#(T−)+

)
=

(T +
S+T (X), (S + T )+

)
where the thickening and thinning are by the amount ε. Similarly, if
(g, k) = (gT , ιT + 2) and the section Γ−k+2 has area AT + (3 − k)ε then(
T +

S−(T −
T (X)) #

(T−)+=Γ−k+2
Wg,2ε, (S−)+#Γk

)
=

(T +
S+T (X), (S + T )+

)
.

Proof. As before, the second statement follows from the first by replacing
k with −k+2 and interchanging S, T . We begin by proving the symplectic
equivalence of the manifolds in the first statement, and then show how the
submanifolds are also identified.

Observe that the definitions immediately imply

(Wg,ε #
Γk=S− T −

S (X), Γ−k+2#T−) = (X, S + T ).

We need something more subtle. Define

(X3, S3, T3) = (T −
S (X), S−, T−)

(X4, S4, T4) = (Wg′,ε,Γk′ , F ′)

where g′ = gT , k′ = −ιT so that

(T +
T−(T −

S (X)), (S−)+) = (X3 #
T3=S4

X4, S3#T4).

The lemma then follows from the 4-fold sum rule (Proposition 1.1) once we
express Wg,2ε appropriately as a sum of two ruled surfaces X1#X2 each
with fibers F i of area ε. Namely, apply Lemma 4.1 using a Hamiltonian
function that has fixed point sets Γ−k+2,Γk−2 to define

(X1, S1, T1) = (W 1
g,ε, F

1,Γ1
k−2)

(X2, S2, T2) = (W 2
g,ε,Γ

2
−k+2,Γ

2
k)
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where the areas of T1 = Γ1
k−2 and S2 = Γ2

−k+2 both equal AS + ε. Then
S1#T2 has area AS + (k + 1)ε and

(X1 # X2) # (X3 # X4) = Wg,2ε #
Γk=(S−)+

T +
T−(T −

S (X)).

On the other hand

X2 # X3 = W 2
g,ε #

Γk=S− T −
S (X) = X

and X4#X1 is a ruled surface with fibers of area ε over a Riemann sur-
face of genus g = gS + gT . The surface S2#T3 = Γ2

−k+2#T− has self-
intersection ιS + ιT + 2 and is in the class of [S] + [T ], so we can choose
it as the representative S + T . It is not hard to check that summing with
X4#X1 simply thickens X = X2#X3 along S + T as desired, so

(X4 # X1) # (X2 # X3) = X+
S+T .

To see that the symplectomorphism of Proposition 1.1 identifies
Γ−k+2#(T−)+ and (S + T )+, notice that (T−)+ is in fact a section of W4

disjoint from S4, and Γ−k+2 is a section of W1 disjoint from T1. There-
fore, when we sum along the fibers of X4, X1 we get another ruled surface
containing the connected sum of these sections, which is a section disjoint
from S4#T1 and therefore corresponds to (S + T )+.

We are now ready to prove that the associativity rule holds up to sym-
plectomorphism. Roughly, the strategy is to thin the manifolds Xi and
use the removed neighborhoods to create the necessary X4 = Wg,2ε so as
to apply the 4-fold sum rule. To do this correctly, we need to do some
thickening as well. Note that the order in which one thickens and thins
does not matter, i.e.

T +
T−(T −

S (X)) = T −
S+(T +

T (X)).

Proof of Proposition 1.2. We must show that

(X1 #
T1=S2

X2) #
S1#T2=S3+T3

X3 = X1 #
S1+T1=S2#T3

(X2 #
T2=S3

X3)

under the given hypotheses. According to the above strategy, consider the
triples (X ′

i, S
′
i, T

′
i ), i = 1, . . . 3 where we have thickened and thinned by a

sufficiently small ε to obtain

X ′
1 = T +

T−
1

(T −
S1

(X1)), X ′
2 = T −

T−
2

(T −
S2

(X2)), X ′
3 = T +

S−
3

(T −
T3

(X3))

and surfaces S′
i, T

′
i which are the deformed Si, Ti. Then choose

(X ′
4, S

′
4, T

′
4) = (Wg,2ε,Γ−k+2,Γk)
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where k = −ιS and the areas of S′
4, T

′
4 equal those of T ′

3, S
′
1. This choice is

possible since in both cases the difference in the areas of the two subman-
ifolds is 2(1 − k)ε. The triples are admissible for the 4-fold sum, so the
following calculations prove the proposition. We suppress the subscripts
indicating the submanifolds along which the sums are being performed
when there is no ambiguity. Invoking Lemmas 4.2 and 4.3, we have

(X ′
1 #

T ′
1=S′

2
X ′

2) #
S′

1#T ′
2=S′

3#T ′
4
(X ′

3 #
T ′

3=S′
4
X ′

4)

=
(
T +

T−
1

(T −
S1

(X1)) # T −
S−

2
(T −

T2
(X2))

)
#

(
T +

S−
3

(T −
T3

(X3)) # Wg,2ε

)
=

(
T −

S1
(X1) #

T−
1 =S−

2

T −
T2

(X2)
)

#
S−

1 #T−
2 =(S3+T3)+

T +
S3+T3

(X3)

= (X1 #
T1=S2

X2) #
S1#T2=S3+T3

X3

and

(X ′
4 #

T ′
4=S′

1
X ′

1) #
S′

4#T ′
1=S′

2#T ′
3
(X ′

2 #
T ′

2=S′
3
X ′

3)

=
(
Wg,2ε # T +

T−
1

(T −
S1

(X1))
)

#
(
T −

T−
2

(T −
S2

(X2)) # T +

S−
3

(T −
T3

(X3))
)

= T +
S1+T1

(X1) #
(S1+T1)+=S−

2 #T−
3

(
T −

S2
(X2) #

T−
2 =S−

3

T −
T3

(X3)
)

= X1 #
S1+T1=S2#T3

(X2 #
T2=S3

X3)

.
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