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SOME NEW APPLICATIONS OF GENERAL

WALL CROSSING FORMULA, GOMPF’S

CONJECTURE AND ITS APPLICATIONS

Ai-Ko Liu

Introduction

As early as the birth of Seiberg Witten invariants [W1], the positive
scalar curvature metrics on four dimensional manifolds have played a very
important role. It was Witten [W] who first noticed that assuming b+

2 > 1
then one could easily derive the vanishing result of Seiberg Witten Invari-
ants for those manifolds which carried the positive scalar curvature (psc)
metrics. Combined with Taubes’ nonvanishing result [T2] for symplectic
four manifolds, one could easily conclude that if a symplectic four manifold
carries some psc metric, then its b+

2 must be equal to one. In addition the
same vanishing result was used by P. Kronheimer and T. Mrowka [K.M.]
in proving the Thom conjecture, and by C.H. Taubes in his “more con-
straints of symplectic forms on CP 2” [T3]. Furthermore R. Friedman and
J. Morgan [FM] systematically discussed which kind of Kahler manifold
can carry the psc metrics. Based on surface classification theory, Friedman
and Morgan could argue that the Kahler surfaces carrying psc metrics are
either rational, rational ruled or irrational ruled. Recently, the same van-
ishing result has been used by Taubes [T4] to show that CP 2 has a unique
symplectic structure. At this point it is interesting to ask about the possi-
bilities of classifying symplectic four manifolds carrying psc metrics. One
of the purposes of this paper is to address this possibility.

Another goal of this paper is to address the question raised by Gompf
[Gom] which states that:

Conjecture. (Gompf) If M is a minimal symplectic four manifold with
c1(K)2< 0, then it must be symplectomorphic to the irrational ruled sur-
faces. (where c1(K) means the first chern class of the canonical bundle
associated with the almost complex structures on M).

I will satisfy both purposes by providing some new applications of the
wall crossing formula for Seiberg-Witten invariants. I will concentrate
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on the compact symplectic four manifolds assuming b+
2 = 1. A pesudo-

holomorphic rational curve with non-negative self intersection number can
be generated on the appropriate symplectic four manifold under some weak
condition; and therefore, various applications can be derived which include
the Gompf conjecture and its corollaries.

Main result

It is important to have an overall view of the main focus of the theorems
proved in this paper. The main theorems and corollaries proved in this
paper will be listed according to the English characters. The technical
lemmas and the propositions will be listed in terms of numbers.

Main Theorem A. Let M be a b+
2 = 1 minimal symplectic four manifold,

if c1(K)2 < 0, then M must be an irrational ruled manifold.

Combined with C. H. Taubes’ theorem [T6],

Theorem. (Taubes) Let be a minimal symplectic four manifold with b+
2 >

1, then c1(K)2 must be non-negative.

We prove the Gompf’s conjecture which states:

Conjecture. (Gompf) Let M be a minimal symplectic four manifold with
c1(K)2 < 0. Then it must be irrational ruled.

This theorem should be viewed as a theorem concerning the classification
of symplectic four manifolds.
Using the same argument one can deduce the following:

Theorem B. Let M be a b+
2 = 1 symplectic four manifold (not necessarily

minimal). If c1(K) · ω < 0, then it must be either rational, rational ruled
or irrational ruled.

One application of the above theorem is that it can be used in proving
the following:

Theorem C. Let M be a symplectic four manifold with psc metrics, then
M must be either some blow up of rational, rational ruled or irationally
ruled surfaces.

In addition, using the above thorem one can prove that

Theorem D. [LL] If M is a symplectic four manifold with b+
2 = 1. and

if C ∈ H2(M) is a class such that C · ω > 0 and C2 = C · K = 0, then the
Poincare dual of C cannot be represented by a square zero sphere.

Using the theorems proved above in combination with Friedman-Mor-
gan’s argument of Seiberg-Witten theory on Kahler surfaces [FM], one is
able to prove the following:
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Theorem E. [LL3] If M is a minimal symplectic four manifold with
b+
2 (M) = 1, and if c1(K)2 > 0, then ±c1(K) are the only Seiberg-Witten

basic classes on M. If c1(K)2 = 0, then its basic classes are propotional to
c1(K) up to torsions.

From Theorem E, the wall crossing formula [LL1], the blow up formula
[FM], and others, we can gain a qualitative understanding of the Seiberg
Witten invariants and the Gromov invariants in regards to these unknown
symplectic manifolds. The qualitative understanding of these invariants
implies that these minimal symplectic manifolds are of simple type in the
metric chamber. By the blow-up formula we know that the blown up
manifolds are still of simple type in the blown up chamber(for the definition,
please consult [FM]). Using the wall crossing formula deduced in [LL1], one
can show that in most of the cases, they are of Gromov non-simple type.
Therefore, it is a very interesting question to ask whether we can manage
these ample families of symplectic curves on these manifolds to study the
symplectic geometry of these manifolds.

Let us briefly list the basic tools used in the discussion.
The first important tool is Taubes’ theorem “SW = Gr” [T1,T4,T6].

Taubes argues that if b+
2 > 1 and if some class has a non-zero Gromov

invariant, then the cohomology class could be represented by a smooth
symplectic curve which might not be connected. Nevertheless, the curve
must be reduced so that each connected component can only have a mul-
tiplicity of one. (Though it holds true in most cases. The symplectic tori
can have higher mulitiplicities.) A similar conclusion can be made for the
b+
2 = 1 symplectic manifolds, however, with an essential difference. To

argue that some multiple covering of a −1 curve doesn’t appear, Taubes
used the blow up formula of SW invariants. It is important to remember
that in the blow up formula, the new basic classes would change by ±E,
where E is the exceptional class. However, as the b+

2 = 1 symplectic mani-
folds usually are not of simple type, one could argue that there is a similar
blow up formula for the corresonding chambers with the coefficients before
E being arbitrary odd integers besides ±1. The only restriction involves
making the moduli space dimension of the new “basic class” in the blown
up chamber non-negative. Therefore, one can not argue by this process
that a multiple covering of a -1 curve does not appear. In fact, if we blow
up several points on CP 2, it is easy to derive some examples where the
multiple covering of -1 curves do appear as some connected component of
the symplectic curve. To avoid this type of result, one needs to be careful
in using Taubes’ theorem. In general, there are two cases where one can
use Taube’s theorem effectively. The first is when the symplectic manifold
is itself minimal. The other is when the class of the symplectic curve is
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orthogonal to all the possible exceptional curves. Besides these two cases,
we need a detailed discussion. For most of the applications in this paper,
either one of the cases can be shown to occur.

The following are the lemmas and the theorems which will be used fre-
quently in the paper.

Lemma 1. (light cone lemma) For the light cone of signature (1, n)
(n �= 0), any two elements in the forward cone have non-negative dot
product. Especially, if the dot product is zero then the two elements are
propotional to each other.

Theorem 2. (McDuff) If a symplectic four manifold M has a non-nega-
tive self intersecting rational curve, then it must be symplectomorphic to
either rational, rational ruled, or irrational ruled manifolds.

The other useful tools are the following lemmas proved previously in
papers [LL1],[LL2].

Lemma 3. Consider the spinc structure associated with c1(K−1)+2C. If
(c1(K−1)+2C) · ω > 0, then there is an odd number of walls crossed when
deforming from the honest SW equation into the final Taubes’ chamber.
Conversely if the sign is negative, there is an even number of walls crossed.
(where ω is the sympletic form used to define the deformation of the Seiberg-
Witten equation.)

Lemma 4. If a symplectic four manifold carries positive scalar curvature
metrics, then c1(K−1) · ωpsc is always greater than zero.

ωpsc here means the self-dual harmonic 2-form associated to the positive
scalar curvature metric which lies in the forward light cone. This lemma is
nothing but Taubes’ “more constraints” on symplectic forms for CP 2 [T].
Over here it is written in a much more general form.

To find the appropriated cohomology class for the latter usuage, one
needs the following arithematic lemma.

Lemma 5. If q is an integral indefinite quadratic unimodular form of sig-
nature of type (1, b−2 ) (require b−2 �= 0), then the rational points are dense
in the real locus of the light cone defined by q = 0.

The proof is done by using the Hasse-Minkowski classification of the in-
definite unimodular form [Ser], then one can directly write down a rational
solution of q = 0. If q is of even type, one can get the rational solution
directly by restricting to the hyperbolic factor. The odd type case can
be handled easily. With the first rational point being found, it is elemen-
tary to show that the conic (in P b−(R)) associated with the light cone by
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projectivization is birational to P (b−−1)(R) over Q (this is where the first
rational point is used). This proves the denseness of the rational points.

An immediate corollary is the following.

Proposition 6. Let c1(K) be an element in H2(M, Z) such that c1(K)2 <
0. Then there exists an integral element Z of the forward light cone (q = 0)
such that c1(K) · Z < 0.

Proof. It is easy. If c1(K)2 < 0, then there exists some real element x of the
forward light cone q = 0 such that c1(K) ·x < 0. Now use the denseness of
the rational points, one can assume that x itself is rational. By rescaling,
if necessary, one can definitely make x integral. From now on let us call
this the element Z.

The usage of the Lemmas 5 and 6 here are a tangent from Wilson’s paper
[Wil].

Let us begin our discussion now. Suppose M is a symplectic four man-
ifold satisfying the hypothesis of the Gompf’s conjecture, the following
proposition forces the manifold M to have a non-zero first Betti number.

Proposition 7. If M is a minimal symplectic four manifold with c1(K)2 <
0, then its first Betti number b1 must be non-zero.

Proof. Suppose that b1 is actually zero, let us derive a contradiction. Notice
that in this case Kronheimer-Mrowka’s wall crossing formula [K.M.]can be
used and the wall crossing number is always ±1 if the dimension of the
moduli space is non-negative.

Instead of choosing only one cohomology class, let us begin by using a
family of them. Let k ·Z(where Z was defined by the previous proposition,
and k ∈ Q.) be such a family.

Then we notice that for these classes, the Gromov(and also the Seiberg
Witten) moduli space dimension is

(k · Z)2 − c1(K) · (kZ) = −kc1(K) · Z > 0.

And also the adjunction formula gives us

(k · Z)2 + c1(K) · (kZ) < 0.

Because our manifold M is minimal, the problem of multi covering of
-1 curves never shows up. Therefore it is safe to use Taubes’ theorem
“Gr = SW” now.

The claim is the following: For these classes k · Z (where k is greater
than 0), Gr(k ·Z) are all zero. The reason is as follows. If one of them has
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non-zero Gromov invariant, then k0 ·Z must be represented by a symplectic
curve. Let us denote cohomologically

k · Z =
∑

Ci

with all Ci disjoint to each other. Plugging this into the adjunction formula
we get

(k ·Z)2 + c1(K) · (k ·Z) =
∑

(Ci ·Ci + c1(K) ·Ci) =
∑

(2g(Ci)− 2) < 0.

However as the adjunction number is negative, a symplectic sphere must be
in the list of the connected components (otherwise each 2g−2 is always non-
negative if genus is bigger or equal to one). Having assumed M is minimal
; therefore, this rational curve cannot be a -1 symplectic sphere. Then it
is forced to be a rational curve with non-negative self intersection number!
Now apply McDuff’s theorem [M] to conclude that this minimal model M
must be either P 2 or P 1 × P 1 having c1(K)2 > 0 (using c1(K)2 = 2χ +
3σ) and therefore contradicts to our original assumption. Using Taubes’
theorem “SW = Gr” we conclude that SW (c1(K−1)+2kZ) are all zero in
Taubes’ chamber. The speciality of these classes is that they actually form
a ray. Now let us focus our attention to the following number

(c1(K−1) + 2kZ) · ω

where ω is the symplectic form of the symplectic manifold M . As Z is
chosen to be in the boundary of the forward light cone and ω is in the
interior, the cup product of kZ and ω must be strictly positive by the light
cone lemma.

The above formula, when being viewed as an affine function in k, has a
positive leading term. This implies that the value will be positive for large
enough k. However when deforming backwards beginning from Taubes’
chamber, the spinc structure c1(K−1) + 2kZ, the number of walls crossed
in the two steps is in fact odd for large enough k. Therefore this implies
(by using the wall crossing formula of Kronheimer and Mrowka) that in
the ordinary metric chamber, SW (c1(K−1) + 2kZ) all are non-zero for
large enough k. This is impossible because it is well known that for a
given generic metric and self dual two form µ as perturbation, there can
be only finite number of spinc structures having non-zero Seiberg-Witten
invariants! This creates a contradition and therefore ends the proof.

Now assume that b1 is non-zero and the general wall crossing formula
can be used. Before I proceed, we rule out the following:
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Lemma 8. Let M be a minimal symplectic four manifold with c1(K)2 < 0
and b1 > 0. Then it must satisfy the following condition. For all non-zero
y ∈ H1(M, R), the map

y ∪ · : H1(M, R) −→ H2(M, R)

must be non-zero.

The proof is done by mimicing Taubes’ theorem [T1] listed above.

Proof. Suppose that the above conclusion does not hold. Then it is easy to
see that for this hypothetical manifold, the wall crossing number calculated
by the general wall crossing formula is in fact zero for all spinc structures.
This point has an important implication. Namely, even though this mani-
fold is of b+

2 = 1 type and the walls exist, the SW invariants do not jump
after crossing any wall. In particular this implies that the Seiberg Witten
invariants are diffeomorphism invariants!

Now by applying Taubes’ existence theorem for SW (K−1) [T2], one
can conclude that for both K and K−1, their SW invariants, no matter
in which chamber, are both ±1. Using this fact in the Taubes’ chamber
and writing K as K−1 + 2K, we find that, in the b+

2 > 1 case, the class
c1(K) can be represented by a symplectic curve [T1]. Adjunction formula
consideration will force the curve to contain a non-negative self intersecting
rational curve as a connected component (note: the minimality is enforced).
Now McDuff’s theorem implies that M must be irrational ruled. This
causes a contradiction because we know explicitly that on irrational ruled
surfaces, the cup product map defined above is always non-trivial.

Therefore, in the following discussion the cup product map is always
assumed to be non-zero. Before continuing onto the main argument, I
would like to address the following lemmas:

Lemma 9. Let M be a b+
2 = 1 symplectic four manifold. Assuming b1 �= 0

and that every cup product map defined above is non-zero, then there always
exists an integral symplectic basis of H1(M, R) which is nondegenerate.

Proof. Using the fact that

y1 · y2 · y3 · y4 = 0

for every four elements in H1(M, R) and combining with the light cone
lemma, we learn that the image of the cup product · ∪ · : H1 ×H1 −→ H2

must form a line lying in the boundary of the light cone. Let us call the
primitive generator of that line C. We can choose C to be in the forward
light cone. Then the cup product on H1 can be viewed as a quadratic form
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defined by the coefficient in front of C. The fact that the cup product maps
defined in the previous lemma are all non-zero immediately implies that this
quadratic form is nondegenerate and symplectic. Thus the symplectic basis
exists and we know that:

Corollary 10. [LL] A spinc structure L (with non-negative moduli space
dimension) has a non-zero wall crossing number if c1(L) · C �= 0.

Now it is time to prove the main theorem.

Theorem A. Let M be a minimal symplectic four manifold with c1(K)2 <
0, then M must be irrational ruled.

Proof. On the contrary, suppose that M is not irrational ruled. We can
argue that Gr(kZ) = 0 for all classes k · Z( where k > 0). Using Taubes’
theorem “Gr = SW”, it implies that for all these classes, SW (c1(K−1) +
2kZ) are zero. For large enough k, the number of walls crossed in the
step 2 and 3 (for the details, please consult [LL2]) is odd. On the other
hand we know that in the ordinary metric chamber there can be only a
finite number of non-zero Seiberg Witten classes. Thus we conclude that
the wall crossing number for c1(K−1) + 2kZ must be zero for large enough
k. Using Corollary 10 this statement can be rephrased as the following
equation:

(c1(K−1) + 2kZ) · C = 0, k 
 0.

The LHS is an affine function in the variable k. The fact that it has an
infinite number of zero forces both the leading term and the constant term
to be zero. That is to say

c1(K) · C = 0, Z · C = 0.

One can easily see that these two equations contradict each other. By
applying the light cone lemma to the second equation we conclude that

C = αZ, α �= 0,

plugging it back into the first equation we get

c1(K) · C = αc1(K) · Z = 0,

which implies
c1(K) · Z = 0,

which is impossible by the choice of Z. This proves Theorem A and therefore
Gompf’s conjecture.

Theorem A implies the following well known theorem in Kahler surface
classification theory [G.H.].
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Corollary F. (Enriques) Let M be a minimal Kahler surface with
c1(K)2 < 0. Then it must be irrational ruled.

From the discussion we also learned that if a symplectic four manifold
(with b+

2 = 1) has a degenerate cup product map on H1(M, R), then its
minimal model must satisfy c1(K)2 = 0.

Next let me provide a reasonable interpretation of the argument. In fact
the previous argument concerning a family of classes k ·Z is very similar to
some arguments in the Riemann Roch theorem for surfaces. In fact, quite
often algebraic geometers choose some ample class H and study the global
sections of the family of line bundles k · H and their asymptotic behav-
iors in k. The only difference here is that we use a class Z with Z2 = 0
(which is not even “big” in terms of the lanquage of algebraic geometers).
If one takes Taubes’ fundamental theorem “SW = Gr” for granted, the
remaining argument seems to be even simpler than the corresonding ar-
gument in Kahler geometry. Suppose one recalls the standard argument
from e.g. Griffiths-Harris [GH]. They first argue that the image of the so
called Albanese map is a smooth holomorphic curve imbedded inside the
Albanese torus (some quotient of H1), then by using the Riemann Roch
theorem and the local geometry of holomorphic curves, they argued that
the regular fibers of this fibration must be complex curves of genus zero. Of
course this argument is not expected to apply in the Seiberg Witten proof
we offer here. However, it seems that there is still some kind of analogue
between these two arguments. The local geometry of the complex curves
is replaced by the local geometry of pesudo-holomorphic curves with no
essential change. In this case Taubes’ fundamental theorem plays the role
of the Riemann-Roch theorem. Now the argument of wall crossing formula
replaces the role of the Albanese map. In fact the readers may notice that
the class which plays the central role in the wall crossing number calcula-
tion is the exact same class corresponding to the fiber class of the Albanese
map.

Therefore, one can interpret in this way that the very existence or nonex-
istence of a pesudo-holomorphic curve stable under almost complex pertur-
bation is strong enough (by comparison with the fact that curves generated
by the Riemann-Roch theorem may not be stable even under complex de-
formation) to remedy the defect that in the symplectic category. Even
though we don’t have a holomorphic Albanese map to control the geome-
try, its position is weakly replaced by the wall crossing formula [KM,LL1].

As another application of Gompf’s conjecture, let us prove the following
theorem.

Theorem B. Let M be a b+
2 = 1 symplectic four manifold (not necessarily
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minimal). If c1(K) · ω < 0, then it must be either rational, rational ruled
or irrational ruled.

This theorem means that if we remove the rational or irrational ruled
surfaces from the picture, the “ordindary” symplectic four manifolds with
b+
2 = 1 still satisfy c1(K) · ω ≥ 0 [T3].

Unlike the b+
2 > 1 case, we can not conclude that c1(K) itself is rep-

resented by pseudo-holomorphic curves. Holomorphically (in the cases of
Kahler surfaces) we know pg=dimC H0(M, K) = 0 or by direct calculation
(using the wall crossing formula) we see that SW (K) in Taubes’ chamber
is 0.

Proof. First we do the symplectic blow down until M becomes minimal. No-
tice that if the original manifold satisfies c1(K) ·ω < 0, then this expression
is still negative after the blowing down process. Without loss of generality,
we can assume from the very beginning that the symplectic manifold is
minimal. Now there are two possiblities. If c1(K)2 < 0, then we know by
the affirmative answer of the Gompf’s conjecture that the manifold must
be irrational ruled. The only case we need to handle is when c1(K)2 ≥ 0.
Combining this condition and c1(K) ·ω < 0 together implies that the class
c1(K) is in the backward light cone. Assuming that b2 > 1, we use the trick
as in the proof of Gompf’s conjecture to find a class Z on the boundary of
the forward light cone (assumption b2 ≥ 2 must be used) with Z · Z = 0
and Z · c1(K) < 0.

If the first Betti number is zero, then we can prove that the manifold
must be a ratoinal or rationally ruled surface. If not, there will be an
infinite number of classes whose Seiberg Witten invariants are not zero,
which contradicts to the finiteness of the Seiberg Witten basic classes in
the metric chambers. From now on, we can always assume that b1 is not
zero. In this case, the general wall crossing formula [LL1] will be used.

Adapting Taubes’ proof [T1] again, one can argue that the cup product
pairing on H1 is not degenerate. The reason is as follows: If the cup product
is degenerate, then the wall crossing numbers for all the spinc structures
are zero. Using Taubes’ existence theorem for SW (K) [T2], implies that
c1(K) is represented by a symplectic curve. However this contradicts to
the fact, c1(K) · ω < 0.

Once we know that the cup product pairing is non-zero, the same ar-
gument as in the proof of Gompf’s conjecture shows us that it must be
minimal and irrational ruled. In this case, it must be an irrational ruled
surface with an elliptic base.

On the other hand, if b2 is equal to one, denote the positive generator of
H2(M, R) by H, then it is easy to see that K = −3H in this case. In fact
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the manifold just “looks like” a homology CP 2. Basically one can use the
previous argument with some special care. First blow up one point on the
manifold M . Now it does have a light cone in H2(M). Using the choice
Z = H −E and arguing as before, one can still conclude that the blown up
manifold is a rational ruled surface. Therefore, the manifold M must be
CP 2. The subtlety is that the manifold to which we are applying Taubes’
theorem “Gr = SW” is not minimal any more and a priori the problem
of “multiple -1 curves” can happen sometimes. However, the simplicity
of the topology actually tells us that for these k · Z of classes, Taubes’
theorem ”SW = Gr” is still correct. The reason is because one can easily
argue that the cohomology class E is represented by the unique -1 curve
on the manifold (almost by construction). Using the fact that H2(M)
is of dimension two and the fact that E appears in k · Z with negative
coefficients, one can argue easily that the muliple coverings of -1 curves can
never show up and Taubes’ theorem remains valid in this case. After this
simple digression, one is able to use Taubes’ theorem to safely prove the
result. This ends the proof of the theorem.

As an application of the above discussion, one can prove the following
theorem which was actually the starting point of the whole discussion.

Theorem C. Let M be a symplectic four manifold carrying psc metrics,
then M must be some blow up of either rational, rational ruled or irrational
ruled surfaces.

With Theorem B at hand, the proof is actually not hard.

Proof. First by Taubes’ existence theorem [T2], SW (K) is non-zero. On
the other hand, Witten’s vanishing theorem [W1,2] tells us that SW (K) is
zero for psc metrics. Combining these two facts together implies that b+

2

must be one. Let us begin the discussion now.
First consider the case b1 > 0. If b1 is actually bigger or equal to 4, then

Gompf’s conjecture proved above implies that it must be irrational ruled
even without using the psc metrics. Therefore, we only need to consider the
b1 = 2 case. When b+

1 = 2, one can easily calculate c1(K)2 = 2χ + 3σ ≤
0. We can always blow it down to its minimal model. It is easy to see
that the minimal model must satisfy c1(Kmin)2 = 0. Otherwise the main
theorem will imply that the minimal model must be geometrically ruled
with b1 ≥ 4, contradicting the assumption on b1. If M itself is minimal,
then one can draw the conclusion right away from Lemma 4. One learns
that c1(K) ·ωpsc < 0 and therefore, c1(K) must be on the boundary of the
backward light cone. From Theorem B one knows that it must be irrational
ruled with an elliptic base. Therefore, M comes from several blowing ups
of its minimal model with c1(Kmin) ·c1(Kmin) = 0. Because we don’t know
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yet whether the property of carrying psc metrics can be preserved under
the blowing down process, we cannot assume that the minimal model of M
always carries psc metrics even though M itself does.

Using the general wall crossing formula proved in [LL1] and the existence
of the psc metrics, one learns that c1(K) ·C = ±2. On the other hand, the
class C comes from the cup product of elements in H1(M, R). Therefore,
it must be perpendicular to any cohomology class which is the image of
some topological sphere. In particular it is automatically perpendicular to
any -1 symplectic curve on M . Suppose we have a map from an S2 to M ,

f : S2 −→ M.

Then we know that

0 =
∫

S2
f∗(C) = PD(f∗(S2)) · C

as S2 doesn’t have any first homology.
From here one can calculate

c1(K) · C = c1(Kmin) · C = ±2

by using the adjunction formula c1(K) = c1(Kmin) +
∑

Ei. This implies
that Kmin cannot be torsion.

Suppose we have a specific psc metric g on manifold M, then by Lemma
4, c1(K) ·ωg must be negative (where ωg is the self dual harmonic two form
assoicated with g). Let us denote by ωg

ω0 + Σai · Ei

where ω0 is a class in the forward light cone on the minimal model of M ,
and these Ei are the disjoint −1 curves we blow down. Now one uses the
trick of −1 reflection constructed by Morgan-Friedman [FM]. Namely we
can perform the diffeomorphisms on manifold M to switch these Ei to
−Ei without touching the part of the cohomology which comes from the
minimal model. The main point is that if we pull back the metric g by
this -1 diffeomorphism, the new metric will become another psc metric. By
choosing a suitable diffemorphism, one can arrange the new ωg such that
all the coefficients ai in front of Ei are negative. Now we can recalculate
K · ωg.

c1(K)·ωg = (c1(Kmin)+ΣEi)·(ω0+Σai.Ei) = c1(Kmin)·ω0+Σai·(−1) < 0.
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However, this implies that

c1(Kmin) · ω0 = c1(K) · ω + Σai < 0.

It is obvious that the above inequality implies that c1(Kmin) is lying in
the backward light cone of the minimal model. Then Theorem B finishes
the job. Therefore, manifold M comes from some blow up of an irrational
ruled surface with an elliptic base. This ends the proof when b1 �= 0.

From now on let us assume b1 = 0. Now the wall crossing formula of
Kronheimer and Mrowka [KM] is needed in the discussion.

From the proof of the Gompf’s conjecture, any symplectic manifold of
this type must come from some minimal model which satisfies c1(Kmin)2 ≥
0. Therefore, to show that it is rational or irrational ruled, we must show
that c1(Kmin) in fact lies in the backward light cone. Playing the same
trick as before, one can always arrange the psc metric g such that

ωg = ω0 + Σai · Ei

with ai all negative. The same calculation shows that Kmin.ω0 is strictly
negative. This is exactly what we need in order to show that the rational
curve with non-negative self intersection number on the minimal model
exists.

The fact that symplectic manifolds with psc metrics can be classified
without having a complete classification of the b+

2 = 1 symplectic four
manifolds gives us several interesting corollaries.

Corollary G. The following three conditions are equivalent for a symplec-
tic four manifold.
1. Having a positive scalar curvature metric.
2. Having a super P cell (the chamber whose SW invariants are all zero).
3. Having a rational curve with non-negative self-intersection number.

From the discussion one learns that the symplectic blowing down pro-
cess actually preserves the property of carrying psc metrics. It will be
very interesting to see whether this property holds for higher dimensional
symplectic manifolds.

By combining the following lemma proved by Witten [W],

Lemma 11. (Witten) [W] If a four manifold carries non-negative scalar
curvature metrics, then one of the two possibilities happens.
1. It has a super P cell (which it means that the Seiberg Witten invariants
of all spinc structures vanish for certain metrics).
2. It is Kähler with a Kähler scalar flat metric. In this case they are either
K3, Enriques surfaces, T 4, or rational or irrational ruled surfaces.

Now one can classify the symplectic manifolds with non-negative sclar
curvature metrics.
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Corollary H. Let M be a symplectic four manifold with non-negative
scalar curvature metrics, then it must be either rational, rationally ruled,
irrationally ruled, Enriques surfaces, T 4 or K3 surfaces. In particular all
these symplectic four manifolds carry Kähler structures.

In fact, the above classification of symplectic manifolds with psc metrics
gives us a more elegant proof of the fact that symplectic structures of the
rational or irrationally ruled manifolds are in fact unique up to deformation.
Unlike the previous proof [LL2], the above argument does not contain any
topological assumption of M at all. Notice that in the previous argument
[Liu] the classification of symplectic manifolds with the psc metrics was
done by doing calculations using the Hasse-Minkowski classification of the
quadratic forms and then finding out some explicit special cohomology class
to generate the rational curve we needed. In the current revised version
of the paper that kind of messy argument is completely replaced by the
simpler argument given above.

As another application of Gompf’s conjecture, one can actually rederive
the previous result [LL2] about the nonexistence of square zero spheres in
the b+

2 = 1 symplectic four manifold M . Based on the similar idea of the
proof of the Gompf’s conjecture, one can show the following:

Theorem D. [LL] Let M be a b+
2 = 1 symplectic manifold. If C is a class

such that C ·ω > 0 with C2 = C · c1(K) = 0, then C can not be represented
by a square zero sphere.

Remark. This theorem is a key step in proving the adjunction inequality
which was argued along a different method before. One can actually for-
mulate a general statement without using the fact that M is symplectic.
However as we only have the existence result within the symplectic category
[T2], let us limit ourself to this category.

Proof. With the main theorem of this paper at hand, one can consider two
cases. First we consider the case that c1(K) · ω ≥ 0, otherwise M has to
be rational or irationally ruled. As the manifolds in the second case always
carry the psc metrics, we will merely use the fact that it is a symplectic
manifold carrying psc metrics.

In either case, let us blow up a point on the manifold M . Now one can
make sure the c1(K) of this symplectic structure is non-torsion. Then by
a small perturbation of ω we can assume c1(K) · ω to be non-zero.

In the first case the c1(K) · ω must be greater than zero or it will con-
tradict Theorem B. From this we know that for some metric chamber with
c1(K) · ωg > 0, the SW (K) is equal to ±1.

Now consider the -1 reflection [FM] generated by the -1 sphere repre-
senting En = E ± nC, where n ranges over all integers. Using the fact
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c1(K) · C = 0, One learns that

ReEn(c1(K)) = c1(K) − 2En = c1(K) − 2E − 2nC

and we also know that

ReEn(c1(K)) · ReEn(ωg) > 0

if
c1(K) · ωg > 0,

i.e. K is a basic class for the metric g. On the other hand the SW invariants
are diffemorphism invariants up to chambers. This implies that for any
generic smooth metric h we pick, if the cup product ReEn

(c1(K)) · ωh >
0, then ReEn(c1(K)) is a basic class of h. As in the proof of Gompf’s
conjecture, this creates a contradiction. For any metric h we choose,

ReEn(c1(K)) · ωh = (c1(K) − 2E − 2nC) · ωh > 0

for sufficiently negative n. We argue by combining our assumption and the
light cone lemma that C ·ωh > 0. The fact that there is an infinite number
of basic classes for h contradicts the finiteness of the basic classes for a
fixed metric.

On the other hand, if M carries psc metrics. We always know that c1(K)·
ωpsc < 0. Doing the same refletion one gets ReEn(c1(K)) · ReEn(ωg) < 0
for any g whose scalar curvature Rg is positive. As ReEn is realized by
a diffemorphism which certainly moves psc metrics to psc metrics, these
ReEn(c1(K)) have trivial SW invarints in the negative chamber. By let-
ting n be sufficiently negative, its cup product with any period of psc
metrics is essentially positive. This tells us that for these special n, there
are different psc metrics sitting on the both sides of the walls. This forces
the wall crossing number of these classes to be zero. On the other hand
as the cohomology classes come from pulling back the c1(K) by some dif-
femorphisms, they must share the same wall crossing number with c1(K).
(which is definitely non-zero by combining Witten’s vanishing result [W]
and Taubes’ existence result [T2].) This proves that in either case the class
C cannot exist on the original manifold M .

Remark. In fact, the above proof has an analogue in the b+
2 > 1 category

[SF] by using a similar idea as in the proof of Gompf’s conjecture discussed
above. Therefore the above proof of Therorem K can be viewed as the
extension of their result to the b+

2 = 1 case.
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As the proof of Theorem E is a modification of Friedman-Morgan’s ar-
gument, we leave it to the readers as an interesting exercise.

Remark. Theorems B and C suggest that we should view the rational, ra-
tional ruled and irrational ruled surfaces as a special category, characterized
by the property of carrying positive scalar curvature metrics. Several the-
orems [LL2,FM] in symplectic geometry hold for the “normal” symplectic
four manifolds which satisfy c1(K) · ω ≥ 0, but they do not hold for these
rational or ruled manifolds. Theorem C tells us that from the point of view
of differential geometry, the reason that these “exceptional” symplectic four
manifolds do not satisfy these theorems traces back to the existence of the
psc metrics.

Remark. Using the wall crossing formula [LL1] and its slight generalization
[LL4] (when the ring pairing on H1 is degenerate, one needs to consider
some slightly more general Seiberg Witten invariants which have nontrivial
wall crossing number), one can easily show that all the b+

2 = 1 sympletic
four manifolds are not of Gromov simple type. Not only is it true, in
fact, there are an infinite number of classes with positive moduli space
dimensions which support nontrivial Gromov invariants. The classes Z
must satisfy four conditions.
1. Z2 − Z · c1(K) > 0
2. Z2 ≥ 0
3. (c1(K−1) + 2Z) · ω > 0
4. c1(K−1) + 2Z is not one of the finite number of basic classes in the
positive chambers.

This tells us that the theorem ′′SW = Gr′′ behaves exactly like the
Riemann-Roch theorem in complex surface theory. The existence of the
ample families of symplectic curves in the symplectic “curve cone” is an ex-
act analogue of the similiar phenomenon happening for holomorphic curves
in the “curve cone” of algebraic surfaces, as is guaranteed by the surface
Riemann-Roch theorem.
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